Its only use is in the `tests/ui/mir-dataflow/def_inits-1.rs` where it
is tested via `rustc_peek_definite_init`.
Also, it's probably buggy. It's supposed to be the inverse of
`MaybeUninitializedPlaces`, and it mostly is, except that
`apply_terminator_effect` is a little different, and
`apply_switch_int_edge_effects` is missing. Unlike
`MaybeUninitializedPlaces`, which is used extensively in borrow
checking, any bugs in `DefinitelyInitializedPlaces` are easy to overlook
because it is only used in one small test.
This commit removes the analysis. It also removes
`rustc_peek_definite_init`, `Dual` and `MeetSemiLattice`, all of which
are no longer needed.
Use attributes for `dangling_pointers_from_temporaries` lint
Checking for dangling pointers by function name isn't ideal, and leaves out certain pointer-returning methods that don't follow the `as_ptr` naming convention. Using an attribute for this lint cleans things up and allows more thorough coverage of other methods, such as `UnsafeCell::get()`.
Skip locking span interner for some syntax context checks
- `from_expansion` now never needs to consult the interner
- `eq_ctxt` now only needs the interner when both spans are fully interned
Delete the `cfg(not(parallel))` serial compiler
Since it's inception a long time ago, the parallel compiler and its cfgs have been a maintenance burden. This was a necessary evil the allow iteration while not degrading performance because of synchronization overhead.
But this time is over. Thanks to the amazing work by the parallel working group (and the dyn sync crimes), the parallel compiler has now been fast enough to be shipped by default in nightly for quite a while now.
Stable and beta have still been on the serial compiler, because they can't use `-Zthreads` anyways.
But this is quite suboptimal:
- the maintenance burden still sucks
- we're not testing the serial compiler in nightly
Because of these reasons, it's time to end it. The serial compiler has served us well in the years since it was split from the parallel one, but it's over now.
Let the knight slay one head of the two-headed dragon!
#113349
Note that the default is still 1 thread, as more than 1 thread is still fairly broken.
cc `@onur-ozkan` to see if i did the bootstrap field removal correctly, `@SparrowLii` on the sync parts
Since it's inception a long time ago, the parallel compiler and its cfgs
have been a maintenance burden. This was a necessary evil the allow
iteration while not degrading performance because of synchronization
overhead.
But this time is over. Thanks to the amazing work by the parallel
working group (and the dyn sync crimes), the parallel compiler has now
been fast enough to be shipped by default in nightly for quite a while
now.
Stable and beta have still been on the serial compiler, because they
can't use `-Zthreads` anyways.
But this is quite suboptimal:
- the maintenance burden still sucks
- we're not testing the serial compiler in nightly
Because of these reasons, it's time to end it. The serial compiler has
served us well in the years since it was split from the parallel one,
but it's over now.
Let the knight slay one head of the two-headed dragon!
Arbitrary self types v2: (unused) Receiver trait
This commit contains a new `Receiver` trait, which is the basis for the Arbitrary Self Types v2 RFC. This allows smart pointers to be method receivers even if they're not Deref.
This is currently unused by the compiler - a subsequent PR will start to use this for method resolution if the `arbitrary_self_types` feature gate is enabled. This is being landed first simply to make review simpler: if people feel this should all be in an atomic PR let me know.
This is a part of the arbitrary self types v2 project, https://github.com/rust-lang/rfcs/pull/3519https://github.com/rust-lang/rust/issues/44874
r? `@wesleywiser`
coverage: Restrict empty-span expansion to only cover `{` and `}`
Coverage instrumentation has some tricky code for converting a coverage-relevant `Span` into a set of start/end line/byte-column coordinates that will be embedded in the CGU's coverage metadata.
A big part of this complexity is special code for handling empty spans, which are expanded into non-empty spans (if possible) because LLVM's coverage reporter does not handle empty spans well.
This PR simplifies that code by restricting it to only apply in two specific situations: when the character after the empty span is `{`, or the character before the empty span is `}`.
(As an added benefit, this means that the expanded spans no longer extend awkwardly beyond the end of a physical line, which was common under the previous implementation.)
Along the way, this PR also removes some unhelpful code for dealing with function source code spread across multiple files. Functions currently can't have coverage spans in multiple files, and if that ever changes (e.g. to properly support expansion regions) then this code will need to be completely overhauled anyway.
Operations like is_aligned would return actively wrong results at compile-time,
i.e. calling it on the same pointer at compiletime and runtime could yield
different results. That's no good.
Instead of having hacks to make align_offset kind-of work in const-eval, just
use const_eval_select in the few places where it makes sense, which also ensures
those places are all aware they need to make sure the fallback behavior is
consistent.
Rename macro `SmartPointer` to `CoercePointee`
As per resolution #129104 we will rename the macro to better reflect the technical specification of the feature and clarify the communication.
- `SmartPointer` is renamed to `CoerceReferent`
- `#[pointee]` attribute is renamed to `#[referent]`
- `#![feature(derive_smart_pointer)]` gate is renamed to `#![feature(derive_coerce_referent)]`.
- Any mention of `SmartPointer` in the file names are renamed accordingly.
r? `@compiler-errors`
cc `@nikomatsakis` `@Darksonn`
Fundamentally, we have *three* disjoint categories of functions:
1. const-stable functions
2. private/unstable functions that are meant to be callable from const-stable functions
3. functions that can make use of unstable const features
This PR implements the following system:
- `#[rustc_const_stable]` puts functions in the first category. It may only be applied to `#[stable]` functions.
- `#[rustc_const_unstable]` by default puts functions in the third category. The new attribute `#[rustc_const_stable_indirect]` can be added to such a function to move it into the second category.
- `const fn` without a const stability marker are in the second category if they are still unstable. They automatically inherit the feature gate for regular calls, it can now also be used for const-calls.
Also, several holes in recursive const stability checking are being closed.
There's still one potential hole that is hard to avoid, which is when MIR
building automatically inserts calls to a particular function in stable
functions -- which happens in the panic machinery. Those need to *not* be
`rustc_const_unstable` (or manually get a `rustc_const_stable_indirect`) to be
sure they follow recursive const stability. But that's a fairly rare and special
case so IMO it's fine.
The net effect of this is that a `#[unstable]` or unmarked function can be
constified simply by marking it as `const fn`, and it will then be
const-callable from stable `const fn` and subject to recursive const stability
requirements. If it is publicly reachable (which implies it cannot be unmarked),
it will be const-unstable under the same feature gate. Only if the function ever
becomes `#[stable]` does it need a `#[rustc_const_unstable]` or
`#[rustc_const_stable]` marker to decide if this should also imply
const-stability.
Adding `#[rustc_const_unstable]` is only needed for (a) functions that need to
use unstable const lang features (including intrinsics), or (b) `#[stable]`
functions that are not yet intended to be const-stable. Adding
`#[rustc_const_stable]` is only needed for functions that are actually meant to
be directly callable from stable const code. `#[rustc_const_stable_indirect]` is
used to mark intrinsics as const-callable and for `#[rustc_const_unstable]`
functions that are actually called from other, exposed-on-stable `const fn`. No
other attributes are required.
This commit contains a new Receiver trait, which is the basis for the
Arbitrary Self Types v2 RFC. This allows smart pointers to be method
receivers even if they're not Deref.
This is currently unused by the compiler - a subsequent PR will start to
use this for method resolution if the arbitrary_self_types feature gate
is enabled. This is being landed first simply to make review
simpler: if people feel this should all be in an atomic PR let me know.
This is a part of the arbitrary self types v2 project,
https://github.com/rust-lang/rfcs/pull/3519https://github.com/rust-lang/rust/issues/44874
r? @wesleywiser
As part of the "arbitrary self types v2" project, we are going to
replace the current `Receiver` trait with a new mechanism based on a
new, different `Receiver` trait.
This PR renames the old trait to get it out the way. Naming is hard.
Options considered included:
* HardCodedReceiver (because it should only be used for things in the
standard library, and hence is sort-of hard coded)
* LegacyReceiver
* TargetLessReceiver
* OldReceiver
These are all bad names, but fortunately this will be temporary.
Assuming the new mechanism proceeds to stabilization as intended, the
legacy trait will be removed altogether.
Although we expect this trait to be used only in the standard library,
we suspect it may be in use elsehwere, so we're landing this change
separately to identify any surprising breakages.
It's known that this trait is used within the Rust for Linux project; a
patch is in progress to remove their dependency.
This is a part of the arbitrary self types v2 project,
https://github.com/rust-lang/rfcs/pull/3519https://github.com/rust-lang/rust/issues/44874
r? @wesleywiser
Autodiff Upstreaming - enzyme frontend
This is an upstream PR for the `autodiff` rustc_builtin_macro that is part of the autodiff feature.
For the full implementation, see: https://github.com/rust-lang/rust/pull/129175
**Content:**
It contains a new `#[autodiff(<args>)]` rustc_builtin_macro, as well as a `#[rustc_autodiff]` builtin attribute.
The autodiff macro is applied on function `f` and will expand to a second function `df` (name given by user).
It will add a dummy body to `df` to make sure it type-checks. The body will later be replaced by enzyme on llvm-ir level,
we therefore don't really care about the content. Most of the changes (700 from 1.2k) are in `compiler/rustc_builtin_macros/src/autodiff.rs`, which expand the macro. Nothing except expansion is implemented for now.
I have a fallback implementation for relevant functions in case that rustc should be build without autodiff support. The default for now will be off, although we want to flip it later (once everything landed) to on for nightly. For the sake of CI, I have flipped the defaults, I'll revert this before merging.
**Dummy function Body:**
The first line is an `inline_asm` nop to make inlining less likely (I have additional checks to prevent this in the middle end of rustc. If `f` gets inlined too early, we can't pass it to enzyme and thus can't differentiate it.
If `df` gets inlined too early, the call site will just compute this dummy code instead of the derivatives, a correctness issue. The following black_box lines make sure that none of the input arguments is getting optimized away before we replace the body.
**Motivation:**
The user facing autodiff macro can verify the user input. Then I write it as args to the rustc_attribute, so from here on I can know that these values should be sensible. A rustc_attribute also turned out to be quite nice to attach this information to the corresponding function and carry it till the backend.
This is also just an experiment, I expect to adjust the user facing autodiff macro based on user feedback, to improve usability.
As a simple example of what this will do, we can see this expansion:
From:
```
#[autodiff(df, Reverse, Duplicated, Const, Active)]
pub fn f1(x: &[f64], y: f64) -> f64 {
unimplemented!()
}
```
to
```
#[rustc_autodiff]
#[inline(never)]
pub fn f1(x: &[f64], y: f64) -> f64 {
::core::panicking::panic("not implemented")
}
#[rustc_autodiff(Reverse, Duplicated, Const, Active,)]
#[inline(never)]
pub fn df(x: &[f64], dx: &mut [f64], y: f64, dret: f64) -> f64 {
unsafe { asm!("NOP"); };
::core::hint::black_box(f1(x, y));
::core::hint::black_box((dx, dret));
::core::hint::black_box(f1(x, y))
}
```
I will add a few more tests once I figured out why rustc rebuilds every time I touch a test.
Tracking:
- https://github.com/rust-lang/rust/issues/124509
try-job: dist-x86_64-msvc
Add intrinsics `fmuladd{f16,f32,f64,f128}`. This computes `(a * b) +
c`, to be fused if the code generator determines that (i) the target
instruction set has support for a fused operation, and (ii) that the
fused operation is more efficient than the equivalent, separate pair
of `mul` and `add` instructions.
https://llvm.org/docs/LangRef.html#llvm-fmuladd-intrinsic
MIRI support is included for f32 and f64.
The codegen_cranelift uses the `fma` function from libc, which is a
correct implementation, but without the desired performance semantic. I
think this requires an update to cranelift to expose a suitable
instruction in its IR.
I have not tested with codegen_gcc, but it should behave the same
way (using `fma` from libc).
Compiler & its UI tests: Rename remaining occurrences of "object safe" to "dyn compatible"
Follow-up to #130826.
Part of #130852.
1. 1st commit: Fix stupid oversights. Should've been part of #130826.
2. 2nd commit: Rename the unstable feature `object_safe_for_dispatch` to `dyn_compatible_for_dispatch`. Might not be worth the churn, you decide.
3. 3rd commit: Apply the renaming to all UI tests (contents and paths).
Implement RFC3695 Allow boolean literals as cfg predicates
This PR implements https://github.com/rust-lang/rfcs/pull/3695: allow boolean literals as cfg predicates, i.e. `cfg(true)` and `cfg(false)`.
r? `@nnethercote` *(or anyone with parser knowledge)*
cc `@clubby789`
Begin experimental support for pin reborrowing
This commit adds basic support for reborrowing `Pin` types in argument position. At the moment it only supports reborrowing `Pin<&mut T>` as `Pin<&mut T>` by inserting a call to `Pin::as_mut()`, and only in argument position (not as the receiver in a method call).
This PR makes the following example compile:
```rust
#![feature(pin_ergonomics)]
fn foo(_: Pin<&mut Foo>) {
}
fn bar(mut x: Pin<&mut Foo>) {
foo(x);
foo(x);
}
```
Previously, you would have had to write `bar` as:
```rust
fn bar(mut x: Pin<&mut Foo>) {
foo(x.as_mut());
foo(x);
}
```
Tracking:
- #130494
r? `@compiler-errors`
Generating a call to `as_mut()` let to more restrictive borrows than
what reborrowing usually gives us. Instead, we change the desugaring to
reborrow the pin internals directly which makes things more expressive.
This commit adds basic support for reborrowing `Pin` types in argument
position. At the moment it only supports reborrowing `Pin<&mut T>` as
`Pin<&mut T>` by inserting a call to `Pin::as_mut()`, and only in
argument position (not as the receiver in a method call).
Rescope temp lifetime in if-let into IfElse with migration lint
Tracking issue #124085
This PR shortens the temporary lifetime to cover only the pattern matching and consequent branch of a `if let`.
At the expression location, means that the lifetime is shortened from previously the deepest enclosing block or statement in Edition 2021. This warrants an Edition change.
Coming with the Edition change, this patch also implements an edition lint to warn about the change and a safe rewrite suggestion to preserve the 2021 semantics in most cases.
Related to #103108.
Related crater runs: https://github.com/rust-lang/rust/pull/129466.
...and remove the `const_arg_path` feature gate as a result. It was only
a stopgap measure to fix the regression that the new lowering introduced
(which should now be fixed by this PR).
Also emit `missing_docs` lint with `--test` to fulfil expectations
This PR removes the "test harness" suppression of the `missing_docs` lint to be able to fulfil `#[expect]` (expectations) as it is now "relevant".
I think the goal was to maybe avoid false-positive while linting on public items under `#[cfg(test)]` but with effective visibility we should no longer have any false-positive.
Another possibility would be to query the lint level and only emit the lint if it's of expect level, but that is even more hacky.
Fixes https://github.com/rust-lang/rust/issues/130021
try-job: x86_64-gnu-aux
bootstrap `naked_asm!` for `compiler-builtins`
tracking issue: https://github.com/rust-lang/rust/issues/90957
parent PR: https://github.com/rust-lang/rust/pull/128651
in this PR, `naked_asm!` is added as an alias for `asm!` with one difference: `options(noreturn)` is always enabled by `naked_asm!`. That makes it future-compatible for when `naked_asm!` starts disallowing `options(noreturn)` later.
The `naked_asm!` macro must be introduced first so that we can upgrade `compiler-builtins` to use it, and can then change the implementation of `naked_asm!` in https://github.com/rust-lang/rust/pull/128651
I've added some usages for `naked_asm!` in the tests, so we can be confident that it works, but I've left upgrading the whole test suite to the parent PR.
r? ``@Amanieu``
in this commit, `naked_asm!` is an alias for `asm!` with one difference: `options(noreturn)` is always enabled by `naked_asm!`. That makes it future-compatible for when `naked_asm!` starts disallowing `options(noreturn)` later.
Add Suggestions for Misspelled Keywords
Fixes#97793
This PR detects misspelled keywords using two heuristics:
1. Lowercasing the unexpected identifier.
2. Using edit distance to find a keyword similar to the unexpected identifier.
However, it does not detect each and every misspelled keyword to
minimize false positives and ambiguities. More details about the
implementation can be found in the comments.
This PR detects misspelled keywords using two heuristics:
1. Lowercasing the unexpected identifier.
2. Using edit distance to find a keyword similar to the unexpected identifier.
However, it does not detect each and every misspelled keyword to
minimize false positives and ambiguities. More details about the
implementation can be found in the comments.
Add an internal lint that warns when accessing untracked data
Some methods access data that is not tracked by the query system and should be used with caution. As suggested in https://github.com/rust-lang/rust/pull/128815#issuecomment-2275488683, in this PR I propose a lint (modeled on the `potential_query_instability` lint) that warns when using some specially-annotatted functions.
I can't tell myself if this lint would be that useful, compared to renaming `Steal::is_stolen` to `is_stolen_untracked`. This would depend on whether there are other functions we'd want to lint like this. So far it seems they're called `*_untracked`, which may be clear enough.
r? ``@oli-obk``
Arbitrary self types v2: pointers feature gate.
The main `arbitrary_self_types` feature gate will shortly be reused for a new version of arbitrary self types which we are amending per [this RFC](https://github.com/rust-lang/rfcs/blob/master/text/3519-arbitrary-self-types-v2.md). The main amendments are:
* _do_ support `self` types which can't safely implement `Deref`
* do _not_ support generic `self` types
* do _not_ support raw pointers as `self` types.
This PR relates to the last of those bullet points: this strips pointer support from the current `arbitrary_self_types` feature. We expect this to cause some amount of breakage for crates using this unstable feature to allow raw pointer self types. If that's the case, we want to know about it, and we want crate authors to know of the upcoming changes.
For now, this can be resolved by adding the new
`arbitrary_self_types_pointers` feature to such crates. If we determine that use of raw pointers as self types is common, then we may maintain that as an unstable feature even if we come to stabilize the rest of the `arbitrary_self_types` support in future. If we don't hear that this PR is causing breakage, then perhaps we don't need it at all, even behind an unstable feature gate.
[Tracking issue](https://github.com/rust-lang/rust/issues/44874)
This is [step 4 of the plan outlined here](https://github.com/rust-lang/rust/issues/44874#issuecomment-2122179688)
debug-fmt-detail option
I'd like to propose a new option that makes `#[derive(Debug)]` generate no-op implementations that don't print anything, and makes `{:?}` in format strings a no-op.
There are a couple of motivations for this:
1. A more thorough stripping of debug symbols. Binaries stripped of debug symbols still retain some of them through `Debug` implementations. It's hard to avoid that without compiler's help, because debug formatting can be used in many places, including dependencies, and their loggers, asserts, panics, etc.
* In my testing it gives about 2% binary size reduction on top of all other binary-minimizing best practices (including `panic_immediate_abort`). There are targets like Web WASM or embedded where users pay attention to binary sizes.
* Users distributing closed-source binaries may not want to "leak" any symbol names as a matter of principle.
2. Adds ability to test whether code depends on specifics of the `Debug` format implementation in unwise ways (e.g. trying to get data unavailable via public interface, or using it as a serialization format). Because current Rust's debug implementation doesn't change, there's a risk of it becoming a fragile de-facto API that [won't be possible to change in the future](https://www.hyrumslaw.com/). An option that "breaks" it can act as a [grease](https://www.rfc-editor.org/rfc/rfc8701.html).
This implementation is a `-Z fmt-debug=opt` flag that takes:
* `full` — the default, current state.
* `none` — makes derived `Debug` and `{:?}` no-ops. Explicit `impl Debug for T` implementations are left unharmed, but `{:?}` format won't use them, so they may get dead-code eliminated if they aren't invoked directly.
* `shallow` — makes derived `Debug` print only the type's name, without recursing into fields. Fieldless enums print their variant names. `{:?}` works.
The `shallow` option is a compromise between minimizing the `Debug` code, and compatibility. There are popular proc-macro crates that use `Debug::fmt` as a way to convert enum values into their Rust source code.
There's a corresponding `cfg` flag: `#[cfg(fmt_debug = "none")]` that can be used in user code to react to this setting to minimize custom `Debug` implementations or remove unnecessary formatting helper functions.
Emit specific message for time<=0.3.35
```
error[E0282]: type annotations needed for `Box<_>`
--> /home/gh-estebank/.cargo/registry/src/index.crates.io-6f17d22bba15001f/time-0.3.34/src/format_description/parse/mod.rs:83:9
|
83 | let items = format_items
| ^^^^^
...
86 | Ok(items.into())
| ---- type must be known at this point
|
= note: this is an inference error on `time` caused by a change in Rust 1.80.0; update `time` to version `>=0.3.36`
```
Partially mitigate the fallout from https://github.com/rust-lang/rust/issues/127343. Although the biggest benefit of this would have been if we had had this in 1.80 before it became stable, the long-tail of that change will be felt for a *long* time, so better late than never.
We can also emit an even more targeted error instead of this inference failure.
rustc_target: Add various aarch64 features
Add various aarch64 features already supported by LLVM and Linux.
Additionally include some comment fixes to ensure consistency of feature names with the Arm ARM.
Compiler support for features added to stdarch by https://github.com/rust-lang/stdarch/pull/1614.
Tracking issue for unstable aarch64 features is https://github.com/rust-lang/rust/issues/127764.
List of added features:
- FEAT_CSSC
- FEAT_ECV
- FEAT_FAMINMAX
- FEAT_FLAGM2
- FEAT_FP8
- FEAT_FP8DOT2
- FEAT_FP8DOT4
- FEAT_FP8FMA
- FEAT_HBC
- FEAT_LSE128
- FEAT_LSE2
- FEAT_LUT
- FEAT_MOPS
- FEAT_LRCPC3
- FEAT_SVE_B16B16
- FEAT_SVE2p1
- FEAT_WFxT
- FEAT_SME
- FEAT_SME_F16F16
- FEAT_SME_F64F64
- FEAT_SME_F8F16
- FEAT_SME_F8F32
- FEAT_SME_FA64
- FEAT_SME_I16I64
- FEAT_SME_LUTv2
- FEAT_SME2
- FEAT_SME2p1
- FEAT_SSVE_FP8DOT2
- FEAT_SSVE_FP8DOT4
- FEAT_SSVE_FP8FMA
FEAT_FPMR is added in the first commit and then removed in a separate one to highlight it being removed from upstream LLVM 19. The intention is for it to be detectable at runtime through stdarch but not have a corresponding Rust compile-time feature.
```
error[E0282]: type annotations needed for `Box<_>`
--> ~/.cargo/registry/src/index.crates.io-6f17d22bba15001f/time-0.3.34/src/format_description/parse/mod.rs:83:9
|
83 | let items = format_items
| ^^^^^
...
86 | Ok(items.into())
| ---- type must be known at this point
|
= note: this is an inference error on crate `time` caused by a change in Rust 1.80.0; update `time` to version `>=0.3.35`
```
Partially address #127343.
The main `arbitrary_self_types` feature gate will shortly be reused for
a new version of arbitrary self types which we are amending per [this
RFC](https://github.com/rust-lang/rfcs/blob/master/text/3519-arbitrary-self-types-v2.md).
The main amendments are:
* _do_ support `self` types which can't safely implement `Deref`
* do _not_ support generic `self` types
* do _not_ support raw pointers as `self` types.
This PR relates to the last of those bullet points: this strips pointer
support from the current `arbitrary_self_types` feature.
We expect this to cause some amount of breakage for crates using this
unstable feature to allow raw pointer self types. If that's the case, we
want to know about it, and we want crate authors to know of the upcoming
changes.
For now, this can be resolved by adding the new
`arbitrary_self_types_pointers` feature to such crates. If we determine
that use of raw pointers as self types is common, then we may maintain
that as an unstable feature even if we come to stabilize the rest of the
`arbitrary_self_types` support in future. If we don't hear that this PR
is causing breakage, then perhaps we don't need it at all, even behind
an unstable feature gate.
[Tracking issue](https://github.com/rust-lang/rust/issues/44874)
This is [step 4 of the plan outlined here](https://github.com/rust-lang/rust/issues/44874#issuecomment-2122179688)
Add various aarch64 features already supported by LLVM and Linux.
The features are marked as unstable using a newly added symbol, i.e.
aarch64_unstable_target_feature.
Additionally include some comment fixes to ensure consistency of
feature names with the Arm ARM and support for architecture version
target features up to v9.5a.
This commit adds compiler support for the following features:
- FEAT_CSSC
- FEAT_ECV
- FEAT_FAMINMAX
- FEAT_FLAGM2
- FEAT_FP8
- FEAT_FP8DOT2
- FEAT_FP8DOT4
- FEAT_FP8FMA
- FEAT_FPMR
- FEAT_HBC
- FEAT_LSE128
- FEAT_LSE2
- FEAT_LUT
- FEAT_MOPS
- FEAT_LRCPC3
- FEAT_SVE_B16B16
- FEAT_SVE2p1
- FEAT_WFxT
Add a special case for `CStr`/`CString` in the `improper_ctypes` lint
Revives #120176. Just needed to bless a test and fix an argument, but seemed reasonable to me otherwise.
Instead of saying to "consider adding a `#[repr(C)]` or `#[repr(transparent)]` attribute to this struct", we now tell users to "Use `*const ffi::c_char` instead, and pass the value from `CStr::as_ptr()`" when the type involved is a `CStr` or a `CString`.
The suggestion is not made for `&mut CString` or `*mut CString`.
r? ``````@cjgillot`````` (since you were the reviewer of the original PR #120176, but feel free to reroll)
Retroactively feature gate `ConstArgKind::Path`
This puts the lowering introduced by #125915 under a feature gate until we fix the regressions introduced by it. Alternative to whole sale reverting the PR since it didn't seem like a very clean revert and I think this is generally a step in the right direction and don't want to get stuck landing and reverting the PR over and over :)
cc #129137 ``@camelid,`` tests taken from there. beta is branching soon so I think it makes sense to not try and rush that fix through since it wont have much time to bake and if it has issues we can't simply revert it on beta.
Fixes#128016
use old ctx if has same expand environment during decode span
Fixes#112680
The root reason why #112680 failed with incremental compilation on the second attempt is the difference in `opaque` between the span of the field [`ident`](https://github.com/rust-lang/rust/blob/master/compiler/rustc_hir_typeck/src/expr.rs#L2348) and the span in the incremental cache at `tcx.def_ident_span(field.did)`.
- Let's call the span of `ident` as `span_a`, which is generated by [`apply_mark_internal`](https://github.com/rust-lang/rust/blob/master/compiler/rustc_span/src/hygiene.rs#L553-L554). Its content is similar to:
```rs
span_a_ctx -> SyntaxContextData {
opaque: span_a_ctx,
opaque_and_semitransparent: span_a_ctx,
// ....
}
```
- And call the span of `tcx.def_ident_span` as `span_b`, which is generated by [`decode_syntax_context`](https://github.com/rust-lang/rust/blob/master/compiler/rustc_span/src/hygiene.rs#L1390). Its content is:
```rs
span_b_ctx -> SyntaxContextData {
opaque: span_b_ctx,
// note `span_b_ctx` is not same as `span_a_ctx`
opaque_and_semitransparent: span_b_ctx,
// ....
}
```
Although they have the same `parent` (both refer to the root) and `outer_expn`, I cannot find the specific connection between them. Therefore, I chose a solution that may not be the best: give up the incremental compile cache to ensure we can use `span_a` in this case.
r? `@petrochenkov` Do you have any advice on this? Or perhaps this solution is acceptable?
Instead of saying to "consider adding a `#[repr(C)]` or
`#[repr(transparent)]` attribute to this struct", we now tell users to
"Use `*const ffi::c_char` instead, and pass the value from
`CStr::as_ptr()`" when the type involved is a `CStr` or a `CString`.
Co-authored-by: Jieyou Xu <jieyouxu@outlook.com>
Add `select_unpredictable` to force LLVM to use CMOV
Since https://reviews.llvm.org/D118118, LLVM will no longer turn CMOVs into branches if it comes from a `select` marked with an `unpredictable` metadata attribute.
This PR introduces `core::intrinsics::select_unpredictable` which emits such a `select` and uses it in the implementation of `binary_search_by`.
Since https://reviews.llvm.org/D118118, LLVM will no longer turn CMOVs
into branches if it comes from a `select` marked with an `unpredictable`
metadata attribute.
This PR introduces `core::intrinsics::select_unpredictable` which emits
such a `select` and uses it in the implementation of `binary_search_by`.
Support ?Trait bounds in supertraits and dyn Trait under a feature gate
This patch allows `maybe` polarity bounds under a feature gate. The only language change here is that corresponding hard errors are replaced by feature gates. Example:
```rust
#![feature(allow_maybe_polarity)]
...
trait Trait1 : ?Trait { ... } // ok
fn foo(_: Box<(dyn Trait2 + ?Trait)>) {} // ok
fn bar<T: ?Sized + ?Trait>(_: &T) {} // ok
```
Maybe bounds still don't do anything (except for `Sized` trait), however this patch will allow us to [experiment with default auto traits](https://github.com/rust-lang/rust/pull/120706#issuecomment-1934006762).
This is a part of the [MCP: Low level components for async drop](https://github.com/rust-lang/compiler-team/issues/727)
Make Clone::clone a lang item
I want to absorb all the logic for picking whether an Instance is LocalCopy or GloballyShared into one place. As part of this, I wanted to identify Clone shims inside `cross_crate_inlinable` and found that rather tricky. `@compiler-errors` suggested that I add a lang item for `Clone::clone` because that would produce other cleanups in the compiler.
That sounds good to me, but I have looked and I've only been able to find one.
r? compiler-errors
Switch from `derivative` to `derive-where`
This is a part of the effort to get rid of `syn 1.*` in compiler's dependencies: #109302
Derivative has not been maintained in nearly 3 years[^1]. It also depends on `syn 1.*`.
This PR replaces `derivative` with `derive-where`[^2], a not dead alternative, which uses `syn 2.*`.
A couple of `Debug` formats have changed around the skipped fields[^3], but I doubt this is an issue.
[^1]: https://github.com/mcarton/rust-derivative/issues/117
[^2]: https://lib.rs/crates/derive-where
[^3]: See the changes in `tests/ui`
Replace ASCII control chars with Unicode Control Pictures
Replace ASCII control chars like `CR` with Unicode Control Pictures like `␍`:
```
error: bare CR not allowed in doc-comment
--> $DIR/lex-bare-cr-string-literal-doc-comment.rs:3:32
|
LL | /// doc comment with bare CR: '␍'
| ^
```
Centralize the checking of unicode char width for the purposes of CLI display in one place. Account for the new replacements. Remove unneeded tracking of "zero-width" unicode chars, as we calculate these in the `SourceMap` as needed now.
rustc_target: add known safe s390x target features
This pull request adds known safe target features for s390x (aka IBM Z systems).
Currently, these features are unstable since stabilizing the target features requires submitting proposals.
The `vector` feature was added in IBM Z13 (`arch11`), and this is a SIMD feature for the newer IBM Z systems.
The `backchain` attribute is the IBM Z way of adding frame pointers like unwinding capabilities (the "frame-pointer" switch on IBM Z and IBM POWER platforms will add _emulated_ frame pointers to the binary, which profilers can't use for unwinding the stack).
Both attributes can be applied at the LLVM module or function levels. However, the `backchain` attribute has to be enabled for all the functions in the call stack to get a successful unwind process.
Forbid borrows and unsized types from being used as the type of a const generic under `adt_const_params`
Fixes#112219Fixes#112124Fixes#112125
### Motivation
Currently the `adt_const_params` feature allows writing `Foo<const N: [u8]>` this is entirely useless as it is not possible to write an expression which evaluates to a type that is not `Sized`. In order to actually use unsized types in const generics they are typically written as `const N: &[u8]` which *is* possible to provide a value of.
Unfortunately allowing the types of const parameters to contain references is non trivial (#120961) as it introduces a number of difficult questions about how equality of references in the type system should behave. References in the types of const generics is largely only useful for using unsized types in const generics.
This PR introduces a new feature gate `unsized_const_parameters` and moves support for `const N: [u8]` and `const N: &...` from `adt_const_params` into it. The goal here hopefully is to experiment with allowing `const N: [u8]` to work without references and then eventually completely forbid references in const generics.
Splitting this out into a new feature gate means that stabilization of `adt_const_params` does not have to resolve#120961 which is the only remaining "big" blocker for the feature. Remaining issues after this are a few ICEs and naming bikeshed for `ConstParamTy`.
### Implementation
The implementation is slightly subtle here as we would like to ensure that a stabilization of `adt_const_params` is forwards compatible with any outcome of `unsized_const_parameters`. This is inherently tricky as we do not support unstable trait implementations and we determine whether a type is valid as the type of a const parameter via a trait bound.
There are a few constraints here:
- We would like to *allow for the possibility* of adding a `Sized` supertrait to `ConstParamTy` in the event that we wind up opting to not support unsized types and instead requiring people to write the 'sized version', e.g. `const N: [u8; M]` instead of `const N: [u8]`.
- Crates should be able to enable `unsized_const_parameters` and write trait implementations of `ConstParamTy` for `!Sized` types without downstream crates that only enable `adt_const_params` being able to observe this (required for std to be able to `impl<T> ConstParamTy for [T]`
Ultimately the way this is accomplished is via having two traits (sad), `ConstParamTy` and `UnsizedConstParamTy`. Depending on whether `unsized_const_parameters` is enabled or not we change which trait is used to check whether a type is allowed to be a const parameter.
Long term (when stabilizing `UnsizedConstParamTy`) it should be possible to completely merge these traits (and derive macros), only having a single `trait ConstParamTy` and `macro ConstParamTy`.
Under `adt_const_params` it is now illegal to directly refer to `ConstParamTy` it is only used as an internal impl detail by `derive(ConstParamTy)` and checking const parameters are well formed. This is necessary in order to ensure forwards compatibility with all possible future directions for `feature(unsized_const_parameters)`.
Generally the intuition here should be that `ConstParamTy` is the stable trait that everything uses, and `UnsizedConstParamTy` is that plus unstable implementations (well, I suppose `ConstParamTy` isn't stable yet :P).
We already point these out quite aggressively, telling people not to use them, but would normally be rendered as nothing. Having them visible will make it easier for people to actually deal with them.
```
error: unicode codepoint changing visible direction of text present in literal
--> $DIR/unicode-control-codepoints.rs:26:22
|
LL | println!("{:?}", '�');
| ^-^
| ||
| |'\u{202e}'
| this literal contains an invisible unicode text flow control codepoint
|
= note: these kind of unicode codepoints change the way text flows on applications that support them, but can cause confusion because they change the order of characters on the screen
= help: if their presence wasn't intentional, you can remove them
help: if you want to keep them but make them visible in your source code, you can escape them
|
LL | println!("{:?}", '\u{202e}');
| ~~~~~~~~
```
vs the previous
```
error: unicode codepoint changing visible direction of text present in literal
--> $DIR/unicode-control-codepoints.rs:26:22
|
LL | println!("{:?}", '');
| ^-
| ||
| |'\u{202e}'
| this literal contains an invisible unicode text flow control codepoint
|
= note: these kind of unicode codepoints change the way text flows on applications that support them, but can cause confusion because they change the order of characters on the screen
= help: if their presence wasn't intentional, you can remove them
help: if you want to keep them but make them visible in your source code, you can escape them
|
LL | println!("{:?}", '\u{202e}');
| ~~~~~~~~
```
No longer track "zero-width" chars in `SourceMap`, read directly from the line when calculating the `display_col` of a `BytePos`. Move `char_width` to `rustc_span` and use it from the emitter.
This change allows the following to properly align in terminals (depending on the font, the replaced control codepoints are rendered as 1 or 2 width, on my terminal they are rendered as 1, on VSCode text they are rendered as 2):
```
error: this file contains an unclosed delimiter
--> $DIR/issue-68629.rs:5:17
|
LL | ␜␟ts␀![{i
| -- unclosed delimiter
| |
| unclosed delimiter
LL | ␀␀ fn rݻoa>rݻm
| ^
```
Match ergonomics 2024: Implement TC's match ergonomics proposal
Under gate `ref_pat_eat_one_layer_2024_structural`. Enabling `ref_pat_eat_one_layer_2024` at the same time allows the union of what the individual gates allow. `@traviscross`
r? `@Nadrieril`
cc https://github.com/rust-lang/rust/issues/123076
`@rustbot` label A-edition-2024 A-patterns
patchable-function-entry: Add unstable compiler flag and attribute
Tracking issue: #123115
Add the -Z patchable-function-entry compiler flag and the #[patchable_function_entry(prefix_nops = m, entry_nops = n)] attribute.
Rebased and adjusted the canditate implementation to match changes in the RFC.
Under gate `ref_pat_eat_one_layer_2024_structural`.
Enabling `ref_pat_eat_one_layer_2024` at the same time allows the union
of what the individual gates allow.
SmartPointer derive-macro
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
Possibly replacing #123472 for continued upkeep of the proposal rust-lang/rfcs#3621 and implementation of the tracking issue #123430.
cc `@Darksonn` `@wedsonaf`
Added an associated `const THIS_IMPLEMENTATION_HAS_BEEN_TRIPLE_CHECKED`
to the `StableOrd` trait to ensure that implementors carefully consider
whether the trait's contract is upheld, as incorrect implementations can
cause miscompilations.
Add `f16` inline ASM support for RISC-V
This PR adds `f16` inline ASM support for RISC-V. A `FIXME` is left for `f128` support as LLVM does not support the required `Q` (Quad-Precision Floating-Point) extension yet.
Relevant issue: #125398
Tracking issue: #116909
`@rustbot` label +F-f16_and_f128
Stop sorting `Span`s' `SyntaxContext`, as that is incompatible with incremental
work towards https://github.com/rust-lang/rust/issues/90317
Luckily no one actually needed these to be sorted, so it didn't even affect diagnostics. I'm guessing they'd have been sorted by creation time anyway, so it wouldn't really have mattered.
r? `@cjgillot`
Place tail expression behind terminating scope
This PR implements #123739 so that we can do further experiments in nightly.
A little rewrite has been applied to `for await` lowering. It was previously `unsafe { Pin::unchecked_new(into_async_iter(..)) }`. Under the edition 2024 rule, however, `into_async_iter` gets dropped at the end of the `unsafe` block. This presumably the first Edition 2024 migration rule goes by hoisting `into_async_iter(..)` into `match` one level above, so it now looks like the following.
```rust
match into_async_iter($iter_expr) {
ref mut iter => match unsafe { Pin::unchecked_new(iter) } {
...
}
}
```
Introduce `{IndexNewtype,SyntaxContext}::from_u16` for convenience because small indices are sometimes encoded as `u16`.
Use `SpanData::span` instead of `Span::new` where appropriate.
Add a clarifying comment about decoding span parents.
Add a new concat metavar expr
Revival of #111930
Giving it another try now that #117050 was merged.
With the new rules, meta-variable expressions must be referenced with a dollar sign (`$`) and this can cause misunderstands with `$concat`.
```rust
macro_rules! foo {
( $bar:ident ) => {
const ${concat(VAR, bar)}: i32 = 1;
};
}
// Will produce `VARbar` instead of `VAR_123`
foo!(_123);
```
In other words, forgetting the dollar symbol can produce undesired outputs.
cc #29599
cc https://github.com/rust-lang/rust/issues/124225
coverage: Carve out hole spans in a separate early pass
When extracting spans from MIR for use in coverage instrumentation, we sometimes need to identify *hole spans* (currently just closures), and carve up the other spans so that they don't overlap with holes.
This PR simplifies the main coverage-span-refiner by extracting the hole-carving process into a separate early pass. That pass produces a series of independent buckets, and we run the span-refiner on each bucket separately.
There is almost no difference in the resulting mappings, other than in some edge cases involving macros.
Implement `needs_async_drop` in rustc and optimize async drop glue
This PR expands on #121801 and implements `Ty::needs_async_drop` which works almost exactly the same as `Ty::needs_drop`, which is needed for #123948.
Also made compiler's async drop code to look more like compiler's regular drop code, which enabled me to write an optimization where types which do not use `AsyncDrop` can simply forward async drop glue to `drop_in_place`. This made size of the async block from the [async_drop test](67980dd6fb/tests/ui/async-await/async-drop.rs) to decrease by 12%.
Make `std::env::{set_var, remove_var}` unsafe in edition 2024
Allow calling these functions without `unsafe` blocks in editions up until 2021, but don't trigger the `unused_unsafe` lint for `unsafe` blocks containing these functions.
Fixes#27970.
Fixes#90308.
CC #124866.
Allow calling these functions without `unsafe` blocks in editions up
until 2021, but don't trigger the `unused_unsafe` lint for `unsafe`
blocks containing these functions.
Fixes#27970.
Fixes#90308.
CC #124866.
This commit adds a new nonterminal `expr_2021` in macro patterns, and
`expr_fragment_specifier_2024` feature flag. For now, `expr` and
`expr_2021` are treated the same, but in future PRs we will update
`expr` to match to new grammar.
Co-authored-by: Vincezo Palazzo <vincenzopalazzodev@gmail.com>
Change `SIGPIPE` ui from `#[unix_sigpipe = "..."]` to `-Zon-broken-pipe=...`
In the stabilization [attempt](https://github.com/rust-lang/rust/pull/120832) of `#[unix_sigpipe = "sig_dfl"]`, a concern was [raised ](https://github.com/rust-lang/rust/pull/120832#issuecomment-2007394609) related to using a language attribute for the feature: Long term, we want `fn lang_start()` to be definable by any crate, not just libstd. Having a special language attribute in that case becomes awkward.
So as a first step towards the next stabilization attempt, this PR changes the `#[unix_sigpipe = "..."]` attribute to a compiler flag `-Zon-broken-pipe=...` to remove that concern, since now the language is not "contaminated" by this feature.
Another point was [also raised](https://github.com/rust-lang/rust/pull/120832#issuecomment-1987023484), namely that the ui should not leak **how** it does things, but rather what the **end effect** is. The new flag uses the proposed naming. This is of course something that can be iterated on further before stabilization.
Tracking issue: https://github.com/rust-lang/rust/issues/97889
In the stabilization attempt of `#[unix_sigpipe = "sig_dfl"]`, a concern
was raised related to using a language attribute for the feature: Long
term, we want `fn lang_start()` to be definable by any crate, not just
libstd. Having a special language attribute in that case becomes
awkward.
So as a first step towards towards the next stabilization attempt, this
PR changes the `#[unix_sigpipe = "..."]` attribute to a compiler flag
`-Zon-broken-pipe=...` to remove that concern, since now the language
is not "contaminated" by this feature.
Another point was also raised, namely that the ui should not leak
**how** it does things, but rather what the **end effect** is. The new
flag uses the proposed naming. This is of course something that can be
iterated on further before stabilization.
`-Z debug-macros` is "stabilized" by enabling it by default and removing.
`-Z collapse-macro-debuginfo` is stabilized as `-C collapse-macro-debuginfo`.
It now supports all typical boolean values (`parse_opt_bool`) in addition to just yes/no.
Default value of `collapse_debuginfo` was changed from `false` to `external` (i.e. collapsed if external, not collapsed if local).
`#[collapse_debuginfo]` attribute without a value is no longer supported to avoid guessing the default.
Do `check_coroutine_obligations` once per typeck root
We only need to do `check_coroutine_obligations` once per typeck root, especially since the new solver can't really (easily) associate which obligations correspond to which coroutines.
This requires us to move the checks for sized coroutine fields into `mir_coroutine_witnesses`, but that's fine imo.
r? lcnr
panic_str only exists for the migration to 2021 panic macros
The only caller is `expect_failed`, which is already a cold inline(never) function, so inlining into that function should be fine. (And indeed `panic_str` was `#[inline]` anyway.)
The existence of panic_str risks someone calling it when they should call `panic` instead, and I can't see a reason why this footgun should exist.
I also extended the comment in `panic` to explain why it needs a `'static` string -- I know I've wondered about this in the past and it took me quite a while to understand.
Add simple async drop glue generation
This is a prototype of the async drop glue generation for some simple types. Async drop glue is intended to behave very similar to the regular drop glue except for being asynchronous. Currently it does not execute synchronous drops but only calls user implementations of `AsyncDrop::async_drop` associative function and awaits the returned future. It is not complete as it only recurses into arrays, slices, tuples, and structs and does not have same sensible restrictions as the old `Drop` trait implementation like having the same bounds as the type definition, while code assumes their existence (requires a future work).
This current design uses a workaround as it does not create any custom async destructor state machine types for ADTs, but instead uses types defined in the std library called future combinators (deferred_async_drop, chain, ready_unit).
Also I recommend reading my [explainer](https://zetanumbers.github.io/book/async-drop-design.html).
This is a part of the [MCP: Low level components for async drop](https://github.com/rust-lang/compiler-team/issues/727) work.
Feature completeness:
- [x] `AsyncDrop` trait
- [ ] `async_drop_in_place_raw`/async drop glue generation support for
- [x] Trivially destructible types (integers, bools, floats, string slices, pointers, references, etc.)
- [x] Arrays and slices (array pointer is unsized into slice pointer)
- [x] ADTs (enums, structs, unions)
- [x] tuple-like types (tuples, closures)
- [ ] Dynamic types (`dyn Trait`, see explainer's [proposed design](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#async-drop-glue-for-dyn-trait))
- [ ] coroutines (https://github.com/rust-lang/rust/pull/123948)
- [x] Async drop glue includes sync drop glue code
- [x] Cleanup branch generation for `async_drop_in_place_raw`
- [ ] Union rejects non-trivially async destructible fields
- [ ] `AsyncDrop` implementation requires same bounds as type definition
- [ ] Skip trivially destructible fields (optimization)
- [ ] New [`TyKind::AdtAsyncDestructor`](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#adt-async-destructor-types) and get rid of combinators
- [ ] [Synchronously undroppable types](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#exclusively-async-drop)
- [ ] Automatic async drop at the end of the scope in async context
Currently `SourceMap` is constructed slightly later than
`SessionGlobals`, and inserted. This commit changes things so they are
done at the same time.
Benefits:
- `SessionGlobals::source_map` changes from
`Lock<Option<Lrc<SourceMap>>>` to `Option<Lrc<SourceMap>>`. It's still
optional, but mutability isn't required because it's initialized at
construction.
- `set_source_map` is removed, simplifying `run_compiler`, which is
good because that's a critical function and it's nice to make it
simpler.
This requires moving things around a bit, so the necessary inputs are
available when `SessionGlobals` is created, in particular the `loader`
and `hash_kind`, which are no longer computed by `build_session`. These
inputs are captured by the new `SourceMapInputs` type, which is threaded
through various places.
Add add/sub methods that only panic with debug assertions to rustc
This mitigates the perf impact of enabling overflow checks on rustc. The change to use overflow checks will be done in a later PR.
For rust-lang/compiler-team#724, based on data gathered in #119440.
typeck: fix `?` suggestion span
Noticed in <https://github.com/rust-lang/rust/pull/112043#issuecomment-2043565292>, if the
```
use the `?` operator to extract the `Result<(), std::fmt::Error>` value, propagating a `Result::Err` value to the caller
```
suggestion is applied to a macro that comes from a non-local crate (e.g. the stdlib), the suggestion span can become non-local, which will cause newer rustfix versions to fail.
This PR tries to remedy the problem by recursively probing ancestors of the expression span, trying to identify the most ancestor span that is (1) still local, and (2) still shares the same syntax context as the expression.
This is the same strategy used in https://github.com/rust-lang/rust/pull/112043.
The test unfortunately cannot `//@ run-rustfix` because there are two conflicting MaybeIncorrect suggestions that when collectively applied, cause the fixed source file to become non-compilable.
Also avoid running `//@ run-rustfix` for `tests/ui/typeck/issue-112007-leaked-writeln-macro-internals.rs` because that also contains conflicting suggestions.
cc `@ehuss` who noticed this. This question mark span fix + not running rustfix on the tests containing conflicting MaybeIncorrect suggestions should hopefully unblock rustfix from updating.