Preparation for a subsequent change that replaces
rustc_target::config::Config with its wrapped Target.
On its own, this commit breaks the build. I don't like making
build-breaking commits, but in this instance I believe that it
makes review easier, as the "real" changes of this PR can be
seen much more easily.
Result of running:
find compiler/ -type f -exec sed -i -e 's/target\.target\([)\.,; ]\)/target\1/g' {} \;
find compiler/ -type f -exec sed -i -e 's/target\.target$/target/g' {} \;
find compiler/ -type f -exec sed -i -e 's/target.ptr_width/target.pointer_width/g' {} \;
./x.py fmt
Rename target_pointer_width to pointer_width because it is already
member of the Target struct.
The compiler supports only three valid values for target_pointer_width:
16, 32, 64. Thus it can safely be turned into an int.
This means less allocations and clones as well as easier handling of the type.
Also change target_pointer_width to pointer_width.
Preparation for a subsequent type change of
target_pointer_width to an integer together with a rename
to pointer_width.
On its own, this commit breaks the build. I don't like making
build-breaking commits, but in this instance I believe that it
makes review easier, as the "real" changes of this PR can be
seen much more easily.
Result of running:
find compiler/rustc_target/src/spec/ -type f -exec sed -i -e 's/target_pointer_width: "\(.*\)"\..*,/pointer_width: \1,/g' {} \;
Add LLVM flags to limit DWARF version to 2 on BSD
This has been a thorn in my side for a while, I can finally generate flamegraphs of rust programs on bsd again. This fixes dtrace profiling on freebsd, I think it might help with lldb as well but I can't test that because my current rust-lldb setup is messed up.
I'm limiting the dwarf version to 2 on all bsd's (netbsd/openbsd/freebsd) since it looks like this applies to all of them, but I have only tested on freebsd.
Let me know if there's anything I can improve!
---
Currently on FreeBSD dtrace profiling does not work and shows jumbled/incorrect
symbols in the backtraces. FreeBSD does not support the latest versions of DWARF
in dtrace (and lldb?) yet, and needs to be limited to DWARF2 in the same way as macos.
This adds an is_like_bsd flag since it was missing. NetBSD/OpenBSD/FreeBSD all
match this.
This effectively copies #11864 but targets FreeBSD instead of macos.
Certain platforms need to limit the DWARF version emitted (oxs, *bsd). This
change adds a dwarf_version entry to the options that allows a platform to
specify the dwarf version to use. By default this option is none and the default
DWARF version is selected.
Also adds an option for printing Option<u32> json keys
Add asm! support for mips64
- [x] Updated `src/doc/unstable-book/src/library-features/asm.md`.
- [ ] No vector type support. I don't know much about those types.
cc #76839
rustc_target: Refactor away `TargetResult`
Follow-up to https://github.com/rust-lang/rust/pull/77202.
Construction of a built-in target is always infallible now, so `TargetResult` is no longer necessary.
The second commit contains some further cleanup based on built-in target construction being infallible.
With this change, it's possible to build on a linux-gnu target and pass
RUSTFLAGS='-C target-feature=+crt-static' or the equivalent via a
`.cargo/config.toml` file, and get a statically linked executable.
This requires libc 0.2.79, which adds support for static linking with
glibc.
Add `crt_static_respected` to the `linux_base` target spec.
Update `android_base` and `linux_musl_base` accordingly. Avoid enabling
crt_static_respected on Android platforms, since that hasn't been
tested.
Defer Apple SDKROOT detection to link time.
This defers the detection of the SDKROOT for Apple iOS/tvOS targets to link time, instead of when the `Target` is defined. This allows commands that don't need to link to work (like `rustdoc` or `rustc --print=target-list`). This also makes `--print=target-list` a bit faster.
This also removes the note in the platform support documentation about these targets being missing. When I wrote it, I misunderstood how the SDKROOT stuff worked.
Notes:
* This means that JSON spec targets can't explicitly override these flags. I think that is probably fine, as I believe the value is generally required, and can be set with the SDKROOT environment variable.
* This changes `x86_64-apple-tvos` to use `appletvsimulator`. I think the original code was wrong (it was using `iphonesimulator`). Also, `x86_64-apple-tvos` seems broken in general, and I cannot build it locally. The `data_layout` does not appear to be correct (it is a copy of the arm64 layout instead of the x86_64 layout). I have not tried building Apple's LLVM to see if that helps, but I suspect it is just wrong (I'm uncertain since I don't know how the tvOS simulator works with its bitcode-only requirements).
* I'm tempted to remove the use of `Result` for built-in target definitions, since I don't think they should be fallible. This was added in https://github.com/rust-lang/rust/pull/34980, but that only relates to JSON definitions. I think the built-in targets shouldn't fail. I can do this now, or not.
Fixes#36156Fixes#76584
might_permit_raw_init: also check aggregate fields
This is the next step for https://github.com/rust-lang/rust/issues/66151: when doing `mem::zeroed`/`mem::uninitialized`, also recursively check fields of aggregates (except for arrays) for whether they permit zero/uninit initialization.
This patch also:
* Add soft-float supports: only f32
* zero-extend i8/i16 to i32 because MIPS only supports register-length
arithmetic.
* Update table in asm! chapter in unstable book.
Return values up to 128 bits in registers
This fixes https://github.com/rust-lang/rust/issues/26494#issuecomment-619506345 by making Rust's default ABI pass return values up to 128 bits in size in registers, just like the System V ABI.
The result is that these methods from the comment linked above now generate the same code, making the Rust ABI as efficient as the `"C"` ABI:
```rust
pub struct Stats { x: u32, y: u32, z: u32, }
pub extern "C" fn sum_c(a: &Stats, b: &Stats) -> Stats {
return Stats {x: a.x + b.x, y: a.y + b.y, z: a.z + b.z };
}
pub fn sum_rust(a: &Stats, b: &Stats) -> Stats {
return Stats {x: a.x + b.x, y: a.y + b.y, z: a.z + b.z };
}
```
```asm
sum_rust:
movl (%rsi), %eax
addl (%rdi), %eax
movl 4(%rsi), %ecx
addl 4(%rdi), %ecx
movl 8(%rsi), %edx
addl 8(%rdi), %edx
shlq $32, %rcx
orq %rcx, %rax
retq
```
Late link args order
MSYS2 changed how winpthreads is built and as the result it now depends on more mingw-w64 libraries.
This PR affects only MinGW targets since nobody else is using `late_link_args_{dynamic,static}`. Now the order is similar to how it used to be before https://github.com/rust-lang/rust/pull/67502.