Add AST support for unsafe binders
I'm splitting up #130514 into pieces. It's impossible for me to keep up with a huge PR like that. I'll land type system support for this next, probably w/o MIR lowering, which will come later.
r? `@oli-obk`
cc `@BoxyUwU` and `@lcnr` who also may want to look at this, though this PR doesn't do too much yet
Initial implementation of `#[feature(default_field_values]`, proposed in https://github.com/rust-lang/rfcs/pull/3681.
Support default fields in enum struct variant
Allow default values in an enum struct variant definition:
```rust
pub enum Bar {
Foo {
bar: S = S,
baz: i32 = 42 + 3,
}
}
```
Allow using `..` without a base on an enum struct variant
```rust
Bar::Foo { .. }
```
`#[derive(Default)]` doesn't account for these as it is still gating `#[default]` only being allowed on unit variants.
Support `#[derive(Default)]` on enum struct variants with all defaulted fields
```rust
pub enum Bar {
#[default]
Foo {
bar: S = S,
baz: i32 = 42 + 3,
}
}
```
Check for missing fields in typeck instead of mir_build.
Expand test with `const` param case (needs `generic_const_exprs` enabled).
Properly instantiate MIR const
The following works:
```rust
struct S<A> {
a: Vec<A> = Vec::new(),
}
S::<i32> { .. }
```
Add lint for default fields that will always fail const-eval
We *allow* this to happen for API writers that might want to rely on users'
getting a compile error when using the default field, different to the error
that they would get when the field isn't default. We could change this to
*always* error instead of being a lint, if we wanted.
This will *not* catch errors for partially evaluated consts, like when the
expression relies on a const parameter.
Suggestions when encountering `Foo { .. }` without `#[feature(default_field_values)]`:
- Suggest adding a base expression if there are missing fields.
- Suggest enabling the feature if all the missing fields have optional values.
- Suggest removing `..` if there are no missing fields.
Stabilize `extended_varargs_abi_support`
I think that is everything? If there is any documentation regarding `extern` and/or varargs to correct, let me know, some quick greps suggest that there might be none.
Tracking issue: https://github.com/rust-lang/rust/issues/100189
Support input/output in vector registers of s390x inline assembly (under asm_experimental_reg feature)
This extends currently clobber-only vector registers (`vreg`) support to allow passing `#[repr(simd)]` types, floats (f32/f64/f128), and integers (i32/i64/i128) as input/output.
This is unstable and gated under new `#![feature(asm_experimental_reg)]` (tracking issue: https://github.com/rust-lang/rust/issues/133416). If the feature is not enabled, only clober is supported as before.
| Architecture | Register class | Target feature | Allowed types |
| ------------ | -------------- | -------------- | -------------- |
| s390x | `vreg` | `vector` | `i32`, `f32`, `i64`, `f64`, `i128`, `f128`, `i8x16`, `i16x8`, `i32x4`, `i64x2`, `f32x4`, `f64x2` |
This matches the list of types that are supported by the vector registers in LLVM:
https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/SystemZ/SystemZRegisterInfo.td#L301-L313
In addition to `core::simd` types and floats listed above, custom `#[repr(simd)]` types of the same size and type are also allowed. All allowed types other than i32/f32/i64/f64/i128, and relevant target features are currently unstable.
Currently there is no SIMD type for s390x in `core::arch`, but this is tracked in https://github.com/rust-lang/rust/issues/130869.
cc https://github.com/rust-lang/rust/issues/130869 about vector facility support in s390x
cc https://github.com/rust-lang/rust/issues/125398 & https://github.com/rust-lang/rust/issues/116909 about f128 support in asm
`@rustbot` label +O-SystemZ +A-inline-assembly
Use attributes for `dangling_pointers_from_temporaries` lint
Checking for dangling pointers by function name isn't ideal, and leaves out certain pointer-returning methods that don't follow the `as_ptr` naming convention. Using an attribute for this lint cleans things up and allows more thorough coverage of other methods, such as `UnsafeCell::get()`.
rename rustc_const_stable_intrinsic -> rustc_intrinsic_const_stable_indirect
In https://github.com/rust-lang/rust/pull/120370 this name caused confusion as the author thought the intrinsic was stable. So let's try a different name...
If we can land this before the beta cutoff we can avoid needing `cfg(bootstrap)` for this. ;)
Cc `@compiler-errors` `@saethlin`
Rename macro `SmartPointer` to `CoercePointee`
As per resolution #129104 we will rename the macro to better reflect the technical specification of the feature and clarify the communication.
- `SmartPointer` is renamed to `CoerceReferent`
- `#[pointee]` attribute is renamed to `#[referent]`
- `#![feature(derive_smart_pointer)]` gate is renamed to `#![feature(derive_coerce_referent)]`.
- Any mention of `SmartPointer` in the file names are renamed accordingly.
r? `@compiler-errors`
cc `@nikomatsakis` `@Darksonn`
Use `Enabled{Lang,Lib}Feature` instead of n-tuples
Instead of passing around e.g. `(gate_name, attr_span, stable_since)` 3-tuples for enabled lang features or `(gate_name, attr_span)` 2-tuples for enabled lib features, use `Enabled{Lang,Lib}Feature` structs with named fields.
Also did some minor code-golfing of involved iterator chains to hopefully make them easier to follow.
Follow-up to https://github.com/rust-lang/rust/pull/132098#issuecomment-2434523431 cc `@RalfJung.`
Fundamentally, we have *three* disjoint categories of functions:
1. const-stable functions
2. private/unstable functions that are meant to be callable from const-stable functions
3. functions that can make use of unstable const features
This PR implements the following system:
- `#[rustc_const_stable]` puts functions in the first category. It may only be applied to `#[stable]` functions.
- `#[rustc_const_unstable]` by default puts functions in the third category. The new attribute `#[rustc_const_stable_indirect]` can be added to such a function to move it into the second category.
- `const fn` without a const stability marker are in the second category if they are still unstable. They automatically inherit the feature gate for regular calls, it can now also be used for const-calls.
Also, several holes in recursive const stability checking are being closed.
There's still one potential hole that is hard to avoid, which is when MIR
building automatically inserts calls to a particular function in stable
functions -- which happens in the panic machinery. Those need to *not* be
`rustc_const_unstable` (or manually get a `rustc_const_stable_indirect`) to be
sure they follow recursive const stability. But that's a fairly rare and special
case so IMO it's fine.
The net effect of this is that a `#[unstable]` or unmarked function can be
constified simply by marking it as `const fn`, and it will then be
const-callable from stable `const fn` and subject to recursive const stability
requirements. If it is publicly reachable (which implies it cannot be unmarked),
it will be const-unstable under the same feature gate. Only if the function ever
becomes `#[stable]` does it need a `#[rustc_const_unstable]` or
`#[rustc_const_stable]` marker to decide if this should also imply
const-stability.
Adding `#[rustc_const_unstable]` is only needed for (a) functions that need to
use unstable const lang features (including intrinsics), or (b) `#[stable]`
functions that are not yet intended to be const-stable. Adding
`#[rustc_const_stable]` is only needed for functions that are actually meant to
be directly callable from stable const code. `#[rustc_const_stable_indirect]` is
used to mark intrinsics as const-callable and for `#[rustc_const_unstable]`
functions that are actually called from other, exposed-on-stable `const fn`. No
other attributes are required.
Stabilize shorter-tail-lifetimes
Close#131445
Tracked by #123739
We found a test case `tests/ui/drop/drop_order.rs` that had not been covered by the change. The test fixture is fixed now with the correct expectation.
Represent trait constness as a distinct predicate
cc `@rust-lang/project-const-traits`
r? `@ghost` for now
Also mirrored everything that is written below on this hackmd here: https://hackmd.io/`@compiler-errors/r12zoixg1l`
# Tl;dr:
* This PR removes the bulk of the old effect desugaring.
* This PR reimplements most of the effect desugaring as a new predicate and set of a couple queries. I believe it majorly simplifies the implementation and allows us to move forward more easily on its implementation.
I'm putting this up both as a request for comments and a vibe-check, but also as a legitimate implementation that I'd like to see land (though no rush of course on that last part).
## Background
### Early days
Once upon a time, we represented trait constness in the param-env and in `TraitPredicate`. This was very difficult to implement correctly; it had bugs and was also incomplete; I don't think this was anyone's fault though, it was just the limit of experimental knowledge we had at that point.
Dealing with `~const` within predicates themselves meant dealing with constness all throughout the trait solver. This was difficult to keep track of, and afaict was not handled well with all the corners of candidate assembly.
Specifically, we had to (in various places) remap constness according to the param-env constness:
574b64a97f/compiler/rustc_trait_selection/src/traits/select/mod.rs (L1498)
This was annoying and manual and also error prone.
### Beginning of the effects desugaring
Later on, #113210 reimplemented a new desugaring for const traits via a `<const HOST: bool>` predicate. This essentially "reified" the const checking and separated it from any of the remapping or separate tracking in param-envs. For example, if I was in a const-if-const environment, but I wanted to call a trait that was non-const, this reification would turn the constness mismatch into a simple *type* mismatch of the effect parameter.
While this was a monumental step towards straightening out const trait checking in the trait system, it had its own issues, since that meant that the constness of a trait (or any item within it, like an associated type) was *early-bound*. This essentially meant that `<T as Trait>::Assoc` was *distinct* from `<T as ~const Trait>::Assoc`, which was bad.
### Associated-type bound based effects desugaring
After this, #120639 implemented a new effects desugaring. This used an associated type to more clearly represent the fact that the constness is not an input parameter of a trait, but a property that could be computed of a impl. The write-up linked in that PR explains it better than I could.
However, I feel like it really reached the limits of what can comfortably be expressed in terms of associated type and trait calculus. Also, `<const HOST: bool>` remains a synthetic const parameter, which is observable in nested items like RPITs and closures, and comes with tons of its own hacks in the astconv and middle layer.
For example, there are pieces of unintuitive code that are needed to represent semantics like elaboration, and eventually will be needed to make error reporting intuitive, and hopefully in the future assist us in implementing built-in traits (eventually we'll want something like `~const Fn` trait bounds!).
elaboration hack: 8069f8d17a/compiler/rustc_type_ir/src/elaborate.rs (L133-L195)
trait bound remapping hack for diagnostics: 8069f8d17a/compiler/rustc_trait_selection/src/error_reporting/traits/fulfillment_errors.rs (L2370-L2413)
I want to be clear that I don't think this is a issue of implementation quality or anything like that; I think it's simply a very clear sign that we're using types and traits in a way that they're not fundamentally supposed to be used, especially given that constness deserves to be represented as a first-class concept.
### What now?
This PR implements a new desugaring for const traits. Specifically, it introduces a `HostEffect` predicate to represent the obligation an impl is const, rather than using associated type bounds and the compat trait that exists for effects today.
### `HostEffect` predicate
A `HostEffect` clause has two parts -- the `TraitRef` we're trying to prove, and a `HostPolarity::{Maybe, Const}`.
`HostPolarity::Const` corresponds to `T: const Trait` bounds, which must *always* be proven as const, and which can be written in any context. These are lowered directly into the predicates of an item, since they're not "context-specific".
On the other hand, `HostPolarity::Maybe` corresponds to `T: ~const Trait` bounds which must only exist in a conditionally-const context like a method in a `#[const_trait]`, or a `const fn` free function. We do not lower these immediately into the predicates of an item; instead, we collect them into a new query called the **`const_conditions`**. These are the set of trait refs that we need to prove have const implementations for an item to be const.
Notably, they're represented as bare (poly) trait refs because they are meant to be paired back together with a `HostPolarity` when they're being registered in typeck (see next section).
For example, given:
```rust
const fn foo<T: ~const A + const B>() {}
```
`foo`'s const conditions would contain `T: A`, but not `T: B`. On the flip side, foo's predicates (`predicates_of`) query would contain `HostEffect(T: B, HostPolarity::Const)` but not `HostEffect(T: A, HostPolarity::Maybe)` since we don't need to prove that predicate in a non-const environment (and it's not even the right predicate to prove in an unconditionally const environment).
### Type checking const bodies
When type checking bodies in HIR, when we encounter a call expression, we additionally register the callee item's const conditions with the `HostPolarity` from the body we're typechecking (`Const` for unconditionally const things like `const`/`static` items, and `Maybe` for conditionally const things like const fns; and we don't register `HostPolarity` predicates for non-const bodies).
When type-checking a conditionally const body, we augment its param-env with `HostEffect(..., Maybe)` predicates.
### Checking that const impls are WF
We extend the logic in `compare_method_predicate_entailment` to also check the const-conditions of the impl method, to make sure that we error for:
```rust
#[const_trait] Bar {}
#[const_trait] trait Foo {
fn method<T: Bar>();
}
impl Foo for () {
fn method<T: ~const Bar>() {} // stronger assumption!
}
```
We also extend the WF check for impls to register the const conditions of the trait that is being implemented. This is to make sure we error for:
```rust
#[const_trait] trait Bar {}
#[const_trait] trait Foo<T> where T: ~const Bar {}
impl<T> const Foo<T> for () {}
//~^ `T: ~const Bar` is missing!
```
### Proving a `HostEffect` predicate
We have several ways of proving a `HostEffect` predicate:
1. Matching a `HostEffect` predicate from the param-env
2. From an impl - we do impl selection very similar to confirming a trait goal, except we filter for only const impls, and we additionally register the impl's const conditions (i.e. the impl's `~const` where clauses).
Later I expect that we will add more built-in implementations for things like `Fn`.
## What next?
After this PR, I'd like to split out the work more so it can proceed in parallel and probably amongst others that are not me.
* Register `HostEffect` goal for places in HIR typeck that correspond to call terminators, like autoderef.
* Make traits in libstd const again.
* Probably need to impl host effect preds in old solver.
* Implement built-in `HostEffect` rules for traits like `Fn`.
* Rip out const checking from MIR altogether.
## So what?
This ends up being super convenient basically everywhere in the compiler. Due to the design of the new trait solver, we end up having an almost parallel structure to the existing trait and projection predicates for assembling `HostEffect` predicates; adding new candidates and especially new built-in implementations is now basically trivial, and it's quite straightforward to understand the confirmation logic for these predicates.
Same with diagnostics reporting; since we have predicates which represent the obligation to prove an impl is const, we can simplify and make these diagnostics richer without having to write a ton of logic to intercept and rewrite the existing `Compat` trait errors.
Finally, it gives us a much more straightforward path for supporting the const effect on the old trait solver. I'm personally quite passionate about getting const trait support into the hands of users without having to wait until the new solver lands[^1], so I think after this PR lands we can begin to gauge how difficult it would be to implement constness in the old trait solver too. This PR will not do this yet.
[^1]: Though this is not a prerequisite or by any means the only justification for this PR.
terminology: #[feature] *enables* a feature (instead of "declaring" or "activating" it)
Mostly, we currently call a feature that has a corresponding `#[feature(name)]` attribute in the current crate a "declared" feature. I think that is confusing as it does not align with what "declaring" usually means. Furthermore, we *also* refer to `#[stable]`/`#[unstable]` as *declaring* a feature (e.g. in [these diagnostics](f25e5abea2/compiler/rustc_passes/messages.ftl (L297-L301))), which aligns better with what "declaring" usually means. To make things worse, the functions `tcx.features().active(...)` and `tcx.features().declared(...)` both exist and they are doing almost the same thing (testing whether a corresponding `#[feature(name)]` exists) except that `active` would ICE if the feature is not an unstable lang feature. On top of this, the callback when a feature is activated/declared is called `set_enabled`, and many comments also talk about "enabling" a feature.
So really, our terminology is just a mess.
I would suggest we use "declaring a feature" for saying that something is/was guarded by a feature (e.g. `#[stable]`/`#[unstable]`), and "enabling a feature" for `#[feature(name)]`. This PR implements that.
stabilize Strict Provenance and Exposed Provenance APIs
Given that [RFC 3559](https://rust-lang.github.io/rfcs/3559-rust-has-provenance.html) has been accepted, t-lang has approved the concept of provenance to exist in the language. So I think it's time that we stabilize the strict provenance and exposed provenance APIs, and discuss provenance explicitly in the docs:
```rust
// core::ptr
pub const fn without_provenance<T>(addr: usize) -> *const T;
pub const fn dangling<T>() -> *const T;
pub const fn without_provenance_mut<T>(addr: usize) -> *mut T;
pub const fn dangling_mut<T>() -> *mut T;
pub fn with_exposed_provenance<T>(addr: usize) -> *const T;
pub fn with_exposed_provenance_mut<T>(addr: usize) -> *mut T;
impl<T: ?Sized> *const T {
pub fn addr(self) -> usize;
pub fn expose_provenance(self) -> usize;
pub fn with_addr(self, addr: usize) -> Self;
pub fn map_addr(self, f: impl FnOnce(usize) -> usize) -> Self;
}
impl<T: ?Sized> *mut T {
pub fn addr(self) -> usize;
pub fn expose_provenance(self) -> usize;
pub fn with_addr(self, addr: usize) -> Self;
pub fn map_addr(self, f: impl FnOnce(usize) -> usize) -> Self;
}
impl<T: ?Sized> NonNull<T> {
pub fn addr(self) -> NonZero<usize>;
pub fn with_addr(self, addr: NonZero<usize>) -> Self;
pub fn map_addr(self, f: impl FnOnce(NonZero<usize>) -> NonZero<usize>) -> Self;
}
```
I also did a pass over the docs to adjust them, because this is no longer an "experiment". The `ptr` docs now discuss the concept of provenance in general, and then they go into the two families of APIs for dealing with provenance: Strict Provenance and Exposed Provenance. I removed the discussion of how pointers also have an associated "address space" -- that is not actually tracked in the pointer value, it is tracked in the type, so IMO it just distracts from the core point of provenance. I also adjusted the docs for `with_exposed_provenance` to make it clear that we cannot guarantee much about this function, it's all best-effort.
There are two unstable lints associated with the strict_provenance feature gate; I moved them to a new [strict_provenance_lints](https://github.com/rust-lang/rust/issues/130351) feature since I didn't want this PR to have an even bigger FCP. ;)
`@rust-lang/opsem` Would be great to get some feedback on the docs here. :)
Nominating for `@rust-lang/libs-api.`
Part of https://github.com/rust-lang/rust/issues/95228.
[FCP comment](https://github.com/rust-lang/rust/pull/130350#issuecomment-2395114536)
Autodiff Upstreaming - enzyme frontend
This is an upstream PR for the `autodiff` rustc_builtin_macro that is part of the autodiff feature.
For the full implementation, see: https://github.com/rust-lang/rust/pull/129175
**Content:**
It contains a new `#[autodiff(<args>)]` rustc_builtin_macro, as well as a `#[rustc_autodiff]` builtin attribute.
The autodiff macro is applied on function `f` and will expand to a second function `df` (name given by user).
It will add a dummy body to `df` to make sure it type-checks. The body will later be replaced by enzyme on llvm-ir level,
we therefore don't really care about the content. Most of the changes (700 from 1.2k) are in `compiler/rustc_builtin_macros/src/autodiff.rs`, which expand the macro. Nothing except expansion is implemented for now.
I have a fallback implementation for relevant functions in case that rustc should be build without autodiff support. The default for now will be off, although we want to flip it later (once everything landed) to on for nightly. For the sake of CI, I have flipped the defaults, I'll revert this before merging.
**Dummy function Body:**
The first line is an `inline_asm` nop to make inlining less likely (I have additional checks to prevent this in the middle end of rustc. If `f` gets inlined too early, we can't pass it to enzyme and thus can't differentiate it.
If `df` gets inlined too early, the call site will just compute this dummy code instead of the derivatives, a correctness issue. The following black_box lines make sure that none of the input arguments is getting optimized away before we replace the body.
**Motivation:**
The user facing autodiff macro can verify the user input. Then I write it as args to the rustc_attribute, so from here on I can know that these values should be sensible. A rustc_attribute also turned out to be quite nice to attach this information to the corresponding function and carry it till the backend.
This is also just an experiment, I expect to adjust the user facing autodiff macro based on user feedback, to improve usability.
As a simple example of what this will do, we can see this expansion:
From:
```
#[autodiff(df, Reverse, Duplicated, Const, Active)]
pub fn f1(x: &[f64], y: f64) -> f64 {
unimplemented!()
}
```
to
```
#[rustc_autodiff]
#[inline(never)]
pub fn f1(x: &[f64], y: f64) -> f64 {
::core::panicking::panic("not implemented")
}
#[rustc_autodiff(Reverse, Duplicated, Const, Active,)]
#[inline(never)]
pub fn df(x: &[f64], dx: &mut [f64], y: f64, dret: f64) -> f64 {
unsafe { asm!("NOP"); };
::core::hint::black_box(f1(x, y));
::core::hint::black_box((dx, dret));
::core::hint::black_box(f1(x, y))
}
```
I will add a few more tests once I figured out why rustc rebuilds every time I touch a test.
Tracking:
- https://github.com/rust-lang/rust/issues/124509
try-job: dist-x86_64-msvc
Retire the `unnamed_fields` feature for now
`#![feature(unnamed_fields)]` was implemented in part in #115131 and #115367, however work on that feature has (afaict) stalled and in the mean time there have been some concerns raised (e.g.[^1][^2]) about whether `unnamed_fields` is worthwhile to have in the language, especially in its current desugaring. Because it represents a compiler implementation burden including a new kind of anonymous ADT and additional complication to field selection, and is quite prone to bugs today, I'm choosing to remove the feature.
However, since I'm not one to really write a bunch of words, I'm specifically *not* going to de-RFC this feature. This PR essentially *rolls back* the state of this feature to "RFC accepted but not yet implemented"; however if anyone wants to formally unapprove the RFC from the t-lang side, then please be my guest. I'm just not totally willing to summarize the various language-facing reasons for why this feature is or is not worthwhile, since I'm coming from the compiler side mostly.
Fixes#117942Fixes#121161Fixes#121263Fixes#121299Fixes#121722Fixes#121799Fixes#126969Fixes#131041
Tracking:
* https://github.com/rust-lang/rust/issues/49804
[^1]: https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Unnamed.20struct.2Funion.20fields
[^2]: https://github.com/rust-lang/rust/issues/49804#issuecomment-1972619108
Compiler & its UI tests: Rename remaining occurrences of "object safe" to "dyn compatible"
Follow-up to #130826.
Part of #130852.
1. 1st commit: Fix stupid oversights. Should've been part of #130826.
2. 2nd commit: Rename the unstable feature `object_safe_for_dispatch` to `dyn_compatible_for_dispatch`. Might not be worth the churn, you decide.
3. 3rd commit: Apply the renaming to all UI tests (contents and paths).
Implement RFC3695 Allow boolean literals as cfg predicates
This PR implements https://github.com/rust-lang/rfcs/pull/3695: allow boolean literals as cfg predicates, i.e. `cfg(true)` and `cfg(false)`.
r? `@nnethercote` *(or anyone with parser knowledge)*
cc `@clubby789`
No longer mark RTN as incomplete
The RFC is accepted and the feature is basically fully implemented. This doesn't mean it's necesarily *ready* for stabiliation; there's probably some diagnostic improvements to be made, and as always, users uncover the most creative bugs.
But marking this feature as incomplete no longer serves any purpose, so let's fix that.
fix rustc_nonnull_optimization_guaranteed docs
As far as I can tell, even back when this was [added](https://github.com/rust-lang/rust/pull/60300) it never *enabled* any optimizations. It just indicates that the FFI compat lint should accept those types for NPO.
Begin experimental support for pin reborrowing
This commit adds basic support for reborrowing `Pin` types in argument position. At the moment it only supports reborrowing `Pin<&mut T>` as `Pin<&mut T>` by inserting a call to `Pin::as_mut()`, and only in argument position (not as the receiver in a method call).
This PR makes the following example compile:
```rust
#![feature(pin_ergonomics)]
fn foo(_: Pin<&mut Foo>) {
}
fn bar(mut x: Pin<&mut Foo>) {
foo(x);
foo(x);
}
```
Previously, you would have had to write `bar` as:
```rust
fn bar(mut x: Pin<&mut Foo>) {
foo(x.as_mut());
foo(x);
}
```
Tracking:
- #130494
r? `@compiler-errors`
This commit adds basic support for reborrowing `Pin` types in argument
position. At the moment it only supports reborrowing `Pin<&mut T>` as
`Pin<&mut T>` by inserting a call to `Pin::as_mut()`, and only in
argument position (not as the receiver in a method call).
Rescope temp lifetime in if-let into IfElse with migration lint
Tracking issue #124085
This PR shortens the temporary lifetime to cover only the pattern matching and consequent branch of a `if let`.
At the expression location, means that the lifetime is shortened from previously the deepest enclosing block or statement in Edition 2021. This warrants an Edition change.
Coming with the Edition change, this patch also implements an edition lint to warn about the change and a safe rewrite suggestion to preserve the 2021 semantics in most cases.
Related to #103108.
Related crater runs: https://github.com/rust-lang/rust/pull/129466.
...and remove the `const_arg_path` feature gate as a result. It was only
a stopgap measure to fix the regression that the new lowering introduced
(which should now be fixed by this PR).
Correctly handle stability of `#[diagnostic]` attributes
This commit changes the way we treat the stability of attributes in the
`#[diagnostic]` namespace. Instead of relaying on ad-hoc checks to
ensure at call side that a certain attribute is really usable at that
location it centralises the logic to one place. For diagnostic
attributes comming from other crates it just skips serializing
attributes that are not stable and that do not have the corresponding
feature enabled. For attributes from the current crate we can just use
the feature information provided by `TyCtx`.
r? `@compiler-errors`
This commit changes the way we treat the stability of attributes in the
`#[diagnostic]` namespace. Instead of relaying on ad-hoc checks to
ensure at call side that a certain attribute is really usable at that
location it centralises the logic to one place. For diagnostic
attributes comming from other crates it just skips serializing
attributes that are not stable and that do not have the corresponding
feature enabled. For attributes from the current crate we can just use
the feature information provided by `TyCtx`.
Add an internal lint that warns when accessing untracked data
Some methods access data that is not tracked by the query system and should be used with caution. As suggested in https://github.com/rust-lang/rust/pull/128815#issuecomment-2275488683, in this PR I propose a lint (modeled on the `potential_query_instability` lint) that warns when using some specially-annotatted functions.
I can't tell myself if this lint would be that useful, compared to renaming `Steal::is_stolen` to `is_stolen_untracked`. This would depend on whether there are other functions we'd want to lint like this. So far it seems they're called `*_untracked`, which may be clear enough.
r? ``@oli-obk``
Arbitrary self types v2: pointers feature gate.
The main `arbitrary_self_types` feature gate will shortly be reused for a new version of arbitrary self types which we are amending per [this RFC](https://github.com/rust-lang/rfcs/blob/master/text/3519-arbitrary-self-types-v2.md). The main amendments are:
* _do_ support `self` types which can't safely implement `Deref`
* do _not_ support generic `self` types
* do _not_ support raw pointers as `self` types.
This PR relates to the last of those bullet points: this strips pointer support from the current `arbitrary_self_types` feature. We expect this to cause some amount of breakage for crates using this unstable feature to allow raw pointer self types. If that's the case, we want to know about it, and we want crate authors to know of the upcoming changes.
For now, this can be resolved by adding the new
`arbitrary_self_types_pointers` feature to such crates. If we determine that use of raw pointers as self types is common, then we may maintain that as an unstable feature even if we come to stabilize the rest of the `arbitrary_self_types` support in future. If we don't hear that this PR is causing breakage, then perhaps we don't need it at all, even behind an unstable feature gate.
[Tracking issue](https://github.com/rust-lang/rust/issues/44874)
This is [step 4 of the plan outlined here](https://github.com/rust-lang/rust/issues/44874#issuecomment-2122179688)
debug-fmt-detail option
I'd like to propose a new option that makes `#[derive(Debug)]` generate no-op implementations that don't print anything, and makes `{:?}` in format strings a no-op.
There are a couple of motivations for this:
1. A more thorough stripping of debug symbols. Binaries stripped of debug symbols still retain some of them through `Debug` implementations. It's hard to avoid that without compiler's help, because debug formatting can be used in many places, including dependencies, and their loggers, asserts, panics, etc.
* In my testing it gives about 2% binary size reduction on top of all other binary-minimizing best practices (including `panic_immediate_abort`). There are targets like Web WASM or embedded where users pay attention to binary sizes.
* Users distributing closed-source binaries may not want to "leak" any symbol names as a matter of principle.
2. Adds ability to test whether code depends on specifics of the `Debug` format implementation in unwise ways (e.g. trying to get data unavailable via public interface, or using it as a serialization format). Because current Rust's debug implementation doesn't change, there's a risk of it becoming a fragile de-facto API that [won't be possible to change in the future](https://www.hyrumslaw.com/). An option that "breaks" it can act as a [grease](https://www.rfc-editor.org/rfc/rfc8701.html).
This implementation is a `-Z fmt-debug=opt` flag that takes:
* `full` — the default, current state.
* `none` — makes derived `Debug` and `{:?}` no-ops. Explicit `impl Debug for T` implementations are left unharmed, but `{:?}` format won't use them, so they may get dead-code eliminated if they aren't invoked directly.
* `shallow` — makes derived `Debug` print only the type's name, without recursing into fields. Fieldless enums print their variant names. `{:?}` works.
The `shallow` option is a compromise between minimizing the `Debug` code, and compatibility. There are popular proc-macro crates that use `Debug::fmt` as a way to convert enum values into their Rust source code.
There's a corresponding `cfg` flag: `#[cfg(fmt_debug = "none")]` that can be used in user code to react to this setting to minimize custom `Debug` implementations or remove unnecessary formatting helper functions.
rustc_target: Add various aarch64 features
Add various aarch64 features already supported by LLVM and Linux.
Additionally include some comment fixes to ensure consistency of feature names with the Arm ARM.
Compiler support for features added to stdarch by https://github.com/rust-lang/stdarch/pull/1614.
Tracking issue for unstable aarch64 features is https://github.com/rust-lang/rust/issues/127764.
List of added features:
- FEAT_CSSC
- FEAT_ECV
- FEAT_FAMINMAX
- FEAT_FLAGM2
- FEAT_FP8
- FEAT_FP8DOT2
- FEAT_FP8DOT4
- FEAT_FP8FMA
- FEAT_HBC
- FEAT_LSE128
- FEAT_LSE2
- FEAT_LUT
- FEAT_MOPS
- FEAT_LRCPC3
- FEAT_SVE_B16B16
- FEAT_SVE2p1
- FEAT_WFxT
- FEAT_SME
- FEAT_SME_F16F16
- FEAT_SME_F64F64
- FEAT_SME_F8F16
- FEAT_SME_F8F32
- FEAT_SME_FA64
- FEAT_SME_I16I64
- FEAT_SME_LUTv2
- FEAT_SME2
- FEAT_SME2p1
- FEAT_SSVE_FP8DOT2
- FEAT_SSVE_FP8DOT4
- FEAT_SSVE_FP8FMA
FEAT_FPMR is added in the first commit and then removed in a separate one to highlight it being removed from upstream LLVM 19. The intention is for it to be detectable at runtime through stdarch but not have a corresponding Rust compile-time feature.
The main `arbitrary_self_types` feature gate will shortly be reused for
a new version of arbitrary self types which we are amending per [this
RFC](https://github.com/rust-lang/rfcs/blob/master/text/3519-arbitrary-self-types-v2.md).
The main amendments are:
* _do_ support `self` types which can't safely implement `Deref`
* do _not_ support generic `self` types
* do _not_ support raw pointers as `self` types.
This PR relates to the last of those bullet points: this strips pointer
support from the current `arbitrary_self_types` feature.
We expect this to cause some amount of breakage for crates using this
unstable feature to allow raw pointer self types. If that's the case, we
want to know about it, and we want crate authors to know of the upcoming
changes.
For now, this can be resolved by adding the new
`arbitrary_self_types_pointers` feature to such crates. If we determine
that use of raw pointers as self types is common, then we may maintain
that as an unstable feature even if we come to stabilize the rest of the
`arbitrary_self_types` support in future. If we don't hear that this PR
is causing breakage, then perhaps we don't need it at all, even behind
an unstable feature gate.
[Tracking issue](https://github.com/rust-lang/rust/issues/44874)
This is [step 4 of the plan outlined here](https://github.com/rust-lang/rust/issues/44874#issuecomment-2122179688)
Add various aarch64 features already supported by LLVM and Linux.
The features are marked as unstable using a newly added symbol, i.e.
aarch64_unstable_target_feature.
Additionally include some comment fixes to ensure consistency of
feature names with the Arm ARM and support for architecture version
target features up to v9.5a.
This commit adds compiler support for the following features:
- FEAT_CSSC
- FEAT_ECV
- FEAT_FAMINMAX
- FEAT_FLAGM2
- FEAT_FP8
- FEAT_FP8DOT2
- FEAT_FP8DOT4
- FEAT_FP8FMA
- FEAT_FPMR
- FEAT_HBC
- FEAT_LSE128
- FEAT_LSE2
- FEAT_LUT
- FEAT_MOPS
- FEAT_LRCPC3
- FEAT_SVE_B16B16
- FEAT_SVE2p1
- FEAT_WFxT
Retroactively feature gate `ConstArgKind::Path`
This puts the lowering introduced by #125915 under a feature gate until we fix the regressions introduced by it. Alternative to whole sale reverting the PR since it didn't seem like a very clean revert and I think this is generally a step in the right direction and don't want to get stuck landing and reverting the PR over and over :)
cc #129137 ``@camelid,`` tests taken from there. beta is branching soon so I think it makes sense to not try and rush that fix through since it wont have much time to bake and if it has issues we can't simply revert it on beta.
Fixes#128016
Stabilize opaque type precise capturing (RFC 3617)
This PR partially stabilizes opaque type *precise capturing*, which was specified in [RFC 3617](https://github.com/rust-lang/rfcs/pull/3617), and whose syntax was amended by FCP in [#125836](https://github.com/rust-lang/rust/issues/125836).
This feature, as stabilized here, gives us a way to explicitly specify the generic lifetime parameters that an RPIT-like opaque type captures. This solves the problem of overcapturing, for lifetime parameters in these opaque types, and will allow the Lifetime Capture Rules 2024 ([RFC 3498](https://github.com/rust-lang/rfcs/pull/3498)) to be fully stabilized for RPIT in Rust 2024.
### What are we stabilizing?
This PR stabilizes the use of a `use<'a, T>` bound in return-position impl Trait opaque types. Such a bound fully specifies the set of generic parameters captured by the RPIT opaque type, entirely overriding the implicit default behavior. E.g.:
```rust
fn does_not_capture<'a, 'b>() -> impl Sized + use<'a> {}
// ~~~~~~~~~~~~~~~~~~~~
// This RPIT opaque type does not capture `'b`.
```
The way we would suggest thinking of `impl Trait` types *without* an explicit `use<..>` bound is that the `use<..>` bound has been *elided*, and that the bound is filled in automatically by the compiler according to the edition-specific capture rules.
All non-`'static` lifetime parameters, named (i.e. non-APIT) type parameters, and const parameters in scope are valid to name, including an elided lifetime if such a lifetime would also be valid in an outlives bound, e.g.:
```rust
fn elided(x: &u8) -> impl Sized + use<'_> { x }
```
Lifetimes must be listed before type and const parameters, but otherwise the ordering is not relevant to the `use<..>` bound. Captured parameters may not be duplicated. For now, only one `use<..>` bound may appear in a bounds list. It may appear anywhere within the bounds list.
### How does this differ from the RFC?
This stabilization differs from the RFC in one respect: the RFC originally specified `use<'a, T>` as syntactically part of the RPIT type itself, e.g.:
```rust
fn capture<'a>() -> impl use<'a> Sized {}
```
However, settling on the final syntax was left as an open question. T-lang later decided via FCP in [#125836](https://github.com/rust-lang/rust/issues/125836) to treat `use<..>` as a syntactic bound instead, e.g.:
```rust
fn capture<'a>() -> impl Sized + use<'a> {}
```
### What aren't we stabilizing?
The key goal of this PR is to stabilize the parts of *precise capturing* that are needed to enable the migration to Rust 2024.
There are some capabilities of *precise capturing* that the RFC specifies but that we're not stabilizing here, as these require further work on the type system. We hope to lift these limitations later.
The limitations that are part of this PR were specified in the [RFC's stabilization strategy](https://rust-lang.github.io/rfcs/3617-precise-capturing.html#stabilization-strategy).
#### Not capturing type or const parameters
The RFC addresses the overcapturing of type and const parameters; that is, it allows for them to not be captured in opaque types. We're not stabilizing that in this PR. Since all in scope generic type and const parameters are implicitly captured in all editions, this is not needed for the migration to Rust 2024.
For now, when using `use<..>`, all in scope type and const parameters must be nameable (i.e., APIT cannot be used) and included as arguments. For example, this is an error because `T` is in scope and not included as an argument:
```rust
fn test<T>() -> impl Sized + use<> {}
//~^ ERROR `impl Trait` must mention all type parameters in scope in `use<...>`
```
This is due to certain current limitations in the type system related to how generic parameters are represented as captured (i.e. bivariance) and how inference operates.
We hope to relax this in the future, and this stabilization is forward compatible with doing so.
#### Precise capturing for return-position impl Trait **in trait** (RPITIT)
The RFC specifies precise capturing for RPITIT. We're not stabilizing that in this PR. Since RPITIT already adheres to the Lifetime Capture Rules 2024, this isn't needed for the migration to Rust 2024.
The effect of this is that the anonymous associated types created by RPITITs must continue to capture all of the lifetime parameters in scope, e.g.:
```rust
trait Foo<'a> {
fn test() -> impl Sized + use<Self>;
//~^ ERROR `use<...>` precise capturing syntax is currently not allowed in return-position `impl Trait` in traits
}
```
To allow this involves a meaningful amount of type system work related to adding variance to GATs or reworking how generics are represented in RPITITs. We plan to do this work separately from the stabilization. See:
- https://github.com/rust-lang/rust/pull/124029
Supporting precise capturing for RPITIT will also require us to implement a new algorithm for detecting refining capture behavior. This may involve looking through type parameters to detect cases where the impl Trait type in an implementation captures fewer lifetimes than the corresponding RPITIT in the trait definition, e.g.:
```rust
trait Foo {
fn rpit() -> impl Sized + use<Self>;
}
impl<'a> Foo for &'a () {
// This is "refining" due to not capturing `'a` which
// is implied by the trait's `use<Self>`.
fn rpit() -> impl Sized + use<>;
// This is not "refining".
fn rpit() -> impl Sized + use<'a>;
}
```
This stabilization is forward compatible with adding support for this later.
### The technical details
This bound is purely syntactical and does not lower to a [`Clause`](https://doc.rust-lang.org/1.79.0/nightly-rustc/rustc_middle/ty/type.ClauseKind.html) in the type system. For the purposes of the type system (and for the types team's curiosity regarding this stabilization), we have no current need to represent this as a `ClauseKind`.
Since opaques already capture a variable set of lifetimes depending on edition and their syntactical position (e.g. RPIT vs RPITIT), a `use<..>` bound is just a way to explicitly rather than implicitly specify that set of lifetimes, and this only affects opaque type lowering from AST to HIR.
### FCP plan
While there's much discussion of the type system here, the feature in this PR is implemented internally as a transformation that happens before lowering to the type system layer. We already support impl Trait types partially capturing the in scope lifetimes; we just currently only expose that implicitly.
So, in my (errs's) view as a types team member, there's nothing for types to weigh in on here with respect to the implementation being stabilized, and I'd suggest a lang-only proposed FCP (though we'll of course CC the team below).
### Authorship and acknowledgments
This stabilization report was coauthored by compiler-errors and TC.
TC would like to acknowledge the outstanding and speedy work that compiler-errors has done to make this feature happen.
compiler-errors thanks TC for authoring the RFC, for all of his involvement in this feature's development, and pushing the Rust 2024 edition forward.
### Open items
We're doing some things in parallel here. In signaling the intention to stabilize, we want to uncover any latent issues so we can be sure they get addressed. We want to give the maximum time for discussion here to happen by starting it while other remaining miscellaneous work proceeds. That work includes:
- [x] Look into `syn` support.
- https://github.com/dtolnay/syn/issues/1677
- https://github.com/dtolnay/syn/pull/1707
- [x] Look into `rustfmt` support.
- https://github.com/rust-lang/rust/pull/126754
- [x] Look into `rust-analyzer` support.
- https://github.com/rust-lang/rust-analyzer/issues/17598
- https://github.com/rust-lang/rust-analyzer/pull/17676
- [x] Look into `rustdoc` support.
- https://github.com/rust-lang/rust/issues/127228
- https://github.com/rust-lang/rust/pull/127632
- https://github.com/rust-lang/rust/pull/127658
- [x] Suggest this feature to RfL (a known nightly user).
- [x] Add a chapter to the edition guide.
- https://github.com/rust-lang/edition-guide/pull/316
- [x] Update the Reference.
- https://github.com/rust-lang/reference/pull/1577
### (Selected) implementation history
* https://github.com/rust-lang/rfcs/pull/3498
* https://github.com/rust-lang/rfcs/pull/3617
* https://github.com/rust-lang/rust/pull/123468
* https://github.com/rust-lang/rust/issues/125836
* https://github.com/rust-lang/rust/pull/126049
* https://github.com/rust-lang/rust/pull/126753Closes#123432.
cc `@rust-lang/lang` `@rust-lang/types`
`@rustbot` labels +T-lang +I-lang-nominated +A-impl-trait +F-precise_capturing
Tracking:
- https://github.com/rust-lang/rust/issues/123432
----
For the compiler reviewer, I'll leave some inline comments about diagnostics fallout :^)
r? compiler
Stabilize `unsafe_attributes`
# Stabilization report
## Summary
This is a tracking issue for the RFC 3325: unsafe attributes
We are stabilizing `#![feature(unsafe_attributes)]`, which makes certain attributes considered 'unsafe', meaning that they must be surrounded by an `unsafe(...)`, as in `#[unsafe(no_mangle)]`.
RFC: rust-lang/rfcs#3325
Tracking issue: #123757
## What is stabilized
### Summary of stabilization
Certain attributes will now be designated as unsafe attributes, namely, `no_mangle`, `export_name`, and `link_section` (stable only), and these attributes will need to be called by surrounding them in `unsafe(...)` syntax. On editions prior to 2024, this is simply an edition lint, but it will become a hard error in 2024. This also works in `cfg_attr`, but `unsafe` is not allowed for any other attributes, including proc-macros ones.
```rust
#[unsafe(no_mangle)]
fn a() {}
#[cfg_attr(any(), unsafe(export_name = "c"))]
fn b() {}
```
For a table showing the attributes that were considered to be included in the list to require unsafe, and subsequent reasoning about why each such attribute was or was not included, see [this comment here](https://github.com/rust-lang/rust/pull/124214#issuecomment-2124753464)
## Tests
The relevant tests are in `tests/ui/rust-2024/unsafe-attributes` and `tests/ui/attributes/unsafe`.
derive(SmartPointer): register helper attributes
Fix#128888
This PR enables built-in macros to register helper attributes, if any, to support correct name resolution in the correct lexical scope under the macros.
Also, `#[pointee]` is moved into the scope under `derive(SmartPointer)`.
cc `@Darksonn` `@davidtwco`
turn `invalid_type_param_default` into a `FutureReleaseErrorReportInDeps`
`````@rust-lang/types````` I assume the plan is still to disallow this? It has been a future-compat lint for a long time, seems ripe to go for hard error.
However, turns out that outright removing it right now would lead to [tons of crater regressions](https://github.com/rust-lang/rust/pull/127655#issuecomment-2228285460), so for now this PR just makes this future-compat lint show up in cargo's reports, so people are warned when they use a dependency that is affected by this.
Fixes https://github.com/rust-lang/rust/issues/27336 by removing the feature gate (so there's no way to silence the lint even on nightly)
CC https://github.com/rust-lang/rust/issues/36887
Assert that all attributes are actually checked via `CheckAttrVisitor` and aren't accidentally usable on completely unrelated HIR nodes
``@oli-obk's`` #128444 with unreachable case removed to avoid that PR bitrotting away.
Based on #128402.
This PR will make adding a new attribute ICE on any use of that attribute unless it gets a handler added in `rustc_passes::CheckAttrVisitor`.
r? ``@nnethercote`` (since you were the reviewer of the original PR)
rustc_target: add known safe s390x target features
This pull request adds known safe target features for s390x (aka IBM Z systems).
Currently, these features are unstable since stabilizing the target features requires submitting proposals.
The `vector` feature was added in IBM Z13 (`arch11`), and this is a SIMD feature for the newer IBM Z systems.
The `backchain` attribute is the IBM Z way of adding frame pointers like unwinding capabilities (the "frame-pointer" switch on IBM Z and IBM POWER platforms will add _emulated_ frame pointers to the binary, which profilers can't use for unwinding the stack).
Both attributes can be applied at the LLVM module or function levels. However, the `backchain` attribute has to be enabled for all the functions in the call stack to get a successful unwind process.
Remove lang feature for type ascription (since it's a lib feature now)
It's not necessary since it's a library feature now, via the type ascription macro. We can't (and shouldn't) register it as a removed feature since I think that would give "this feature has been removed" errors even for people using the macro (well, I'm pretty sure, though I didn't check).
r? `@Nilstrieb`
Add AMX target-features and `x86_amx_intrinsics` feature flag
This is an effort towards #126622. This adds support for all 5 target-features for `AMX`, and introduces the feature flag `x86_amx_intrinsics`, which would gate these target-features and the yet-to-be-implemented amx intrinsics in stdarch.
Remove the unstable `extern "wasm"` ABI (`wasm_abi` feature tracked
in #83788).
As discussed in https://github.com/rust-lang/rust/pull/127513#issuecomment-2220410679
and following, this ABI is a failed experiment that did not end
up being used for anything. Keeping support for this ABI in LLVM 19
would require us to switch wasm targets to the `experimental-mv`
ABI, which we do not want to do.
It should be noted that `Abi::Wasm` was internally used for two
things: The `-Z wasm-c-abi=legacy` ABI that is still used by
default on some wasm targets, and the `extern "wasm"` ABI. Despite
both being `Abi::Wasm` internally, they were not the same. An
explicit `extern "wasm"` additionally enabled the `+multivalue`
feature.
I've opted to remove `Abi::Wasm` in this patch entirely, instead
of keeping it as an ABI with only internal usage. Both
`-Z wasm-c-abi` variants are now treated as part of the normal
C ABI, just with different different treatment in
adjust_for_foreign_abi.