#[contracts::requires(...)] + #[contracts::ensures(...)]
cc https://github.com/rust-lang/rust/issues/128044
Updated contract support: attribute syntax for preconditions and postconditions, implemented via a series of desugarings that culminates in:
1. a compile-time flag (`-Z contract-checks`) that, similar to `-Z ub-checks`, attempts to ensure that the decision of enabling/disabling contract checks is delayed until the end user program is compiled,
2. invocations of lang-items that handle invoking the precondition, building a checker for the post-condition, and invoking that post-condition checker at the return sites for the function, and
3. intrinsics for the actual evaluation of pre- and post-condition predicates that third-party verification tools can intercept and reinterpret for their own purposes (e.g. creating shims of behavior that abstract away the function body and replace it solely with the pre- and post-conditions).
Known issues:
* My original intent, as described in the MCP (https://github.com/rust-lang/compiler-team/issues/759) was to have a rustc-prefixed attribute namespace (like rustc_contracts::requires). But I could not get things working when I tried to do rewriting via a rustc-prefixed builtin attribute-macro. So for now it is called `contracts::requires`.
* Our attribute macro machinery does not provide direct support for attribute arguments that are parsed like rust expressions. I spent some time trying to add that (e.g. something that would parse the attribute arguments as an AST while treating the remainder of the items as a token-tree), but its too big a lift for me to undertake. So instead I hacked in something approximating that goal, by semi-trivially desugaring the token-tree attribute contents into internal AST constucts. This may be too fragile for the long-term.
* (In particular, it *definitely* breaks when you try to add a contract to a function like this: `fn foo1(x: i32) -> S<{ 23 }> { ... }`, because its token-tree based search for where to inject the internal AST constructs cannot immediately see that the `{ 23 }` is within a generics list. I think we can live for this for the short-term, i.e. land the work, and continue working on it while in parallel adding a new attribute variant that takes a token-tree attribute alongside an AST annotation, which would completely resolve the issue here.)
* the *intent* of `-Z contract-checks` is that it behaves like `-Z ub-checks`, in that we do not prematurely commit to including or excluding the contract evaluation in upstream crates (most notably, `core` and `std`). But the current test suite does not actually *check* that this is the case. Ideally the test suite would be extended with a multi-crate test that explores the matrix of enabling/disabling contracts on both the upstream lib and final ("leaf") bin crates.
Implement unstable `new_range` feature
Switches `a..b`, `a..`, and `a..=b` to resolve to the new range types.
For rust-lang/rfcs#3550
Tracking issue #123741
also adds the re-export that was missed in the original implementation of `new_range_api`
Add `kl` and `widekl` target features, and the feature gate
This is an effort towards #134813. This PR adds the target-features and the feature gate to `rustc`
<!--
```@rustbot``` label O-x86_64 O-x86_32 A-target-feature
r? compiler
-->
This has now been approved as a language feature and no longer needs
a `rustc_` prefix.
Also change the `contracts` feature to be marked as incomplete and
`contracts_internals` as internal.
The extended syntax for function signature that includes contract clauses
should never be user exposed versus the interface we want to ship
externally eventually.
Add `#[optimize(none)]`
cc #54882
This extends the `optimize` attribute to add `none`, which corresponds to the LLVM `OptimizeNone` attribute.
Not sure if an MCP is required for this, happy to file one if so.
This CL makes a number of small changes to dyn compatibility errors:
- "object safety" has been renamed to "dyn-compatibility" throughout
- "Convert to enum" suggestions are no longer generated when there
exists a type-generic impl of the trait or an impl for `dyn OtherTrait`
- Several error messages are reorganized for user readability
Additionally, the dyn compatibility error creation code has been
split out into functions.
cc #132713
cc #133267
remove support for the (unstable) #[start] attribute
As explained by `@Noratrieb:`
`#[start]` should be deleted. It's nothing but an accidentally leaked implementation detail that's a not very useful mix between "portable" entrypoint logic and bad abstraction.
I think the way the stable user-facing entrypoint should work (and works today on stable) is pretty simple:
- `std`-using cross-platform programs should use `fn main()`. the compiler, together with `std`, will then ensure that code ends up at `main` (by having a platform-specific entrypoint that gets directed through `lang_start` in `std` to `main` - but that's just an implementation detail)
- `no_std` platform-specific programs should use `#![no_main]` and define their own platform-specific entrypoint symbol with `#[no_mangle]`, like `main`, `_start`, `WinMain` or `my_embedded_platform_wants_to_start_here`. most of them only support a single platform anyways, and need cfg for the different platform's ways of passing arguments or other things *anyways*
`#[start]` is in a super weird position of being neither of those two. It tries to pretend that it's cross-platform, but its signature is a total lie. Those arguments are just stubbed out to zero on ~~Windows~~ wasm, for example. It also only handles the platform-specific entrypoints for a few platforms that are supported by `std`, like Windows or Unix-likes. `my_embedded_platform_wants_to_start_here` can't use it, and neither could a libc-less Linux program.
So we have an attribute that only works in some cases anyways, that has a signature that's a total lie (and a signature that, as I might want to add, has changed recently, and that I definitely would not be comfortable giving *any* stability guarantees on), and where there's a pretty easy way to get things working without it in the first place.
Note that this feature has **not** been RFCed in the first place.
*This comment was posted [in May](https://github.com/rust-lang/rust/issues/29633#issuecomment-2088596042) and so far nobody spoke up in that issue with a usecase that would require keeping the attribute.*
Closes https://github.com/rust-lang/rust/issues/29633
try-job: x86_64-gnu-nopt
try-job: x86_64-msvc-1
try-job: x86_64-msvc-2
try-job: test-various
Match Ergonomics 2024: document and reorganize the currently-implemented feature gates
The hope here is to make it easier to adjust, understand, and test the experimental pattern typing rules implemented in the compiler. This PR doesn't (or at isn't intended to) change any behavior or add any new tests; I'll be handling that later. I've also included some reasoning/commentary on the more involved changes in the commit messages.
Relevant tracking issue: #123076
r? `@Nadrieril`
Add gpu-kernel calling convention
The amdgpu-kernel calling convention was reverted in commit f6b21e90d1 (#120495 and https://github.com/rust-lang/rust-analyzer/pull/16463) due to inactivity in the amdgpu target.
Introduce a `gpu-kernel` calling convention that translates to `ptx_kernel` or `amdgpu_kernel`, depending on the target that rust compiles for.
Tracking issue: #135467
amdgpu target tracking issue: #135024
The amdgpu-kernel calling convention was reverted in commit
f6b21e90d1 due to inactivity in the amdgpu
target.
Introduce a `gpu-kernel` calling convention that translates to
`ptx_kernel` or `amdgpu_kernel`, depending on the target that rust
compiles for.
Adds `#[rustc_force_inline]` which is similar to always inlining but
reports an error if the inlining was not possible, and which always
attempts to inline annotated items, regardless of optimisation levels.
It can only be applied to free functions to guarantee that the MIR
inliner will be able to resolve calls.
This aims to reduce the complexity needed in the boolean logic for telling which
rules we're using to type patterns. If we still want the functionality this
removes, we can re-add it later, after some cleanup to pattern typing.
Add support for wasm exception handling to Emscripten target
This is a draft because we need some additional setting for the Emscripten target to select between the old exception handling and the new exception handling. I don't know how to add a setting like that, would appreciate advice from Rust folks. We could maybe choose to use the new exception handling if `Ctarget-feature=+exception-handling` is passed? I tried this but I get errors from llvm so I'm not doing it right.
turn rustc_box into an intrinsic
I am not entirely sure why this was made a special magic attribute, but an intrinsic seems like a more natural way to add magic expressions to the language.
This commit splits the `#[rustc_deny_explicit_impl(implement_via_object = ...)]` attribute
into two attributes `#[rustc_deny_explicit_impl]` and `#[rustc_do_not_implement_via_object]`.
This allows us to have special traits that can have user-defined impls but do not have the
automatic trait impl for trait objects (`impl Trait for dyn Trait`).
This commit seeks to stabilize the `#[diagnostic::do_not_recommend]`
attribute.
This attribute was first proposed as `#[do_not_recommend`] attribute in
RFC 2397 (https://github.com/rust-lang/rfcs/pull/2397). It gives the
crate authors the ability to not suggest to the compiler to not show
certain traits in it's error messages. With the presence of the
`#[diagnostic]` tool attribute namespace it was decided to move the
attribute there, as that lowers the amount of guarantees the compiler
needs to give about the exact way this influences error messages. It
turns the attribute into a hint which can be ignored. In addition to the
original proposed functionality this attribute now also hides the marked
trait in help messages ("This trait is implemented by: ").
The attribute does not accept any argument and can only be placed on
trait implementations. If it is placed somewhere else a lint warning is
emitted and the attribute is otherwise ignored. If an argument is
detected a lint warning is emitted and the argument is ignored. This
follows the rules outlined by the diagnostic namespace.
This attribute allows crates like diesel to improve their error messages
drastically. The most common example here is the following error
message:
```
error[E0277]: the trait bound `&str: Expression` is not satisfied
--> /home/weiznich/Documents/rust/rust/tests/ui/diagnostic_namespace/do_not_recommend.rs:53:15
|
LL | SelectInt.check("bar");
| ^^^^^ the trait `Expression` is not implemented for `&str`, which is required by `&str: AsExpression<Integer>`
|
= help: the following other types implement trait `Expression`:
Bound<T>
SelectInt
note: required for `&str` to implement `AsExpression<Integer>`
--> /home/weiznich/Documents/rust/rust/tests/ui/diagnostic_namespace/do_not_recommend.rs:26:13
|
LL | impl<T, ST> AsExpression<ST> for T
| ^^^^^^^^^^^^^^^^ ^
LL | where
LL | T: Expression<SqlType = ST>,
| ------------------------ unsatisfied trait bound introduced here
```
By applying the new attribute to the wild card trait implementation of
`AsExpression` for `T: Expression` the error message becomes:
```
error[E0277]: the trait bound `&str: AsExpression<Integer>` is not satisfied
--> $DIR/as_expression.rs:55:15
|
LL | SelectInt.check("bar");
| ^^^^^ the trait `AsExpression<Integer>` is not implemented for `&str`
|
= help: the trait `AsExpression<Text>` is implemented for `&str`
= help: for that trait implementation, expected `Text`, found `Integer`
```
which makes it much easier for users to understand that they are facing
a type mismatch.
Other explored example usages included
* This standard library error message: https://github.com/rust-lang/rust/pull/128008
* That bevy derived example:
e1f3068995/tests/ui/diagnostic_namespace/do_not_recommend/supress_suggestions_in_help.rs (No
more tuple pyramids)
Fixes#51992
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
Rollup of 7 pull requests
Successful merges:
- #133900 (Advent of `tests/ui` (misc cleanups and improvements) [1/N])
- #133937 (Keep track of parse errors in `mod`s and don't emit resolve errors for paths involving them)
- #133938 (`rustc_mir_dataflow` cleanups, including some renamings)
- #134058 (interpret: reduce usage of TypingEnv::fully_monomorphized)
- #134130 (Stop using driver queries in the public API)
- #134140 (Add AST support for unsafe binders)
- #134229 (Fix typos in docs on provenance)
r? `@ghost`
`@rustbot` modify labels: rollup
forbid toggling x87 and fpregs on hard-float targets
Part of https://github.com/rust-lang/rust/issues/116344, follow-up to https://github.com/rust-lang/rust/pull/129884:
The `x87` target feature on x86 and the `fpregs` target feature on ARM must not be disabled on a hardfloat target, as that would change the float ABI. However, *enabling* `fpregs` on ARM is [explicitly requested](https://github.com/rust-lang/rust/issues/130988) as it seems to be useful. Therefore, we need to refine the distinction of "forbidden" target features and "allowed" target features: all (un)stable target features can determine on a per-target basis whether they should be allowed to be toggled or not. `fpregs` then checks whether the current target has the `soft-float` feature, and if yes, `fpregs` is permitted -- otherwise, it is not. (Same for `x87` on x86).
Also fixes https://github.com/rust-lang/rust/issues/132351. Since `fpregs` and `x87` can be enabled on some builds and disabled on others, it would make sense that one can query it via `cfg`. Therefore, I made them behave in `cfg` like any other unstable target feature.
The first commit prepares the infrastructure, but does not change behavior. The second commit then wires up `fpregs` and `x87` with that new infrastructure.
r? `@workingjubilee`
Add AST support for unsafe binders
I'm splitting up #130514 into pieces. It's impossible for me to keep up with a huge PR like that. I'll land type system support for this next, probably w/o MIR lowering, which will come later.
r? `@oli-obk`
cc `@BoxyUwU` and `@lcnr` who also may want to look at this, though this PR doesn't do too much yet
Initial implementation of `#[feature(default_field_values]`, proposed in https://github.com/rust-lang/rfcs/pull/3681.
Support default fields in enum struct variant
Allow default values in an enum struct variant definition:
```rust
pub enum Bar {
Foo {
bar: S = S,
baz: i32 = 42 + 3,
}
}
```
Allow using `..` without a base on an enum struct variant
```rust
Bar::Foo { .. }
```
`#[derive(Default)]` doesn't account for these as it is still gating `#[default]` only being allowed on unit variants.
Support `#[derive(Default)]` on enum struct variants with all defaulted fields
```rust
pub enum Bar {
#[default]
Foo {
bar: S = S,
baz: i32 = 42 + 3,
}
}
```
Check for missing fields in typeck instead of mir_build.
Expand test with `const` param case (needs `generic_const_exprs` enabled).
Properly instantiate MIR const
The following works:
```rust
struct S<A> {
a: Vec<A> = Vec::new(),
}
S::<i32> { .. }
```
Add lint for default fields that will always fail const-eval
We *allow* this to happen for API writers that might want to rely on users'
getting a compile error when using the default field, different to the error
that they would get when the field isn't default. We could change this to
*always* error instead of being a lint, if we wanted.
This will *not* catch errors for partially evaluated consts, like when the
expression relies on a const parameter.
Suggestions when encountering `Foo { .. }` without `#[feature(default_field_values)]`:
- Suggest adding a base expression if there are missing fields.
- Suggest enabling the feature if all the missing fields have optional values.
- Suggest removing `..` if there are no missing fields.
Stabilize `extended_varargs_abi_support`
I think that is everything? If there is any documentation regarding `extern` and/or varargs to correct, let me know, some quick greps suggest that there might be none.
Tracking issue: https://github.com/rust-lang/rust/issues/100189
Support input/output in vector registers of s390x inline assembly (under asm_experimental_reg feature)
This extends currently clobber-only vector registers (`vreg`) support to allow passing `#[repr(simd)]` types, floats (f32/f64/f128), and integers (i32/i64/i128) as input/output.
This is unstable and gated under new `#![feature(asm_experimental_reg)]` (tracking issue: https://github.com/rust-lang/rust/issues/133416). If the feature is not enabled, only clober is supported as before.
| Architecture | Register class | Target feature | Allowed types |
| ------------ | -------------- | -------------- | -------------- |
| s390x | `vreg` | `vector` | `i32`, `f32`, `i64`, `f64`, `i128`, `f128`, `i8x16`, `i16x8`, `i32x4`, `i64x2`, `f32x4`, `f64x2` |
This matches the list of types that are supported by the vector registers in LLVM:
https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/SystemZ/SystemZRegisterInfo.td#L301-L313
In addition to `core::simd` types and floats listed above, custom `#[repr(simd)]` types of the same size and type are also allowed. All allowed types other than i32/f32/i64/f64/i128, and relevant target features are currently unstable.
Currently there is no SIMD type for s390x in `core::arch`, but this is tracked in https://github.com/rust-lang/rust/issues/130869.
cc https://github.com/rust-lang/rust/issues/130869 about vector facility support in s390x
cc https://github.com/rust-lang/rust/issues/125398 & https://github.com/rust-lang/rust/issues/116909 about f128 support in asm
`@rustbot` label +O-SystemZ +A-inline-assembly
Use attributes for `dangling_pointers_from_temporaries` lint
Checking for dangling pointers by function name isn't ideal, and leaves out certain pointer-returning methods that don't follow the `as_ptr` naming convention. Using an attribute for this lint cleans things up and allows more thorough coverage of other methods, such as `UnsafeCell::get()`.
rename rustc_const_stable_intrinsic -> rustc_intrinsic_const_stable_indirect
In https://github.com/rust-lang/rust/pull/120370 this name caused confusion as the author thought the intrinsic was stable. So let's try a different name...
If we can land this before the beta cutoff we can avoid needing `cfg(bootstrap)` for this. ;)
Cc `@compiler-errors` `@saethlin`
Rename macro `SmartPointer` to `CoercePointee`
As per resolution #129104 we will rename the macro to better reflect the technical specification of the feature and clarify the communication.
- `SmartPointer` is renamed to `CoerceReferent`
- `#[pointee]` attribute is renamed to `#[referent]`
- `#![feature(derive_smart_pointer)]` gate is renamed to `#![feature(derive_coerce_referent)]`.
- Any mention of `SmartPointer` in the file names are renamed accordingly.
r? `@compiler-errors`
cc `@nikomatsakis` `@Darksonn`
Use `Enabled{Lang,Lib}Feature` instead of n-tuples
Instead of passing around e.g. `(gate_name, attr_span, stable_since)` 3-tuples for enabled lang features or `(gate_name, attr_span)` 2-tuples for enabled lib features, use `Enabled{Lang,Lib}Feature` structs with named fields.
Also did some minor code-golfing of involved iterator chains to hopefully make them easier to follow.
Follow-up to https://github.com/rust-lang/rust/pull/132098#issuecomment-2434523431 cc `@RalfJung.`
Fundamentally, we have *three* disjoint categories of functions:
1. const-stable functions
2. private/unstable functions that are meant to be callable from const-stable functions
3. functions that can make use of unstable const features
This PR implements the following system:
- `#[rustc_const_stable]` puts functions in the first category. It may only be applied to `#[stable]` functions.
- `#[rustc_const_unstable]` by default puts functions in the third category. The new attribute `#[rustc_const_stable_indirect]` can be added to such a function to move it into the second category.
- `const fn` without a const stability marker are in the second category if they are still unstable. They automatically inherit the feature gate for regular calls, it can now also be used for const-calls.
Also, several holes in recursive const stability checking are being closed.
There's still one potential hole that is hard to avoid, which is when MIR
building automatically inserts calls to a particular function in stable
functions -- which happens in the panic machinery. Those need to *not* be
`rustc_const_unstable` (or manually get a `rustc_const_stable_indirect`) to be
sure they follow recursive const stability. But that's a fairly rare and special
case so IMO it's fine.
The net effect of this is that a `#[unstable]` or unmarked function can be
constified simply by marking it as `const fn`, and it will then be
const-callable from stable `const fn` and subject to recursive const stability
requirements. If it is publicly reachable (which implies it cannot be unmarked),
it will be const-unstable under the same feature gate. Only if the function ever
becomes `#[stable]` does it need a `#[rustc_const_unstable]` or
`#[rustc_const_stable]` marker to decide if this should also imply
const-stability.
Adding `#[rustc_const_unstable]` is only needed for (a) functions that need to
use unstable const lang features (including intrinsics), or (b) `#[stable]`
functions that are not yet intended to be const-stable. Adding
`#[rustc_const_stable]` is only needed for functions that are actually meant to
be directly callable from stable const code. `#[rustc_const_stable_indirect]` is
used to mark intrinsics as const-callable and for `#[rustc_const_unstable]`
functions that are actually called from other, exposed-on-stable `const fn`. No
other attributes are required.
Stabilize shorter-tail-lifetimes
Close#131445
Tracked by #123739
We found a test case `tests/ui/drop/drop_order.rs` that had not been covered by the change. The test fixture is fixed now with the correct expectation.
Represent trait constness as a distinct predicate
cc `@rust-lang/project-const-traits`
r? `@ghost` for now
Also mirrored everything that is written below on this hackmd here: https://hackmd.io/`@compiler-errors/r12zoixg1l`
# Tl;dr:
* This PR removes the bulk of the old effect desugaring.
* This PR reimplements most of the effect desugaring as a new predicate and set of a couple queries. I believe it majorly simplifies the implementation and allows us to move forward more easily on its implementation.
I'm putting this up both as a request for comments and a vibe-check, but also as a legitimate implementation that I'd like to see land (though no rush of course on that last part).
## Background
### Early days
Once upon a time, we represented trait constness in the param-env and in `TraitPredicate`. This was very difficult to implement correctly; it had bugs and was also incomplete; I don't think this was anyone's fault though, it was just the limit of experimental knowledge we had at that point.
Dealing with `~const` within predicates themselves meant dealing with constness all throughout the trait solver. This was difficult to keep track of, and afaict was not handled well with all the corners of candidate assembly.
Specifically, we had to (in various places) remap constness according to the param-env constness:
574b64a97f/compiler/rustc_trait_selection/src/traits/select/mod.rs (L1498)
This was annoying and manual and also error prone.
### Beginning of the effects desugaring
Later on, #113210 reimplemented a new desugaring for const traits via a `<const HOST: bool>` predicate. This essentially "reified" the const checking and separated it from any of the remapping or separate tracking in param-envs. For example, if I was in a const-if-const environment, but I wanted to call a trait that was non-const, this reification would turn the constness mismatch into a simple *type* mismatch of the effect parameter.
While this was a monumental step towards straightening out const trait checking in the trait system, it had its own issues, since that meant that the constness of a trait (or any item within it, like an associated type) was *early-bound*. This essentially meant that `<T as Trait>::Assoc` was *distinct* from `<T as ~const Trait>::Assoc`, which was bad.
### Associated-type bound based effects desugaring
After this, #120639 implemented a new effects desugaring. This used an associated type to more clearly represent the fact that the constness is not an input parameter of a trait, but a property that could be computed of a impl. The write-up linked in that PR explains it better than I could.
However, I feel like it really reached the limits of what can comfortably be expressed in terms of associated type and trait calculus. Also, `<const HOST: bool>` remains a synthetic const parameter, which is observable in nested items like RPITs and closures, and comes with tons of its own hacks in the astconv and middle layer.
For example, there are pieces of unintuitive code that are needed to represent semantics like elaboration, and eventually will be needed to make error reporting intuitive, and hopefully in the future assist us in implementing built-in traits (eventually we'll want something like `~const Fn` trait bounds!).
elaboration hack: 8069f8d17a/compiler/rustc_type_ir/src/elaborate.rs (L133-L195)
trait bound remapping hack for diagnostics: 8069f8d17a/compiler/rustc_trait_selection/src/error_reporting/traits/fulfillment_errors.rs (L2370-L2413)
I want to be clear that I don't think this is a issue of implementation quality or anything like that; I think it's simply a very clear sign that we're using types and traits in a way that they're not fundamentally supposed to be used, especially given that constness deserves to be represented as a first-class concept.
### What now?
This PR implements a new desugaring for const traits. Specifically, it introduces a `HostEffect` predicate to represent the obligation an impl is const, rather than using associated type bounds and the compat trait that exists for effects today.
### `HostEffect` predicate
A `HostEffect` clause has two parts -- the `TraitRef` we're trying to prove, and a `HostPolarity::{Maybe, Const}`.
`HostPolarity::Const` corresponds to `T: const Trait` bounds, which must *always* be proven as const, and which can be written in any context. These are lowered directly into the predicates of an item, since they're not "context-specific".
On the other hand, `HostPolarity::Maybe` corresponds to `T: ~const Trait` bounds which must only exist in a conditionally-const context like a method in a `#[const_trait]`, or a `const fn` free function. We do not lower these immediately into the predicates of an item; instead, we collect them into a new query called the **`const_conditions`**. These are the set of trait refs that we need to prove have const implementations for an item to be const.
Notably, they're represented as bare (poly) trait refs because they are meant to be paired back together with a `HostPolarity` when they're being registered in typeck (see next section).
For example, given:
```rust
const fn foo<T: ~const A + const B>() {}
```
`foo`'s const conditions would contain `T: A`, but not `T: B`. On the flip side, foo's predicates (`predicates_of`) query would contain `HostEffect(T: B, HostPolarity::Const)` but not `HostEffect(T: A, HostPolarity::Maybe)` since we don't need to prove that predicate in a non-const environment (and it's not even the right predicate to prove in an unconditionally const environment).
### Type checking const bodies
When type checking bodies in HIR, when we encounter a call expression, we additionally register the callee item's const conditions with the `HostPolarity` from the body we're typechecking (`Const` for unconditionally const things like `const`/`static` items, and `Maybe` for conditionally const things like const fns; and we don't register `HostPolarity` predicates for non-const bodies).
When type-checking a conditionally const body, we augment its param-env with `HostEffect(..., Maybe)` predicates.
### Checking that const impls are WF
We extend the logic in `compare_method_predicate_entailment` to also check the const-conditions of the impl method, to make sure that we error for:
```rust
#[const_trait] Bar {}
#[const_trait] trait Foo {
fn method<T: Bar>();
}
impl Foo for () {
fn method<T: ~const Bar>() {} // stronger assumption!
}
```
We also extend the WF check for impls to register the const conditions of the trait that is being implemented. This is to make sure we error for:
```rust
#[const_trait] trait Bar {}
#[const_trait] trait Foo<T> where T: ~const Bar {}
impl<T> const Foo<T> for () {}
//~^ `T: ~const Bar` is missing!
```
### Proving a `HostEffect` predicate
We have several ways of proving a `HostEffect` predicate:
1. Matching a `HostEffect` predicate from the param-env
2. From an impl - we do impl selection very similar to confirming a trait goal, except we filter for only const impls, and we additionally register the impl's const conditions (i.e. the impl's `~const` where clauses).
Later I expect that we will add more built-in implementations for things like `Fn`.
## What next?
After this PR, I'd like to split out the work more so it can proceed in parallel and probably amongst others that are not me.
* Register `HostEffect` goal for places in HIR typeck that correspond to call terminators, like autoderef.
* Make traits in libstd const again.
* Probably need to impl host effect preds in old solver.
* Implement built-in `HostEffect` rules for traits like `Fn`.
* Rip out const checking from MIR altogether.
## So what?
This ends up being super convenient basically everywhere in the compiler. Due to the design of the new trait solver, we end up having an almost parallel structure to the existing trait and projection predicates for assembling `HostEffect` predicates; adding new candidates and especially new built-in implementations is now basically trivial, and it's quite straightforward to understand the confirmation logic for these predicates.
Same with diagnostics reporting; since we have predicates which represent the obligation to prove an impl is const, we can simplify and make these diagnostics richer without having to write a ton of logic to intercept and rewrite the existing `Compat` trait errors.
Finally, it gives us a much more straightforward path for supporting the const effect on the old trait solver. I'm personally quite passionate about getting const trait support into the hands of users without having to wait until the new solver lands[^1], so I think after this PR lands we can begin to gauge how difficult it would be to implement constness in the old trait solver too. This PR will not do this yet.
[^1]: Though this is not a prerequisite or by any means the only justification for this PR.