When encoutnering a case like
```rust
//@ run-rustfix
use std::collections::HashMap;
fn main() {
let vs = vec![0, 0, 1, 1, 3, 4, 5, 6, 3, 3, 3];
let mut counts = HashMap::new();
for num in vs {
let count = counts.entry(num).or_insert(0);
*count += 1;
}
let _ = counts.iter().max_by_key(|(_, v)| v);
```
produce the following suggestion
```
error: lifetime may not live long enough
--> $DIR/return-value-lifetime-error.rs:13:47
|
LL | let _ = counts.iter().max_by_key(|(_, v)| v);
| ------- ^ returning this value requires that `'1` must outlive `'2`
| | |
| | return type of closure is &'2 &i32
| has type `&'1 (&i32, &i32)`
|
help: dereference the return value
|
LL | let _ = counts.iter().max_by_key(|(_, v)| **v);
| ++
```
Fix#50195.
Add `Context::ext`
This change enables `Context` to carry arbitrary extension data via a single `&mut dyn Any` field.
```rust
#![feature(context_ext)]
impl Context {
fn ext(&mut self) -> &mut dyn Any;
}
impl ContextBuilder {
fn ext(self, data: &'a mut dyn Any) -> Self;
fn from(cx: &'a mut Context<'_>) -> Self;
fn waker(self, waker: &'a Waker) -> Self;
}
```
Basic usage:
```rust
struct MyExtensionData {
executor_name: String,
}
let mut ext = MyExtensionData {
executor_name: "foo".to_string(),
};
let mut cx = ContextBuilder::from_waker(&waker).ext(&mut ext).build();
if let Some(ext) = cx.ext().downcast_mut::<MyExtensionData>() {
println!("{}", ext.executor_name);
}
```
Currently, `Context` only carries a `Waker`, but there is interest in having it carry other kinds of data. Examples include [LocalWaker](https://github.com/rust-lang/rust/issues/118959), [a reactor interface](https://github.com/rust-lang/libs-team/issues/347), and [multiple arbitrary values by type](https://docs.rs/context-rs/latest/context_rs/). There is also a general practice in the ecosystem of sharing data between executors and futures via thread-locals or globals that would arguably be better shared via `Context`, if it were possible.
The `ext` field would provide a low friction (to stabilization) solution to enable experimentation. It would enable experimenting with what kinds of data we want to carry as well as with what data structures we may want to use to carry such data.
Dedicated fields for specific kinds of data could still be added directly on `Context` when we have sufficient experience or understanding about the problem they are solving, such as with `LocalWaker`. The `ext` field would be for data for which we don't have such experience or understanding, and that could be graduated to dedicated fields once proven.
Both the provider and consumer of the extension data must be aware of the concrete type behind the `Any`. This means it is not possible for the field to carry an abstract interface. However, the field can carry a concrete type which in turn carries an interface. There are different ways one can imagine an interface-carrying concrete type to work, hence the benefit of being able to experiment with such data structures.
## Passing interfaces
Interfaces can be placed in a concrete type, such as a struct, and then that type can be casted to `Any`. However, one gotcha is `Any` cannot contain non-static references. This means one cannot simply do:
```rust
struct Extensions<'a> {
interface1: &'a mut dyn Trait1,
interface2: &'a mut dyn Trait2,
}
let mut ext = Extensions {
interface1: &mut impl1,
interface2: &mut impl2,
};
let ext: &mut dyn Any = &mut ext;
```
To work around this without boxing, unsafe code can be used to create a safe projection using accessors. For example:
```rust
pub struct Extensions {
interface1: *mut dyn Trait1,
interface2: *mut dyn Trait2,
}
impl Extensions {
pub fn new<'a>(
interface1: &'a mut (dyn Trait1 + 'static),
interface2: &'a mut (dyn Trait2 + 'static),
scratch: &'a mut MaybeUninit<Self>,
) -> &'a mut Self {
scratch.write(Self {
interface1,
interface2,
})
}
pub fn interface1(&mut self) -> &mut dyn Trait1 {
unsafe { self.interface1.as_mut().unwrap() }
}
pub fn interface2(&mut self) -> &mut dyn Trait2 {
unsafe { self.interface2.as_mut().unwrap() }
}
}
let mut scratch = MaybeUninit::uninit();
let ext: &mut Extensions = Extensions::new(&mut impl1, &mut impl2, &mut scratch);
// ext can now be casted to `&mut dyn Any` and back, and used safely
let ext: &mut dyn Any = ext;
```
## Context inheritance
Sometimes when futures poll other futures they want to provide their own `Waker` which requires creating their own `Context`. Unfortunately, polling sub-futures with a fresh `Context` means any properties on the original `Context` won't get propagated along to the sub-futures. To help with this, some additional methods are added to `ContextBuilder`.
Here's how to derive a new `Context` from another, overriding only the `Waker`:
```rust
let mut cx = ContextBuilder::from(parent_cx).waker(&new_waker).build();
```
Avoid expanding to unstable internal method
Fixes#123156
Rather than expanding to `std::rt::begin_panic`, the expansion is now to `unreachable!()`. The resulting behavior is identical. A test that previously triggered the same error as #123156 has been added to ensure it does not regress.
r? compiler
rename ptr::from_exposed_addr -> ptr::with_exposed_provenance
As discussed on [Zulip](https://rust-lang.zulipchat.com/#narrow/stream/136281-t-opsem/topic/To.20expose.20or.20not.20to.20expose/near/427757066).
The old name, `from_exposed_addr`, makes little sense as it's not the address that is exposed, it's the provenance. (`ptr.expose_addr()` stays unchanged as we haven't found a better option yet. The intended interpretation is "expose the provenance and return the address".)
The new name nicely matches `ptr::without_provenance`.
Make inductive cycles always ambiguous
This makes inductive cycles always result in ambiguity rather than be treated like a stack-dependent error.
This has some interactions with specialization, and so breaks a few UI tests that I don't agree should've ever worked in the first place, and also breaks a handful of crates in a way that I don't believe is a problem.
On the bright side, it puts us in a better spot when it comes to eventually enabling coinduction everywhere.
## Results
This was cratered in https://github.com/rust-lang/rust/pull/116494#issuecomment-2008657494, which boils down to two regressions:
* `lu_packets` - This code should have never compiled in the first place. More below.
* **ALL** other regressions are due to `commit_verify@0.11.0-beta.1` (edit: and `commit_verify@0.10.x`) - This actually seems to be fixed in version `0.11.0-beta.5`, which is the *most* up to date version, but it's still prerelease on crates.io so I don't think cargo ends up picking `beta.5` when building dependent crates.
### `lu_packets`
Firstly, this crate uses specialization, so I think it's automatically worth breaking. However, I've minimized [the regression](https://crater-reports.s3.amazonaws.com/pr-116494-3/try%23d614ed876e31a5f3ad1d0fbf848fcdab3a29d1d8/gh/lcdr.lu_packets/log.txt) to:
```rust
// Upstream crate
pub trait Serialize {}
impl Serialize for &() {}
impl<S> Serialize for &[S] where for<'a> &'a S: Serialize {}
// ----------------------------------------------------------------------- //
// Downstream crate
#![feature(specialization)]
#![allow(incomplete_features, unused)]
use upstream::Serialize;
trait Replica {
fn serialize();
}
impl<T> Replica for T {
default fn serialize() {}
}
impl<T> Replica for Option<T>
where
for<'a> &'a T: Serialize,
{
fn serialize() {}
}
```
Specifically this fails when computing the specialization graph for the `downstream` crate.
The code ends up cycling on `&[?0]: Serialize` when we equate `&?0 = &[?1]` during impl matching, which ends up needing to prove `&[?1]: Serialize`, which since cycles are treated like ambiguity, ends up in a **fatal overflow**. For some reason this requires two crates, squashing them into one crate doesn't work.
Side-note: This code is subtly order dependent. When minimizing, I ended up having the code start failing on `nightly` very easily after removing and reordering impls. This seems to me all the more reason to remove this behavior altogether.
## Side-note: Item Bounds (edit: this was fixed independently in #121123)
Due to the changes in #120584 where we now consider an alias's item bounds *and* all the item bounds of the alias's nested self type aliases, I've had to add e6b64c6194 which is a hack to make sure we're not eagerly normalizing bounds that have nothing to do with the predicate we're trying to solve, and which result in.
This is fixed in a more principled way in #121123.
---
r? lcnr for an initial review
CFI: Support non-general coroutines
Previously, we assumed all `ty::Coroutine` were general coroutines and attempted to generalize them through the `Coroutine` trait. Select appropriate traits for each kind of coroutine.
I have this marked as a draft because it currently only fixes async coroutines, and I think it make sense to try to fix gen/async gen coroutines before this is merged.
If the issue [mentioned](https://github.com/rust-lang/rust/pull/123106#issuecomment-2030794213) in the original PR is actually affecting someone, we can land this as is to remedy it.
Check that nested statics in thread locals are duplicated per thread.
follow-up to #123310
cc ``@compiler-errors`` ``@RalfJung``
fwiw: I have no idea how thread local statics make that work under LLVM, and miri fails on this example, which I would have expected to be the correct behaviour.
Since the `#[thread_local]` attribute is just an internal implementation detail, I'm just going to start hard erroring on nested mutable statics in thread locals.
Make sure to insert `Sized` bound first into clauses list
#120323 made it so that we don't insert an implicit `Sized` bound whenever we see an *explicit* `Sized` bound. However, since the code that inserts implicit sized bounds puts the bound as the *first* in the list, that means that it had the **side-effect** of possibly meaning we check `Sized` *after* checking other trait bounds.
If those trait bounds result in ambiguity or overflow or something, it may change how we winnow candidates. (**edit: SEE** #123303) This is likely the cause for the regression in https://github.com/rust-lang/rust/issues/123279#issuecomment-2028899598, since the impl...
```rust
impl<T: Job + Sized> AsJob for T { // <----- changing this to `Sized + Job` or just `Job` (which turns into `Sized + Job`) will FIX the issue.
}
```
...looks incredibly suspicious.
Fixes [after beta-backport] #123279.
Alternative is to revert #120323. I don't have a strong opinion about this, but think it may be nice to keep the diagnostic changes around.
De-LLVM the unchecked shifts [MCP#693]
This is just one part of the MCP (https://github.com/rust-lang/compiler-team/issues/693), but it's the one that IMHO removes the most noise from the standard library code.
Seems net simpler this way, since MIR already supported heterogeneous shifts anyway, and thus it's not more work for backends than before.
r? WaffleLapkin
Previously, we assumed all `ty::Coroutine` were general coroutines and
attempted to generalize them through the `Coroutine` trait. Select
appropriate traits for each kind of coroutine.
Refactor stack overflow handling
Currently, every platform must implement a `Guard` that protects a thread from stack overflow. However, UNIX is the only platform that actually does so. Windows has a different mechanism for detecting stack overflow, while the other platforms don't detect it at all. Also, the UNIX stack overflow handling is split between `sys::pal::unix::stack_overflow`, which implements the signal handler, and `sys::pal::unix::thread`, which detects/installs guard pages.
This PR cleans this by getting rid of `Guard` and unifying UNIX stack overflow handling inside `stack_overflow` (commit 1). Therefore we can get rid of `sys_common::thread_info`, which stores `Guard` and the current `Thread` handle and move the `thread::current` TLS variable into `thread` (commit 2).
The second commit is not strictly speaking necessary. To keep the implementation clean, I've included it here, but if it causes too much noise, I can split it out without any trouble.
Don't inherit codegen attrs from parent static
Putting this up partly for discussion and partly for review. Specifically, in #121644, `@oli-obk` designed a system that creates new static items for representing nested allocations in statics. However, in that PR, oli made it so that these statics inherited the codegen attrs from the parent.
This causes problems such as colliding symbols with `#[export_name]` and ICEs with `#[no_mangle]` since these synthetic statics have no `tcx.item_name(..)`.
So the question is, is there any case where we *do* want to inherit codegen attrs from the parent? The only one that seems a bit suspicious is the thread-local attribute. And there may be some interesting interactions with the coverage attributes as well...
Fixes (after backport) #123274. Fixes#123243. cc #121644.
r? `@oli-obk` cc `@nnethercote` `@RalfJung` (reviewers on that pr)
Use the `Align` type when parsing alignment attributes
Use the `Align` type in `rustc_attr::parse_alignment`, removing the need to call `Align::from_bytes(...).unwrap()` later in the compilation process.
CFI: Abstract Closures and Coroutines
This will abstract coroutines in a moment, it's just abstracting closures for now to show `@rcvalle`
This uses the same principal as the methods on traits - figure out the `dyn` type representing the fn trait, instantiate it, and attach that alias set. We're essentially just computing how we would be called in a dynamic context, and attaching that.
Similar to methods on a trait object, the most common way to indirectly
call a closure or coroutine is through the vtable on the appropriate
trait. This uses the same approach as we use for trait methods, after
backing out the trait arguments from the type.
Add support for `NonNull`s in the `ambiguous_wide_ptr_comparisions` lint
This PR add support for `NonNull` pointers in the `ambiguous_wide_ptr_comparisions` lint.
Fixes https://github.com/rust-lang/rust/issues/121264
r? `@Nadrieril` (since you just reviewed #121268, feel free to reassign)
KCFI: Require -C panic=abort
While the KCFI scheme is not incompatible with unwinding, LLVM's `invoke` instruction does not currently support KCFI bundles. While it likely will in the near future, we won't be able to assume that in Rust for a while.
We encountered this problem while [turning on closure support](https://github.com/rust-lang/rust/pull/123106#issuecomment-2027436640).
r? ``@workingjubilee``
Replace regions in const canonical vars' types with `'static` in next-solver canonicalizer
We shouldn't ever have non-static regions in consts on stable (or really any regions at all, lol).
The test I committed is less minimal than, e.g., https://github.com/rust-lang/rust/issues/123155?notification_referrer_id=NT_kwDOADgQyrMxMDAzNDU4MDI0OTozNjc0MzE0#issuecomment-2025472029 -- however, I believe that it actually portrays the underlying issue here a bit better than that one.
In the linked issue, we end up emitting a normalizes-to predicate for a const placeholder because we don't actually unify `false` and `""`. In the test I committed, we emit a normalizes-to predicate as a part of actually solving a negative coherence goal.
Fixes#123155Fixes#118783
r? lcnr
This is just one part of the MCP, but it's the one that IMHO removes the most noise from the standard library code.
Seems net simpler this way, since MIR already supported heterogeneous shifts anyway, and thus it's not more work for backends than before.
CFI: Support calling methods on supertraits
Automatically adjust `Virtual` calls to supertrait functions to use the supertrait's trait object type as the receiver rather than the child trait.
cc `@compiler-errors` - this is the next usage of `trait_object_ty` I intend to have, so I thought it might be relevant while reviewing the existing one.
Stabilize `unchecked_{add,sub,mul}`
Tracking issue: #85122
I think we might as well just stabilize these basic three. They're the ones that have `nuw`/`nsw` flags in LLVM.
Notably, this doesn't include the potentially-more-complex or -more-situational things like `unchecked_neg` or `unchecked_shr` that are under different feature flags.
To quote Ralf https://github.com/rust-lang/rust/issues/85122#issuecomment-1681669646,
> Are there any objections to stabilizing at least `unchecked_{add,sub,mul}`? For those there shouldn't be any surprises about what their safety requirements are.
*Semantially* these are [already available on stable, even in `const`, via](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=bdb1ff889b61950897f1e9f56d0c9a36) `checked_*`+`unreachable_unchecked`. So IMHO we might as well just let people write them directly, rather than try to go through a `let Some(x) = x.checked_add(y) else { unsafe { hint::unreachable_unchecked() }};` dance.
I added additional text to each method to attempt to better describe the behaviour and encourage `wrapping_*` instead.
r? rust-lang/libs-api
Add detection of [Partial]Ord methods in the `ambiguous_wide_pointer_comparisons` lint
Partially addresses https://github.com/rust-lang/rust/issues/121264 by adding diagnostics items for PartialOrd and Ord methods, detecting such diagnostics items as "binary operation" and suggesting the correct replacement.
I also took the opportunity to change the suggestion to use new methods `.cast()` on `*mut T` an d `*const T`.
While the KCFI scheme is not incompatible with unwinding, LLVM's
`invoke` instruction does not currently support KCFI bundles. While it
likely will in the near future, we won't be able to assume that in Rust
for a while.