This reverts commit 65c5c7f8cf.
It unfortunately regresses the size of the target dir by a non-trivial
amount. It could be re-enabled again once each subsection doesn't get a
unique name anymore.
Fix clobber_abi in RV32E and RV64E inline assembly
Currently clobber_abi in RV32E and RV64E inline assembly is implemented using InlineAsmClobberAbi::RiscV, but broken since x16-x31 cannot be used in RV32E and RV64E.
```
error: cannot use register `x16`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
error: cannot use register `x17`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
error: cannot use register `x28`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
error: cannot use register `x29`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
error: cannot use register `x30`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
error: cannot use register `x31`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
```
r? `@Amanieu`
`@rustbot` label O-riscv +A-inline-assembly
Support input/output in vector registers of s390x inline assembly (under asm_experimental_reg feature)
This extends currently clobber-only vector registers (`vreg`) support to allow passing `#[repr(simd)]` types, floats (f32/f64/f128), and integers (i32/i64/i128) as input/output.
This is unstable and gated under new `#![feature(asm_experimental_reg)]` (tracking issue: https://github.com/rust-lang/rust/issues/133416). If the feature is not enabled, only clober is supported as before.
| Architecture | Register class | Target feature | Allowed types |
| ------------ | -------------- | -------------- | -------------- |
| s390x | `vreg` | `vector` | `i32`, `f32`, `i64`, `f64`, `i128`, `f128`, `i8x16`, `i16x8`, `i32x4`, `i64x2`, `f32x4`, `f64x2` |
This matches the list of types that are supported by the vector registers in LLVM:
https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/SystemZ/SystemZRegisterInfo.td#L301-L313
In addition to `core::simd` types and floats listed above, custom `#[repr(simd)]` types of the same size and type are also allowed. All allowed types other than i32/f32/i64/f64/i128, and relevant target features are currently unstable.
Currently there is no SIMD type for s390x in `core::arch`, but this is tracked in https://github.com/rust-lang/rust/issues/130869.
cc https://github.com/rust-lang/rust/issues/130869 about vector facility support in s390x
cc https://github.com/rust-lang/rust/issues/125398 & https://github.com/rust-lang/rust/issues/116909 about f128 support in asm
`@rustbot` label +O-SystemZ +A-inline-assembly
take 2
open up coroutines
tweak the wordings
the lint works up until 2021
We were missing one case, for ADTs, which was
causing `Result` to yield incorrect results.
only include field spans with significant types
deduplicate and eliminate field spans
switch to emit spans to impl Drops
Co-authored-by: Niko Matsakis <nikomat@amazon.com>
collect drops instead of taking liveness diff
apply some suggestions and add explantory notes
small fix on the cache
let the query recurse through coroutine
new suggestion format with extracted variable name
fine-tune the drop span and messages
bugfix on runtime borrows
tweak message wording
filter out ecosystem types earlier
apply suggestions
clippy
check lint level at session level
further restrict applicability of the lint
translate bid into nop for stable mir
detect cycle in type structure
Use `TypingMode` throughout the compiler instead of `ParamEnv`
Hopefully the biggest single PR as part of https://github.com/rust-lang/types-team/issues/128.
## `infcx.typing_env` while defining opaque types
I don't know how'll be able to correctly handle opaque types when using something taking a `TypingEnv` while defining opaque types. To correctly handle the opaques we need to be able to pass in the current `opaque_type_storage` and return constraints, i.e. we need to use a proper canonical query. We should migrate all the queries used during HIR typeck and borrowck where this matters to proper canonical queries. This is
## `layout_of` and `Reveal::All`
We convert the `ParamEnv` to `Reveal::All` right at the start of the `layout_of` query, so I've changed callers of `layout_of` to already use a post analysis `TypingEnv` when encountering it.
ca87b535a0/compiler/rustc_ty_utils/src/layout.rs (L51)
## `Ty::is_[unpin|sized|whatever]`
I haven't migrated `fn is_item_raw` to use `TypingEnv`, will do so in a followup PR, this should significantly reduce the amount of `typing_env.param_env`. At some point there will probably be zero such uses as using the type system while ignoring the `typing_mode` is incorrect.
## `MirPhase` and phase-transitions
When inside of a MIR-body, we can mostly use its `MirPhase` to figure out the right `typing_mode`. This does not work during phase transitions, most notably when transitioning from `Analysis` to `Runtime`:
dae7ac133b/compiler/rustc_mir_transform/src/lib.rs (L606-L625)
All these passes still run with `MirPhase::Analysis`, but we should only use `Reveal::All` once we're run the `RevealAll` pass. This required me to manually construct the right `TypingEnv` in all these passes. Given that it feels somewhat easy to accidentally miss this going forward, I would maybe like to change `Body::phase` to an `Option` and replace it at the start of phase transitions. This then makes it clear that the MIR is currently in a weird state.
r? `@ghost`
the behavior of the type system not only depends on the current
assumptions, but also the currentnphase of the compiler. This is
mostly necessary as we need to decide whether and how to reveal
opaque types. We track this via the `TypingMode`.