Store resolution for self and crate root module segments
Let's make sure to record the segment resolution for `self::`, `crate::` and `$crate::`.
I'm actually somewhat surprised that the only diagnostic that uses this is the one that errors on invalid generics on a module segment... but seems strictly more correct regardless, and there may be other diagnostics using these segments resolutions that just haven't been tested for `self`. Also includes a drive-by on `report_prohibit_generics_error`.
Rollup of 6 pull requests
Successful merges:
- #129838 (uefi: process: Add args support)
- #130800 (Mark `get_mut` and `set_position` in `std::io::Cursor` as const.)
- #132708 (Point at `const` definition when used instead of a binding in a `let` statement)
- #133226 (Make `PointerLike` opt-in instead of built-in)
- #133244 (Account for `wasm32v1-none` when exporting TLS symbols)
- #133257 (Add `UnordMap::clear` method)
r? `@ghost`
`@rustbot` modify labels: rollup
take 2
open up coroutines
tweak the wordings
the lint works up until 2021
We were missing one case, for ADTs, which was
causing `Result` to yield incorrect results.
only include field spans with significant types
deduplicate and eliminate field spans
switch to emit spans to impl Drops
Co-authored-by: Niko Matsakis <nikomat@amazon.com>
collect drops instead of taking liveness diff
apply some suggestions and add explantory notes
small fix on the cache
let the query recurse through coroutine
new suggestion format with extracted variable name
fine-tune the drop span and messages
bugfix on runtime borrows
tweak message wording
filter out ecosystem types earlier
apply suggestions
clippy
check lint level at session level
further restrict applicability of the lint
translate bid into nop for stable mir
detect cycle in type structure
the behavior of the type system not only depends on the current
assumptions, but also the currentnphase of the compiler. This is
mostly necessary as we need to decide whether and how to reveal
opaque types. We track this via the `TypingMode`.
Check `use<..>` in RPITIT for refinement
`#![feature(precise_capturing_in_traits)]` allows users to write `+ use<>` bounds on RPITITs to control what lifetimes are captured by the RPITIT.
Since RPITITs currently also warn for refinement in implementations, this PR extends that refinement check for cases where we *undercapture* in an implementation, since that may be indirectly "promising" a more relaxed outlives bound than the impl author intended.
For an opaque to be refining, we need to capture *fewer* parameters than those mentioned in the captured params of the trait. For example:
```
trait TypeParam<T> {
fn test() -> impl Sized;
}
// Indirectly capturing a lifetime param through a type param substitution.
impl<'a> TypeParam<&'a ()> for i32 {
fn test() -> impl Sized + use<> {}
//~^ WARN impl trait in impl method captures fewer lifetimes than in trait
}
```
Since the opaque in the method (implicitly) captures `use<Self, T>`, and `Self = i32, T = &'a ()` in the impl, we must mention `'a` in our `use<..>` on the impl.
Tracking:
* https://github.com/rust-lang/rust/issues/130044
Deny capturing late-bound ty/const params in nested opaques
First, this reverts a7f609504c. I can't exactly remember why I approved this specific bit of https://github.com/rust-lang/rust/pull/132466; specifically, I don't know that the purpose of that commit is, and afaict we will never have an opaque that captures late-bound params through a const because opaques can't be used inside of anon consts. Am I missing something `@cjgillot?` Since I can't see a case where this matters, and no tests seem to fail.
The second commit adds a `deny_late_regions: bool` to distinguish `Scope::LateBoundary` which should deny *any* late-bound params or just ty/consts. Then, when resolving opaques we wrap ourselves in a `Scope::LateBoundary { deny_late_regions: false }` so that we deny late-bound ty/const, which fixes a bunch of ICEs that all vaguely look like `impl for<T> Trait<Assoc = impl OtherTrait<T>>`.
I guess this could be achieved other ways; for example, with a different scope kind, or maybe we could just reuse `Scope::Opaque`. But this seems a bit more verbose. I'm open to feedback anyways.
Fixes#131535Fixes#131637Fixes#132530
I opted to remove those crashes tests ^ without adding them as regular tests, since they're basically triggering uninteresting late-bound ICEs far off in the trait solver, and the reason that existing tests such as `tests/ui/type-alias-impl-trait/non-lifetime-binder-in-constraint.rs` don't ICE are kinda just coincidental (i.e. due to a missing impl block). I don't really feel motivated to add random permutations to tests just to exercise non-lifetime binders.
r? cjgillot
Get rid of `check_opaque_type_well_formed`
Instead, replicate it by improving the span of the opaque in `check_opaque_meets_bounds`.
This has two consequences:
1. We now prefer "concrete type differs" errors, since we'll hit those first before we check the opaque is WF.
2. Spans have gotten slightly worse.
Specifically, (2.) could be improved by adding a new obligation cause that explains that the definition's environment has stronger assumptions than the declaration.
r? lcnr
Remove unnecessary pub enum glob-imports from `rustc_middle::ty`
We used to have an idiom in the compiler where we'd prefix or suffix all the variants of an enum, for example `BoundRegionKind`, with something like `Br`, and then *glob-import* that enum variant directly.
`@noratrieb` brought this up, and I think that it's easier to read when we just use the normal style `EnumName::Variant`.
This PR is a bit large, but it's just naming.
The only somewhat opinionated change that this PR does is rename `BorrowKind::Imm` to `BorrowKind::Immutable` and same for the other variants. I think these enums are used sparingly enough that the extra length is fine.
r? `@noratrieb` or reassign
find the generic container rather than simply looking up for the assoc with const arg
Fixes#132534
This issue is caused by mismatched generic parameters. Previously, it tried to find `T` in `trait X`, but after this change, it will find `T` in `fn a`.
r? `@compiler-errors` as this assertion was introduced by you.
Use backticks instead of single quotes for library feature names in diagnostics
This PR changes the text of library feature errors for using unstable or body-unstable items. Displaying library feature names in backticks is consistent with other diagnostics (e.g. those from `rustc_passes`) and with the `reason`s on unstable attributes in the library. Additionally, this simplifies diagnostics when supporting multiple unstable attributes on items (see #131824) since `DiagSymbolList` also displays symbols using backticks.
compiler: Directly use rustc_abi almost everywhere
Use rustc_abi instead of rustc_target where applicable. This is mostly described by the following substitutions:
```rust
match path_substring {
rustc_target::spec::abi::Abi => rustc_abi::ExternAbi,
rustc_target::abi::call => rustc_target::callconv,
rustc_target::abi => rustc_abi,
}
```
A number of spot-fixes make that not quite the whole story.
The main exception is in 33edc68 where I get a lot more persnickety about how things are imported, especially in `rustc_middle::ty::layout`, not just from where. This includes putting an end to a reexport of `rustc_middle::ty::ReprOptions`, for the same reason that the rest of this change is happening: reexports mostly confound things.
This notably omits rustc_passes and the ast crates, as I'm still examining a question I have about how they do stability checking of `extern "Abi"` strings and if I can simplify their logic. The rustc_abi and rustc_target crates also go untouched because they will be entangled in that cleanup.
r? compiler-errors
This is consistent with all other diagnostics I could find containing
features and enables the use of `DiagSymbolList` for generalizing
diagnostics for unstable library features to multiple features.
Some where clause lowering simplifications
Rename `PredicateFilter::SelfThatDefines` to `PredicateFilter::SelfTraitThatDefines` to make it clear that it's only concerned with converting *traits*, and make it do a bit less work when converting bounds.
Also, make the predicate filter matching in `probe_ty_param_bounds_in_generics` explicit, and simply the args it receives a bit.
Fix validation when lowering `?` trait bounds
Pass the unlowered (`rustc_hir`) polarity to `lower_poly_trait_ref`.
This allows us to actually *validate* that generic args are actually valid on `?Trait` paths. This actually regressed in #113671 because that PR changed the behavior where we were inadvertently re-lowering paths as `BoundPolarity::Positive`, which was also coincidentally the only place we were enforcing the generics on `?Trait` paths were correct.
Try to point out when edition 2024 lifetime capture rules cause borrowck issues
Lifetime capture rules in 2024 are modified to capture more lifetimes, which sometimes lead to some non-local borrowck errors. This PR attempts to link these back together with a useful note pointing out the capture rule changes.
This is not a blocking concern, but I'd appreciate feedback (though, again, I'd like to stress that I don't want to block this PR on this): I'm worried about this note drowning in the sea of other diagnostics that borrowck emits. I was tempted to change the level of the note to `.span_warn` just so it would show up in a different color. Thoughts?
Fixes#130545
Opening as a draft first since it's stacked on #131183.
r? `@ghost`
Make sure `type_param_predicates` resolves correctly for RPITIT
After #132194, we end up lowering the item bounds for an RPITIT in an `ItemCtxt` whose def id is the *synthetic GAT*, not the opaque type from the HIR.
This means that when we're resolving a shorthand projection like `T::Assoc`, we call the `type_param_predicates` function with the `item_def_id` of the *GAT* and not the opaque. That function operates on the HIR, and is not designed to work with the `Node::Synthetic` that gets fed for items synthesized by the compiler...
This PR reuses the trick we use elsewhere in lowering, where we intercept whether an item comes from RPITIT lowering, and forwards the query off to the correct item.
Fixes#132372
Remap impl-trait lifetimes on HIR instead of AST lowering
Current AST->HIR lowering goes out of its way to remap lifetimes for opaque types. This is complicated and leaks into upstream and downstream code.
This PR stops trying to be clever during lowering, and prefers to do this remapping during the HIR->ty lowering. The remapping computation easily fits into the bound var resolution code. Its result can be used in by `generics_of` and `hir_ty_lowering::new_opaque` to add the proper parameters and arguments.
See an example on the doc for query `opaque_captured_lifetimes`.
Based on https://github.com/rust-lang/rust/pull/129244/
Fixes https://github.com/rust-lang/rust/issues/125249
Fixes https://github.com/rust-lang/rust/issues/126850
cc `@compiler-errors` `@spastorino`
r? `@petrochenkov`
The RFC for arbitrary self types v2 declares that we should reject
"generic" self types. This commit does so.
The definition of "generic" was unclear in the RFC, but has been
explored in
https://github.com/rust-lang/rust/issues/129147
and the conclusion is that "generic" means any `self` type which
is a type parameter defined on the method itself, or references
to such a type.
This approach was chosen because other definitions of "generic"
don't work. Specifically,
* we can't filter out generic type _arguments_, because that would
filter out Rc<Self> and all the other types of smart pointer
we want to support;
* we can't filter out all type params, because Self itself is a
type param, and because existing Rust code depends on other
type params declared on the type (as opposed to the method).
This PR decides to make a new error code for this case, instead of
reusing the existing E0307 error. This makes the code a
bit more complex, but it seems we have an opportunity to provide
specific diagnostics for this case so we should do so.
This PR filters out generic self types whether or not the
'arbitrary self types' feature is enabled. However, it's believed
that it can't have any effect on code which uses stable Rust, since
there are no stable traits which can be used to indicate a valid
generic receiver type, and thus it would have been impossible to
write code which could trigger this new error case.
It is however possible that this could break existing code which
uses either of the unstable `arbitrary_self_types` or
`receiver_trait` features. This breakage is intentional; as
we move arbitrary self types towards stabilization we don't want
to continue to support generic such types.
This PR adds lots of extra tests to arbitrary-self-from-method-substs.
Most of these are ways to trigger a "type mismatch" error which
9b82580c73/compiler/rustc_hir_typeck/src/method/confirm.rs (L519)
hopes can be minimized by filtering out generics in this way.
We remove a FIXME from confirm.rs suggesting that we make this change.
It's still possible to cause type mismatch errors, and a subsequent
PR may be able to improve diagnostics in this area, but it's harder
to cause these errors without contrived uses of the turbofish.
This is a part of the arbitrary self types v2 project,
https://github.com/rust-lang/rfcs/pull/3519https://github.com/rust-lang/rust/issues/44874
r? @wesleywiser
TypingMode: merge intercrate, reveal, and defining_opaque_types
This adds `TypingMode` and uses it in most places. We do not yet remove `Reveal` from `param_env`s. This and other future work as tracked in #132279 and via `FIXME`s.
Fetching the `TypingMode` of the `InferCtxt` asserts that the `TypingMode` agrees with `ParamEnv::reveal` to make sure we don't introduce any subtle bugs here. This will be unnecessary once `ParamEnv::reveal` no longer exists.
As the `TypingMode` is now a part of the query input, I've merged the coherence and non-coherence caches for the new solver. I've also enabled the local `infcx` cache during coherence by clearing the cache when forking it with a different `TypingMode`.
#### `TypingMode::from_param_env`
I am using this even in cases where I know that the `param_env` will always be `Reveal::UserFacing`. This is to make it easier to correctly refactor this code in the future, any time we use `Reveal::UserFacing` in a body while not defining its opaque types is incorrect and should use a `TypingMode` which only reveals opaques defined by that body instead, cc #124598
r? ``@compiler-errors``
Collect item bounds for RPITITs from trait where clauses just like associated types
We collect item bounds from trait where clauses for *associated types*, i.e. this:
```rust
trait Foo
where
Self::Assoc: Send
{
type Assoc;
}
```
Becomes this:
```rust
trait Foo {
type Assoc: Send;
}
```
Today, with RPITITs/AFIT and return-type notation, we don't do that, i.e.:
```rust
trait Foo where Self::method(..): Send {
fn method() -> impl Sized;
}
fn is_send(_: impl Send) {}
fn test<T: Foo>() {
is_send(T::method());
}
```
...which fails on nightly today.
Turns out it's super easy to fix this, and we just need to use the `associated_type_bounds` lowering function in `explicit_item_bounds_with_filter`, which has that logic baked in.
Hack out effects support for old solver
Opening this for vibes ✨
Turns out that a basic, somewhat incomplete implementation of host effects is achievable in the old trait solver pretty easily. This should be sufficient for us to use in the standard library itself.
Regarding incompleteness, maybe we should always treat host predicates as ambiguous in intercrate mode (at least in the old solver) to avoid any worries about accidental impl overlap or something.
r? ```@lcnr``` cc ```@fee1-dead```
Add `LayoutS::is_uninhabited` and use it
Use accessors for the things that accessors are good at: reducing everyone's need to be nosy and peek at the internals of every data structure.
compiler: Add rustc_abi dependence to the compiler
Depend on rustc_abi in compiler crates that use it indirectly but have not yet taken on that dependency, and are not *significantly* entangled in my other PRs. This leaves an "excise rustc_target" step after the dust settles.
Remove `ObligationCause::span()` method
I think it's an incredibly confusing footgun to expose both `obligation_cause.span` and `obligation_cause.span()`. Especially because `ObligationCause::span()` (the method) seems to just be hacking around a single quirk in the way we set up obligation causes for match arms.
First commit removes the need for that hack, with only one diagnostic span changing (but IMO not really getting worse -- I'd argue that it was already confusing).
Depend on rustc_abi in compiler crates that use it indirectly but have
not yet taken on that dependency, and are not entangled in my other PRs.
This leaves an "excise rustc_target" step after the dust settles.
Cleanup: Move an impl-Trait check from AST validation to AST lowering
Namely the one that rejects `impl Trait` in qself types and non-final path segments.
There's no good reason to perform this during AST validation.
We have better infrastructure in place in the AST lowerer (`ImplTraitContext`).
This shaves off a lot of code.
We now lower `impl Trait` in bad positions to `{type error}` which allows us to
remove a special case from HIR ty lowering.
Coincidentally fixes#126725. Well, it only *masks* it by passing `{type error}` to HIR analysis instead of a "bad" opaque. I was able to find a new reproducer for it. See the issue.
Simplify param handling in `resolve_bound_vars`
I always found the flow of the `ResolvedArg` constructors to be a bit confusing; turns out they're also kinda redundantly passing around their data, too.
Also, deduplicate some code handling early-bound var to late-bound var conversion between return type notation's two styles: `where <T as Trait>::method(..): Bound` and `where T: Trait<method(..): Bound>`.
Effects cleanup
- removed extra bits from predicates queries that are no longer needed in the new system
- removed the need for `non_erasable_generics` to take in tcx and DefId, removed unused arguments in callers
r? compiler-errors
- removed extra bits from predicates queries that are no longer needed in the new system
- removed the need for `non_erasable_generics` to take in tcx and DefId, removed unused arguments in callers
Then we can rename the _raw functions to drop their suffix, and instead
explicitly use is_stable_const_fn for the few cases where that is really what
you want.
Stabilize shorter-tail-lifetimes
Close#131445
Tracked by #123739
We found a test case `tests/ui/drop/drop_order.rs` that had not been covered by the change. The test fixture is fixed now with the correct expectation.
Deeply normalize `TypeTrace` when reporting type error in new solver
Normalize the values that come from the `TypeTrace` for various type mismatches.
Side-note: We can't normalize the `TypeError` itself bc it may come from instantiated binders, so it may reference values from within the probe...
r? lcnr
Rename Receiver -> LegacyReceiver
As part of the "arbitrary self types v2" project, we are going to replace the current `Receiver` trait with a new mechanism based on a new, different `Receiver` trait.
This PR renames the old trait to get it out the way. Naming is hard. Options considered included:
* HardCodedReceiver (because it should only be used for things in the standard library, and hence is sort-of hard coded)
* LegacyReceiver
* TargetLessReceiver
* OldReceiver
These are all bad names, but fortunately this will be temporary. Assuming the new mechanism proceeds to stabilization as intended, the legacy trait will be removed altogether.
Although we expect this trait to be used only in the standard library, we suspect it may be in use elsehwere, so we're landing this change separately to identify any surprising breakages.
It's known that this trait is used within the Rust for Linux project; a patch is in progress to remove their dependency.
This is a part of the arbitrary self types v2 project,
https://github.com/rust-lang/rfcs/pull/3519https://github.com/rust-lang/rust/issues/44874
r? `@wesleywiser`
Minor tweaks to `compare_impl_item.rs`
1. Stop using the `InstantiatedPredicates` struct for `hybrid_preds` in `compare_impl_item.rs`, since we never actually push anything into the `spans` part of it.
2. Remove redundant impl args and don't do useless identity substitution, prefer calling `instantiate_identity`.
Validate args are correct for `UnevaluatedConst`, `ExistentialTraitRef`/`ExistentialProjection`
For the `Existential*` ones, we have to do some adjustment to the args list to deal with the missing `Self` type, so we introduce a `debug_assert_existential_args_compatible` function to the interner as well.
As part of the "arbitrary self types v2" project, we are going to
replace the current `Receiver` trait with a new mechanism based on a
new, different `Receiver` trait.
This PR renames the old trait to get it out the way. Naming is hard.
Options considered included:
* HardCodedReceiver (because it should only be used for things in the
standard library, and hence is sort-of hard coded)
* LegacyReceiver
* TargetLessReceiver
* OldReceiver
These are all bad names, but fortunately this will be temporary.
Assuming the new mechanism proceeds to stabilization as intended, the
legacy trait will be removed altogether.
Although we expect this trait to be used only in the standard library,
we suspect it may be in use elsehwere, so we're landing this change
separately to identify any surprising breakages.
It's known that this trait is used within the Rust for Linux project; a
patch is in progress to remove their dependency.
This is a part of the arbitrary self types v2 project,
https://github.com/rust-lang/rfcs/pull/3519https://github.com/rust-lang/rust/issues/44874
r? @wesleywiser
make unsupported_calling_conventions a hard error
This has been a future-compat lint (not shown in dependencies) since Rust 1.55, released 3 years ago. Hopefully that was enough time so this can be made a hard error now. Given that long timeframe, I think it's justified to skip the "show in dependencies" stage. There were [not many crates hitting this](https://github.com/rust-lang/rust/pull/86231#issuecomment-866300943) even when the lint was originally added.
This should get cratered, and I assume then it needs a t-compiler FCP. (t-compiler because this looks entirely like an implementation oversight -- for the vast majority of ABIs, we already have a hard error, but some were initially missed, and we are finally fixing that.)
Fixes https://github.com/rust-lang/rust/pull/87678
Rollup of 4 pull requests
Successful merges:
- #126588 (Added more scenarios where comma to be removed in the function arg)
- #131728 (bootstrap: extract builder cargo to its own module)
- #131968 (Rip out old effects var handling code from traits)
- #131981 (Remove the `BoundConstness::NotConst` variant)
r? `@ghost`
`@rustbot` modify labels: rollup
Continue to get rid of `ty::Const::{try_}eval*`
This PR mostly does:
* Removes all of the `try_eval_*` and `eval_*` helpers from `ty::Const`, and replace their usages with `try_to_*`.
* Remove `ty::Const::eval`.
* Rename `ty::Const::normalize` to `ty::Const::normalize_internal`. This function is still used in the normalization code itself.
* Fix some weirdness around the `TransmuteFrom` goal.
I'm happy to split it out further; for example, I could probably land the first part which removes the helpers, or the changes to codegen which are more obvious than the changes to tools.
r? BoxyUwU
Part of https://github.com/rust-lang/rust/issues/130704
Get rid of `OnlySelfBounds`
We turn `PredicateFilter` into a newtyped bool called `OnlySelfBounds`. There's no reason to lose the information of the `PredicateFilter`, so let's just pass it all the way through.
Don't report bivariance error when nesting a struct with field errors into another struct
We currently have logic to avoid reporting lifetime bivariance ("lifetime parameter ... is never used") errors when a struct has field resolution errors. However, this doesn't apply transitively. This PR implements a simple visitor to do so.
This was reported [here](https://twitter.com/fasterthanlime/status/1846257921086165033) since a `derive(Deserialize, Serialize)` ends up generating helper structs which have bivariant lifetimes due to containing the offending struct (that's being derived on).
Use `ThinVec` for PredicateObligation storage
~~I noticed while profiling clippy on a project that a large amount of time is being spent allocating `Vec`s for `PredicateObligation`, and the `Vec`s are often quite small. This is an attempt to optimise this by using SmallVec to avoid heap allocations for these common small Vecs.~~
This PR turns all the `Vec<PredicateObligation>` into a single type alias while avoiding referring to `Vec` around it, then swaps the type over to `ThinVec<PredicateObligation>` and fixes the fallout. This also contains an implementation of `ThinVec::extract_if`, copied from `Vec::extract_if` and currently being upstreamed to https://github.com/Gankra/thin-vec/pull/66.
This leads to a small (0.2-0.7%) performance gain in the latest perf run.
Rollup of 9 pull requests
Successful merges:
- #122670 (Fix bug where `option_env!` would return `None` when env var is present but not valid Unicode)
- #131095 (Use environment variables instead of command line arguments for merged doctests)
- #131339 (Expand set_ptr_value / with_metadata_of docs)
- #131652 (Move polarity into `PolyTraitRef` rather than storing it on the side)
- #131675 (Update lint message for ABI not supported)
- #131681 (Fix up-to-date checking for run-make tests)
- #131702 (Suppress import errors for traits that couldve applied for method lookup error)
- #131703 (Resolved python deprecation warning in publish_toolstate.py)
- #131710 (Remove `'apostrophes'` from `rustc_parse_format`)
r? `@ghost`
`@rustbot` modify labels: rollup
Remove unnecessary sorts in `rustc_hir_analysis`
A follow-up after #131140. Here the related objects are `IndexSet` so do not require a sort to stay stable. And they don't need to be `mut` anymore.
r? ```@compiler-errors```
Update lint message for ABI not supported
Tracking issue: #130260
As requested in https://github.com/rust-lang/rust/pull/128784#pullrequestreview-2364026550 I updated the error message.
I could also change it to be the same message as if it was a hard error on a normal function:
> "`{abi}` is not a supported ABI for the current target"
Or would that get confusing when people try to google the error message?
r? compiler-errors
Check ABI target compatibility for function pointers
Tracking issue: https://github.com/rust-lang/rust/issues/130260
Related tracking issue: #87678
Compatibility of an ABI for a target was previously only performed on function definitions and `extern` blocks. This PR adds it also to function pointers to be consistent.
This might have broken some of the `tests/ui/` depending on the platform, so a try run seems like a good idea.
Also this might break existing code, because we now emit extra errors. Does this require a crater run?
# Example
```rust
// build with: --target=x86_64-unknown-linux-gnu
// These raise E0570
extern "thiscall" fn foo() {}
extern "thiscall" { fn bar() }
// This did not raise any error
fn baz(f: extern "thiscall" fn()) { f() }
```
# Open Questions
* [x] Should this report a future incompatibility warning like #87678 ?
* [ ] Is this the best place to perform the check?
Add intrinsics `fmuladd{f16,f32,f64,f128}`. This computes `(a * b) +
c`, to be fused if the code generator determines that (i) the target
instruction set has support for a fused operation, and (ii) that the
fused operation is more efficient than the equivalent, separate pair
of `mul` and `add` instructions.
https://llvm.org/docs/LangRef.html#llvm-fmuladd-intrinsic
MIRI support is included for f32 and f64.
The codegen_cranelift uses the `fma` function from libc, which is a
correct implementation, but without the desired performance semantic. I
think this requires an update to cranelift to expose a suitable
instruction in its IR.
I have not tested with codegen_gcc, but it should behave the same
way (using `fma` from libc).
Retire the `unnamed_fields` feature for now
`#![feature(unnamed_fields)]` was implemented in part in #115131 and #115367, however work on that feature has (afaict) stalled and in the mean time there have been some concerns raised (e.g.[^1][^2]) about whether `unnamed_fields` is worthwhile to have in the language, especially in its current desugaring. Because it represents a compiler implementation burden including a new kind of anonymous ADT and additional complication to field selection, and is quite prone to bugs today, I'm choosing to remove the feature.
However, since I'm not one to really write a bunch of words, I'm specifically *not* going to de-RFC this feature. This PR essentially *rolls back* the state of this feature to "RFC accepted but not yet implemented"; however if anyone wants to formally unapprove the RFC from the t-lang side, then please be my guest. I'm just not totally willing to summarize the various language-facing reasons for why this feature is or is not worthwhile, since I'm coming from the compiler side mostly.
Fixes#117942Fixes#121161Fixes#121263Fixes#121299Fixes#121722Fixes#121799Fixes#126969Fixes#131041
Tracking:
* https://github.com/rust-lang/rust/issues/49804
[^1]: https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Unnamed.20struct.2Funion.20fields
[^2]: https://github.com/rust-lang/rust/issues/49804#issuecomment-1972619108
Compiler & its UI tests: Rename remaining occurrences of "object safe" to "dyn compatible"
Follow-up to #130826.
Part of #130852.
1. 1st commit: Fix stupid oversights. Should've been part of #130826.
2. 2nd commit: Rename the unstable feature `object_safe_for_dispatch` to `dyn_compatible_for_dispatch`. Might not be worth the churn, you decide.
3. 3rd commit: Apply the renaming to all UI tests (contents and paths).
Make opaque types regular HIR nodes
Having opaque types as HIR owner introduces all sorts of complications. This PR proposes to make them regular HIR nodes instead.
I haven't gone through all the test changes yet, so there may be a few surprises.
Many thanks to `@camelid` for the first draft.
Fixes https://github.com/rust-lang/rust/issues/129023Fixes#129099Fixes#125843Fixes#119716Fixes#121422
Account for `impl Trait {` when `impl Trait for Type {` was intended
On editions where bare traits are never allowed, detect if the user has written `impl Trait` with no type, silence any dyn-compatibility errors, and provide a structured suggestion for the potentially missing type:
```
error[E0782]: trait objects must include the `dyn` keyword
--> $DIR/missing-for-type-in-impl.rs:8:6
|
LL | impl Foo<i64> {
| ^^^^^^^^
|
help: add `dyn` keyword before this trait
|
LL | impl dyn Foo<i64> {
| +++
help: you might have intended to implement this trait for a given type
|
LL | impl Foo<i64> for /* Type */ {
| ++++++++++++++
```
CC #131051.