Rollup of 12 pull requests
Successful merges:
- #135767 (Future incompatibility warning `unsupported_fn_ptr_calling_conventions`: Also warn in dependencies)
- #137852 (Remove layouting dead code for non-array SIMD types.)
- #137863 (Fix pretty printing of unsafe binders)
- #137882 (do not build additional stage on compiler paths)
- #137894 (Revert "store ScalarPair via memset when one side is undef and the other side can be memset")
- #137902 (Make `ast::TokenKind` more like `lexer::TokenKind`)
- #137921 (Subtree update of `rust-analyzer`)
- #137922 (A few cleanups after the removal of `cfg(not(parallel))`)
- #137939 (fix order on shl impl)
- #137946 (Fix docker run-local docs)
- #137955 (Always allow rustdoc-json tests to contain long lines)
- #137958 (triagebot.toml: Don't label `test/rustdoc-json` as A-rustdoc-search)
r? `@ghost`
`@rustbot` modify labels: rollup
Stop using `hash_raw_entry` in `CodegenCx::const_str`
That unstable feature (#56167) completed fcp-close, so the compiler needs to be
migrated away to allow its removal. In this case, `cg_llvm` and `cg_gcc`
were using raw entries to optimize their `const_str_cache` lookup and
insertion. We can change that to separate `get` and (on miss) `insert`
calls, so we still have the fast path avoiding string allocation when
the cache hits.
rename BackendRepr::Vector → SimdVector
For many Rustaceans, "vector" does not imply "SIMD", so let's be more clear in this type that is used pervasively in the compiler.
r? `@workingjubilee`
The embedded bitcode should always be prepared for LTO/ThinLTO
Fixes#115344. Fixes#117220.
There are currently two methods for generating bitcode that used for LTO. One method involves using `-C linker-plugin-lto` to emit object files as bitcode, which is the typical setting used by cargo. The other method is through `-C embed-bitcode=yes`.
When using with `-C embed-bitcode=yes -C lto=no`, we run a complete non-LTO LLVM pipeline to obtain bitcode, then the bitcode is used for LTO. We run the Call Graph Profile Pass twice on the same module.
This PR is doing something similar to LLVM's `buildFatLTODefaultPipeline`, obtaining the bitcode for embedding after running `buildThinLTOPreLinkDefaultPipeline`.
r? nikic
Fix enzyme build errors
After [this PR](https://github.com/rust-lang/rust/pull/136428) was merged, I switched to master and attempted building `./x.py build --stage 1 library` with the config mentioned in the enzyme rustbook but it resulted in some errors tho the config.example.toml build succeeded
The errors were re:
### 1. Use of ref in match patterns
The errors were related to match ergonomics in Rust 2024, where ref is no longer needed when matching on references. Examples:
```
error: binding modifiers may only be written when the default binding mode is `move`
--> compiler/rustc_builtin_macros/src/autodiff.rs:136:31
|
136 | Annotatable::Item(ref iitem) => {
| ^^^ binding modifier not allowed under `ref` default binding mode
|
= note: for more information, see <https://doc.rust-lang.org/nightly/edition-guide/rust-2024/match-ergonomics.html>
note: matching on a reference type with a non-reference pattern changes the default binding mode
--> compiler/rustc_builtin_macros/src/autodiff.rs:136:13
|
136 | Annotatable::Item(ref iitem) => {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this matches on type `&_`
help: remove the unnecessary binding modifier
|
136 - Annotatable::Item(ref iitem) => {
136 + Annotatable::Item(iitem) => {
|
error: binding modifiers may only be written when the default binding mode is `move`
--> compiler/rustc_builtin_macros/src/autodiff.rs:146:36
|
146 | Annotatable::AssocItem(ref assoc_item, _) => {
| ^^^ binding modifier not allowed under `ref` default binding mode
|
= note: for more information, see <https://doc.rust-lang.org/nightly/edition-guide/rust-2024/match-ergonomics.html>
note: matching on a reference type with a non-reference pattern changes the default binding mode
--> compiler/rustc_builtin_macros/src/autodiff.rs:146:13
|
146 | Annotatable::AssocItem(ref assoc_item, _) => {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this matches on type `&_`
help: remove the unnecessary binding modifier
|
146 - Annotatable::AssocItem(ref assoc_item, _) => {
146 + Annotatable::AssocItem(assoc_item, _) => {
|
error: binding modifiers may only be written when the default binding mode is `move`
--> compiler/rustc_builtin_macros/src/autodiff.rs:174:31
|
174 | ... Annotatable::Item(ref iitem) => (iitem.vis.clone(), iitem.ide...
| ^^^ binding modifier not allowed under `ref` default binding mode
|
= note: for more information, see <https://doc.rust-lang.org/nightly/edition-guide/rust-2024/match-ergonomics.html>
note: matching on a reference type with a non-reference pattern changes the default binding mode
--> compiler/rustc_builtin_macros/src/autodiff.rs:174:13
|
174 | ... Annotatable::Item(ref iitem) => (iitem.vis.clone(), iitem.ident.c...
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this matches on type `&_`
help: remove the unnecessary binding modifier
|
174 - Annotatable::Item(ref iitem) => (iitem.vis.clone(), iitem.ident.clone()),
174 + Annotatable::Item(iitem) => (iitem.vis.clone(), iitem.ident.clone()),
|
error: binding modifiers may only be written when the default binding mode is `move`
--> compiler/rustc_builtin_macros/src/autodiff.rs:175:36
|
175 | Annotatable::AssocItem(ref assoc_item, _) => {
| ^^^ binding modifier not allowed under `ref` default binding mode
|
= note: for more information, see <https://doc.rust-lang.org/nightly/edition-guide/rust-2024/match-ergonomics.html>
note: matching on a reference type with a non-reference pattern changes the default binding mode
--> compiler/rustc_builtin_macros/src/autodiff.rs:175:13
|
175 | Annotatable::AssocItem(ref assoc_item, _) => {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this matches on type `&_`
help: remove the unnecessary binding modifier
|
175 - Annotatable::AssocItem(ref assoc_item, _) => {
175 + Annotatable::AssocItem(assoc_item, _) => {
|
error: could not compile `rustc_builtin_macros` (lib) due to 4 previous errors
warning: build failed, waiting for other jobs to finish...
Build completed unsuccessfully in 0:19:39
```
### 2. the use of external C blocks without unsafe in compiler/rustc_codegen_llvm/src/llvm/enzyme_ffi.rs (I don't have the error message handy)
The first commit fixes the errors above
---
## Additional Improvement:
`@ZuseZ4` suggested we consolidate the variants under `#[cfg(llvm_enzyme)]` and `#[cfg(not(llvm_enzyme))]` by conditionally checking for `cfg!(llvm_enzyme)` instead. This way, the autodiff code is compiled but not executed avoiding such regressions
r? `@ZuseZ4`
cc: `@oli-obk`
That unstable feature completed fcp-close, so the compiler needs to be
migrated away to allow its removal. In this case, `cg_llvm` and `cg_gcc`
were using raw entries to optimize their `const_str_cache` lookup and
insertion. We can change that to separate `get` and (on miss) `insert`
calls, so we still have the fast path avoiding string allocation when
the cache hits.
codegen_llvm: avoid `Deref` impls w/ extern type
`rustc_codegen_llvm` relied on `Deref` impls where `Deref::Target` was or contained an extern type - in my experimental implementation of rust-lang/rfcs#3729, this isn't possible as the `Target` associated type's `?Sized` bound cannot be relaxed backwards compatibly (unless we come up with some way of doing this).
In later pull requests with the rust-lang/rfcs#3729 implementation, breakage like this could only occur for nightly users relying on the `extern_types` feature.
Upstreaming this to avoid needing to keep carrying this patch locally, and I think it'll necessarily need to change eventually.
remove `simd_fpow` and `simd_fpowi`
Discussed in https://github.com/rust-lang/rust/issues/137555
These functions are not exposed from `std::intrinsics::simd`, and not used anywhere outside of the compiler. They also don't lower to particularly good code at least on the major ISAs (I checked x86_64, aarch64, s390x, powerpc), where the vector is just spilled to the stack and scalar functions are used for the actual logic.
r? `@RalfJung`
`rustc_codegen_llvm` relied on `Deref` impls where `Deref::Target` was
or contained an extern type - in my experimental implementation of
rust-lang/rfcs#3729, this isn't possible as the `Target` associated
type's `?Sized` bound cannot be relaxed backwards compatibly (unless we
come up with some way of doing this).
In later pull requests with the rust-lang/rfcs#3729 implementation,
breakage like this could only occur for nightly users relying on the
`extern_types` feature.
Upstreaming this to avoid needing to keep carrying this patch locally,
and I think it'll necessarily need to change eventually.
Emit getelementptr inbounds nuw for pointer::add()
Lower pointer::add (via intrinsic::offset with unsigned offset) to getelementptr inbounds nuw on LLVM versions that support it. This lets LLVM make use of the pre-condition that the offset addition does not wrap in an unsigned sense. Together with inbounds, this also implies that the offset is non-negative.
Fixes https://github.com/rust-lang/rust/issues/137217.
intrinsics: unify rint, roundeven, nearbyint in a single round_ties_even intrinsic
LLVM has three intrinsics here that all do the same thing (when used in the default FP environment). There's no reason Rust needs to copy that historically-grown mess -- let's just have one intrinsic and leave it up to the LLVM backend to decide how to lower that.
Suggested by `@hanna-kruppe` in https://github.com/rust-lang/rust/issues/136459; Cc `@tgross35`
try-job: test-various
Some codegen_llvm cleanups
Using some more safe wrappers and thus being able to remove a large unsafe block.
As a next step we should probably look into safe extern fns
- For shifts this shrinks the IR by no longer needing an `assume` while still providing the UB information
- Having this on the `i8`→`i1` truncations will hopefully help with some places that have to load `i8`s or pass those in LLVM structs without range information
compiler: Stop reexporting stuff in cg_llvm::abi
The reexports confuse tooling like rustdoc into thinking cg_llvm is the source of key types that originate in rustc_target.
improve cold_path()
#120370 added a new instrinsic `cold_path()` and used it to fix `likely` and `unlikely`
However, in order to limit scope, the information about cold code paths is only used in 2-target switch instructions. This is sufficient for `likely` and `unlikely`, but limits usefulness of `cold_path` for idiomatic rust. For example, code like this:
```
if let Some(x) = y { ... }
```
may generate 3-target switch:
```
switch y.discriminator:
0 => true branch
1 = > false branch
_ => unreachable
```
and therefore marking a branch as cold will have no effect.
This PR improves `cold_path()` to work with arbitrary switch instructions.
Note that for 2-target switches, we can use `llvm.expect`, but for multiple targets we need to manually emit branch weights. I checked Clang and it also emits weights in this situation. The Clang's weight calculation is more complex that this PR, which I believe is mainly because `switch` in `C/C++` can have multiple cases going to the same target.
Continuing the work started in #136466.
Every method gains a `hir_` prefix, though for the ones that already
have a `par_` or `try_par_` prefix I added the `hir_` after that.
Replace some u64 hashes with Hash64
I introduced the Hash64 and Hash128 types in https://github.com/rust-lang/rust/pull/110083, essentially as a mechanism to prevent hashes from landing in our leb128 encoding paths. If you just have a u64 or u128 field in a struct then derive Encodable/Decodable, that number gets leb128 encoding. So if you need to store a hash or some other value which behaves very close to a hash, don't store it as a u64.
This reverts part of https://github.com/rust-lang/rust/pull/117603, which turned an encoded Hash64 into a u64.
Based on https://github.com/rust-lang/rust/pull/110083, I don't expect this to be perf-sensitive on its own, though I expect that it may help stabilize some of the small rmeta size fluctuations we currently see in perf reports.
nvptx64: update default alignment to match LLVM 21
This changed in llvm/llvm-project@91cb8f5d32. The commit itself is mostly about some intrinsic instructions, but as an aside it also mentions something about addrspace for tensor memory, which I believe is what this string is telling us.
`@rustbot` label: +llvm-main
Set both `nuw` and `nsw` in slice size calculation
There's an old note in the code to do this, and now that [LLVM-C has an API for it](f0b8ff1251/llvm/include/llvm-c/Core.h (L4403-L4408)), we might as well. And it's been there since what looks like LLVM 17 de9b6aa341 so doesn't even need to be conditional.
(There's other places, like `RawVecInner` or `Layout`, that might want to do things like this too, but I'll leave those for a future PR.)
debuginfo: Set bitwidth appropriately in enum variant tags
Previously, we unconditionally set the bitwidth to 128-bits, the largest an enum would possibly be. Then, LLVM would cut down the constant by chopping off leading zeroes before emitting the DWARF. LLVM only supported 64-bit enumerators, so this would also have occasionally resulted in truncated data.
LLVM added support for 128-bit enumerators in llvm/llvm-project#125578
That patchset trusts the constant to describe how wide the variant tag is, so the high 64-bits of zeros are considered potentially load-bearing.
As a result, we went from emitting tags that looked like:
DW_AT_discr_value (0xfe)
(because `dwarf::BestForm` selected `data1`)
to emitting tags that looked like:
DW_AT_discr_value (<0x10> fe ff ff ff 00 00 00 00 00 00 00 00 00 00 00 00 )
This makes the `DW_AT_discr_value` encode at the bitwidth of the tag, which:
1. Is probably closer to our intentions in terms of describing the data.
2. Doesn't invoke the 128-bit support which may not be supported by all debuggers / downstream tools.
3. Will result in smaller debug information.
cg_llvm: Reduce visibility of all functions in the llvm module
Next part of #135502
This reduces the visibility of all functions in the `llvm` module to `pub(crate)` and marks the `enzyme_ffi` modules with `#![expect(dead_code)]` (as previously discussed: <https://github.com/rust-lang/rust/pull/135502#discussion_r1915608085>).
r? ``@Zalathar``
Parallel-compiler-related cleanup
Parallel-compiler-related cleanup
I carefully split changes into commits. Commit messages are self-explanatory. Squashing is not recommended.
cc "Parallel Rustc Front-end" https://github.com/rust-lang/rust/issues/113349
r? SparrowLii
``@rustbot`` label: +WG-compiler-parallel
Mark condition/carry bit as clobbered in C-SKY inline assembly
C-SKY's compare and some arithmetic/logical instructions modify condition/carry bit (C) in PSR, but there is currently no way to mark it as clobbered in `asm!`.
This PR marks it as clobbered except when [`options(preserves_flags)`](https://doc.rust-lang.org/reference/inline-assembly.html#r-asm.options.supported-options.preserves_flags) is used.
Refs:
- Section 1.3 "Programming model" and Section 1.3.5 "Condition/carry bit" in CSKY Architecture user_guide:
9f7121f7d4/CSKY%20Architecture%20user_guide.pdf
> Under user mode, condition/carry bit (C) is located in the lowest bit of PSR, and it can be
accessed and changed by common user instructions. It is the only data bit that can be visited
under user mode in PSR.
> Condition or carry bit represents the result after one operation. Condition/carry bit can be
clearly set according to the results of compare instructions or unclearly set as some
high-precision arithmetic or logical instructions. In addition, special instructions such as
DEC[GT,LT,NE] and XTRB[0-3] will influence the value of condition/carry bit.
- Register definition in LLVM:
https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/CSKY/CSKYRegisterInfo.td#L88
cc ```@Dirreke``` ([target maintainer](aa6f5ab18e/src/doc/rustc/src/platform-support/csky-unknown-linux-gnuabiv2.md (target-maintainers)))
r? ```@Amanieu```
```@rustbot``` label +O-csky +A-inline-assembly
Cast allocas to default address space
Pointers for variables all need to be in the same address space for correct compilation. Therefore ensure that even if an `alloca` is created in a different address space, it is casted to the default address space before its value is used.
This is necessary for the amdgpu target and others where the default address space for `alloca`s is not 0.
For example the following code compiles incorrectly when not casting the address space to the default one:
```rust
fn f(p: *const i8 /* addrspace(0) */) -> *const i8 /* addrspace(0) */ {
let local = 0i8; /* addrspace(5) */
let res = if cond { p } else { &raw const local };
res
}
```
results in
```llvm
%local = alloca addrspace(5) i8
%res = alloca addrspace(5) ptr
if:
; Store 64-bit flat pointer
store ptr %p, ptr addrspace(5) %res
else:
; Store 32-bit scratch pointer
store ptr addrspace(5) %local, ptr addrspace(5) %res
ret:
; Load and return 64-bit flat pointer
%res.load = load ptr, ptr addrspace(5) %res
ret ptr %res.load
```
For amdgpu, `addrspace(0)` are 64-bit pointers, `addrspace(5)` are 32-bit pointers.
The above code may store a 32-bit pointer and read it back as a 64-bit pointer, which is obviously wrong and cannot work. Instead, we need to `addrspacecast %local to ptr addrspace(0)`, then we store and load the correct type.
Tracking issue: #135024
Previously, we unconditionally set the bitwidth to 128-bits, the largest
an discrimnator would possibly be. Then, LLVM would cut down the constant by
chopping off leading zeroes before emitting the DWARF. LLVM only
supported 64-bit descriminators, so this would also have occasionally
resulted in truncated data (or an assert) if more than 64-bits were
used.
LLVM added support for 128-bit enumerators in llvm/llvm-project#125578
That patchset also trusts the constant to describe how wide the variant tag is.
As a result, we went from emitting tags that looked like:
DW_AT_discr_value (0xfe)
(`form1`)
to emitting tags that looked like:
DW_AT_discr_value (<0x10> fe ff ff ff 00 00 00 00 00 00 00 00 00 00 00 00 )
This makes the `DW_AT_discr_value` encode at the bitwidth of the tag,
which:
1. Is probably closer to our intentions in terms of describing the data.
2. Doesn't invoke the 128-bit support which may not be supported by all
debuggers / downstream tools.
3. Will result in smaller debug information.
Document some safety constraints and use more safe wrappers
Lots of unsafe codegen_llvm code has safe wrappers already, so I used some of them and added some where applicable. I stopped here because this diff is large enough and should probably be reviewed independently of other changes.
cg_llvm: Reduce visibility of some items outside the `llvm` module
Next piece of #135502
This reduces the visibility of items (other than those in the `llvm` module) so that dead code analysis will correctly identify unused items.
Pointers for variables all need to be in the same address space for
correct compilation. Therefore ensure that even if an `alloca` is
created in a different address space, it is casted to the default
address space before its value is used.
This is necessary for the amdgpu target and others where the default
address space for `alloca`s is not 0.
For example the following code compiles incorrectly when not casting the
address space to the default one:
```rust
fn f(p: *const i8 /* addrspace(0) */) -> *const i8 /* addrspace(0) */ {
let local = 0i8; /* addrspace(5) */
let res = if cond { p } else { &raw const local };
res
}
```
results in
```llvm
%local = alloca addrspace(5) i8
%res = alloca addrspace(5) ptr
if:
; Store 64-bit flat pointer
store ptr %p, ptr addrspace(5) %res
else:
; Store 32-bit scratch pointer
store ptr addrspace(5) %local, ptr addrspace(5) %res
ret:
; Load and return 64-bit flat pointer
%res.load = load ptr, ptr addrspace(5) %res
ret ptr %res.load
```
For amdgpu, `addrspace(0)` are 64-bit pointers, `addrspace(5)` are
32-bit pointers.
The above code may store a 32-bit pointer and read it back as a 64-bit
pointer, which is obviously wrong and cannot work. Instead, we need to
`addrspacecast %local to ptr addrspace(0)`, then we store and load the
correct type.
adding autodiff tests
I'd like to get started with upstreaming some tests, even though I'm still waiting for an answer on how to best integrate the enzyme pass. Can we therefore temporarily support the -Z llvm-plugins here without too much effort? And in that case, how would that work? I saw you can do remapping, e.g. `rust-src-base`, but I don't think that will give me the path to libEnzyme.so. Do you have another suggestion?
Other than that this test simply checks that the derivative of `x*x` is `2.0 * x`, which in this case is computed as
`%0 = fadd fast double %x.0.val, %x.0.val`
(I'll add a few more tests and move it to an autodiff folder if we can use the -Z flag)
r? ``@jieyouxu``
Locally at least `-Zllvm-plugins=${PWD}/build/x86_64-unknown-linux-gnu/enzyme/build/Enzyme/libEnzyme-19.so` seems to work if I copy the command I get from x.py test and run it manually. However, running x.py test itself fails.
Tracking:
- https://github.com/rust-lang/rust/issues/124509
Zulip discussion: https://rust-lang.zulipchat.com/#narrow/channel/326414-t-infra.2Fbootstrap/topic/Enzyme.20build.20changes
coverage: Defer part of counter-creation until codegen
Follow-up to #135481 and #135873.
One of the pleasant properties of the new counter-assignment algorithm is that we can stop partway through the process, store the intermediate state in MIR, and then resume the rest of the algorithm during codegen. This lets it take into account which parts of the control-flow graph were eliminated by MIR opts, resulting in fewer physical counters and simpler counter expressions.
Those improvements end up completely obsoleting much larger chunks of code that were previously responsible for cleaning up the coverage metadata after MIR opts, while also doing a more thorough cleanup job.
(That change also unlocks some further simplifications that I've kept out of this PR to limit its scope.)
It is speculated that these two can be conceptually merged, and it can
start by ripping out rustc's notion of the PtxKernel call convention.
Leave the ExternAbi for now, but the nvptx target now should see it as
just a different way to spell Conv::GpuKernel.
Update bootstrap compiler and rustfmt
The rustfmt version we previously used formats things differently from what the latest nightly rustfmt does. This causes issues for subtrees that get formatted both in-tree and in their own repo. Updating the rustfmt used in-tree solves those issues. Also bumped the bootstrap compiler as the stage0 update command always updates both at the same
time.
Rollup of 5 pull requests
Successful merges:
- #134679 (Windows: remove readonly files)
- #136213 (Allow Rust to use a number of libc filesystem calls)
- #136530 (Implement `x perf` directly in bootstrap)
- #136601 (Detect (non-raw) borrows of null ZST pointers in CheckNull)
- #136659 (Pick the max DWARF version when LTO'ing modules with different versions )
r? `@ghost`
`@rustbot` modify labels: rollup
compiler: mostly-finish `rustc_abi` updates
This almost-finishes all the updates in the compiler to use `rustc_abi` and removes some of the reexports of `rustc_abi` items in `rustc_target` that were previously available.
r? ```@compiler-errors```
Pick the max DWARF version when LTO'ing modules with different versions
Currently, when rustc compiles code with `-Clto` enabled that was built
with different choices for `-Zdwarf-version`, a warning will be
reported. It's very easy to observe this by compiling most anything (eg,
"hello world") and specifying `-Clto -Zdwarf-version=5` since the
standard library is distributed with `-Zdwarf-version=4`.
This behavior isn't actually useful for a few reasons:
- From observation, LLVM chooses to pick the highest DWARF version
anyway after issuing the warning.
- Clang specifies that in this case, the max version should be picked
without a warning and as a general principle, we want to support
x-lang LTO with Clang which implies using the same module flag merge
behaviors.
- Debuggers need to be able to handle a variety of versions within the
same debugging session as you can easily have some parts of a binary
(or some dynamic libraries within an application) all compiled with
different DWARF versions.
This commit changes the module flag merge behavior to match Clang and
use the highest version of DWARF. It also adds a test to ensure this
behavior is respected in the case of two crates being LTO'd together and
adds a test to ensure no warning is printed.
Fixes#130041 which fails due to these warnings being printed
cc #103057
Currently, when rustc compiles code with `-Clto` enabled that was built
with different choices for `-Zdwarf-version`, a warning will be
reported. It's very easy to observe this by compiling most anything (eg,
"hello world") and specifying `-Clto -Zdwarf-version=5` since the
standard library is distributed with `-Zdwarf-version=4`.
This behavior isn't actually useful for a few reasons:
- from observation, LLVM chooses to pick the highest DWARF version
anyway after issuing the warning
- Clang specifies that in this case, the max version should be picked
without a warning and as a general principle, we want to support
x-lang LTO with Clang which implies using the same module flag merge
behaviors
- Debuggers need to be able to handle a variety of versions withing the
same debugging session as you can easily have some parts of a binary
(or some dynamic libraries within an application) all compiled with
different DWARF versions
This commit changes the module flag merge behavior to match Clang and
use the highest version of DWARF. It also adds a test to ensure this
behavior is respected in the case of two crates being LTO'd together and
updates the test added in the previous commit to ensure no warning is
printed.
Debuginfo for function ZSTs should have alignment of 8 bits, not 1 bit
In #116096, function ZSTs were made to have debuginfo that gives them an alignment of “1”. But because alignment in LLVM debuginfo is denoted in *bits*, not bytes, this resulted in an alignment specification of 1 bit instead of 1 byte.
I don't know whether this has any practical consequences, but I noticed that a test started failing when I accidentally fixed the mistake while working on #136632, so I extracted the fix (and the test adjustment) to this PR.