Capture lifetimes for associated type bounds destined to be lowered to opaques
Some associated type bounds get lowered to opaques, but they're not represented in the AST as opaques.
That means that we never collect lifetimes for them (`record_lifetime_params_for_impl_trait`) which are used currently for RPITITs, which capture all of their in-scope lifetimes[^1]. This means that the nested RPITITs that arise from some type like `impl Foo<Type: Bar>` (~> `impl Foo<Type = impl Bar>`) don't capture any lifetimes, leading to ICEs.
This PR makes sure we collect the lifetimes for associated type bounds as well, and make sure that they are set up correctly for opaque type lowering later.
Fixes#115360
[^1]: #114489
Work around ICE in diagnostics for local super-universes missing `UniverseInfo`s
In issue #114907, canonicalization of liveness dropck-outlives results (IIUC) encounters universes absent from the original query. Some local universes [are created](f3a1bae88c/compiler/rustc_infer/src/infer/canonical/query_response.rs (L417-L425)) for the mapping, but importantly, they won't have associated causes.
These missing `UniverseInfo`s can be [needed](f3a1bae88c/compiler/rustc_borrowck/src/diagnostics/region_errors.rs (L376)) during diagnostics, [causing the `IndexMap: key not found` ICE](d55522aad8/compiler/rustc_borrowck/src/region_infer/mod.rs (L2252)) seen in the issue.
This PR works around this by returning the suboptimal catch-all cause, to avoid the ICE. It does results in suboptimal diagnostics right now, but it's better than an ICE.
r? `@matthewjasper.`
Let me know if there's a good easy-ish way to fix this, but I believe that for some of these erroneous cases and diagnostics, that inference/canonicalization/higher-ranked subtyping/etc may not behave exactly the same with the new trait solver? If that's the case then it'd probably be best to wait a bit more to do the correct fix.
Fixes#114907.
cc `@aliemjay`
`rustc_layout_scalar_valid_range` makes ctors unsafe
We already validate this when we use the ctor in a call, e.g. `Variant(1)`, but not if we use the ctor as a fn ptr, e.g. `.map(Variant)`. The easiest way to fix the latter is (afaict) is by marking the ctor as unsafe itself.
Fixes#115284
Fix inlining with -Zalways-encode-mir
Only inline functions that are considered eligible for inlining
by the reachability pass.
This constraint was previously indirectly enforced by only exporting MIR
of eligible functions, but that approach doesn't work with
-Zalways-encode-mir enabled.
Add `ParallelGuard` type to handle unwinding in parallel sections
This adds a `ParallelGuard` type to handle unwinding in parallel sections instead of manually dealing with panics in each parallel operation. This also adds proper panic handling to the `join` operation.
cc `@SparrowLii`
This demonstrates the current behavior of adding lint form the command
line. generally the lint levels are ignored as the current implementation
unconditionally emit errors for those lints.
Don't suggest adding parentheses to call an inaccessible method.
Previously, code of this form would emit E0615 (attempt to use a method as a field), thus emphasizing the existence of private methods that the programmer probably does not care about. Now it ignores their existence instead, producing error E0609 (no field). The motivating example is:
```rust
let x = std::rc::Rc::new(());
x.inner;
```
which would previously mention the private method `Rc::inner()`, even though `Rc<T>` intentionally has no public methods so that it can be a transparent smart pointer for any `T`.
```rust
error[E0615]: attempted to take value of method `inner` on type `Rc<()>`
--> src/main.rs:3:3
|
3 | x.inner;
| ^^^^^ method, not a field
|
help: use parentheses to call the method
|
3 | x.inner();
| ++
```
With this change, it emits E0609 and no suggestion.
new solver: handle edge case of a recursion limit of 0
Apparently a recursion limit of 0 is possible/valid/useful/used/cute, the more you know 🌟 .
(It's somewhat interesting to me that the old solver seemingly handles this, and that the new solver currently requires a recursion limit of 2 here)
r? `@compiler-errors.`
Fixes#115351.
suggest removing `impl` in generic trait bound position
rustc already does this recovery in type param position (`<T: impl Trait>` -> `<T: Trait>`).
This PR also adds that suggestion in trait bound position (e.g. `where T: impl Trait` or `trait Trait { type Assoc: impl Trait; }`)
Make `get_return_block()` return `Some` only for HIR nodes in body
Fixes#114918
The issue occurred while compiling the following input:
```rust
fn uwu() -> [(); { () }] {
loop {}
}
```
It was caused by the code below trying to suggest a missing return type which resulted in a const eval cycle: 1bd043098e/compiler/rustc_hir_typeck/src/fn_ctxt/suggestions.rs (L68-L75)
The root cause was `get_return_block()` returning an `Fn` node for a node in the return type (i.e. the second `()` in the return type `[(); { () }]` of the input) although it is supposed to do so only for nodes that lie in the body of the function and return `None` otherwise (at least as per my understanding).
The PR fixes the issue by fixing this behaviour of `get_return_block()`.
parser: not insert dummy field in struct
Fixes#114636
This PR eliminates the dummy field, initially introduced in #113999, thereby enabling unrestricted use of `ident.unwrap()`. A side effect of this action is that we can only report the error of the first macro invocation field within the struct node.
An alternative solution might be giving a virtual name to the macro, but it appears more complex.(https://github.com/rust-lang/rust/issues/114636#issuecomment-1670228715). Furthermore, if you think https://github.com/rust-lang/rust/issues/114636#issuecomment-1670228715 is a better solution, feel free to close this PR.
Previously, the test code would emit E0615, thus revealing the existence
of private methods that the programmer probably does not care about.
Now it ignores their existence instead, producing error E0609 (no field).
The motivating example is:
```rust
let x = std::rc::Rc::new(());
x.inner;
```
which would previously mention the private method `Rc::inner()`, even
though `Rc<T>` intentionally has no public methods so that it can be a
transparent smart pointer for any `T`.
Make RPITITs capture all in-scope lifetimes
Much like #114616, this implements the lang team decision from this T-lang meeting on [opaque captures strategy moving forward](https://hackmd.io/sFaSIMJOQcuwCdnUvCxtuQ?view). This will be RFC'd soon, but given that RPITITs are a nightly feature, this shouldn't necessarily be blocked on that.
We unconditionally capture all lifetimes in RPITITs -- impl is not as simple as #114616, since we still need to duplicate RPIT lifetimes to make sure we reify any late-bound lifetimes in scope.
Closes#112194
More precisely detect cycle errors from type_of on opaque
Not sure if this still needs work. Just putting it up for initial impressions, since it seems that a few people are frustrated with the increased error verbosity due to #113320.
Essentially we introduce a new sub-query for `type_of` specifically for opaques which returns a value that is able to distinguish "has errors" from "due to cycle recovery".
Fixes#115188
r? `@oli-obk`
Avoid duplicate `large_assignments` lints
By checking for overlapping spans.
This PR does the "reduce noisiness" task in #83518.
r? `@oli-obk` who added E-mentor and E-help-wanted and wrote the initial code.
(The fix itself is in dc82736677. The two commits before that are just small refactorings.)
Only inline functions that are considered eligible for inlining
by the reachability pass.
This constraint was previously indirectly enforced by only exporting MIR
of eligible functions, but that approach doesn't work with
-Zalways-encode-mir enabled.
On the following example, point at `String` instead of the whole type:
```
error[E0277]: the trait bound `String: Copy` is not satisfied
--> $DIR/own-bound-span.rs:14:24
|
LL | let _: <S as D>::P<String>;
| ^^^^^^ the trait `Copy` is not implemented for `String`
|
note: required by a bound in `D::P`
--> $DIR/own-bound-span.rs:4:15
|
LL | type P<T: Copy>;
| ^^^^ required by this bound in `D::P`
```
remove some unnecessary ignore-debug clauses
ignore-debug is only needed when the debug assertions *in the standard library* somehow affect the test. This can happen with inlining but otherwise should be rare. ignore-debug is problematic since PR CI is only run with debug assertions.
r? `@cjgillot` since it looks like you added most of these
Allow explicit `#[repr(Rust)]`
This is identical to no `repr()` at all. For `Rust, packed` and `Rust, align(x)`, it should be the same as no `Rust` at all (as, afaik, `#[repr(align(16))]` uses the Rust ABI.)
The main use case for this is being able to explicitly say "I want to use the Rust ABI" in very very rare circumstances where the first obvious choice would be the C ABI yet is undesirable, which is already possible with functions as `extern "Rust"`. This would be useful for silencing https://github.com/rust-lang/rust-clippy/pull/11253. It's also more consistent with `extern`.
The lack of this also tripped me up a bit when I was new to Rust, as I expected this to be possible.
Fix ub-int-array test for big-endian platforms
As of commit 7767cbb3b0, the tests/ui/consts/const-eval/ub-int-array.rs test is failing on big-endian platforms (in particular s390x), as the stderr output contains a hex dump that depends on endianness.
Since this point intentionally verifies the hex dump to check the uninitialized byte markers, I think we should not simply standardize away the hex dump as is done with some of the other tests in this directory.
However, most of the test is already endian-independent. The only exception is one line of hex dump, which can also be made endian-independent by choosing appropriate constants in the source code.
Since the 32bit and 64bit stderr outputs were already (and remain) identical, I've merged them and removed the stderr-per-bitwidth marker.
Fixes (again) https://github.com/rust-lang/rust/issues/105383.
Move some ui tests to subdirectories
cc #73494
issue-2804 -> `macros/` (there's already the minified `issue-2804-2` there)
issue-17431 -> `structs-enums/struct-rec` and new `structs-enums/enum-rec` (original issue pertains to detection of recursive enums and structs)
issue-29181 and issue-66768 - moved according to the classifier tool
Suggest mutable borrow on read only for-loop that should be mutable
```
error[E0596]: cannot borrow `*test` as mutable, as it is behind a `&` reference
--> $DIR/suggest-mut-iterator.rs:22:9
|
LL | for test in &tests {
| ------ this iterator yields `&` references
LL | test.add(2);
| ^^^^ `test` is a `&` reference, so the data it refers to cannot be borrowed as mutable
|
help: use a mutable iterator instead
|
LL | for test in &mut tests {
| +++
```
Fix#114311.
Parse unnamed fields and anonymous structs or unions (no-recovery)
It is part of #114782 which implements #49804. Only parse anonymous structs or unions in struct field definition positions.
r? `@petrochenkov`
As of commit 7767cbb3b0,
the tests/ui/consts/const-eval/ub-int-array.rs test is
failing on big-endian platforms (in particular s390x),
as the stderr output contains a hex dump that depends
on endianness.
Since this point intentionally verifies the hex dump to
check the uninitialized byte markers, I think we should
not simply standardize away the hex dump as is done with
some of the other tests in this directory.
However, most of the test is already endian-independent.
The only exception is one line of hex dump, which can
also be made endian-independent by choosing appropriate
constants in the source code.
Since the 32bit and 64bit stderr outputs were already
(and remain) identical, I've merged them and removed
the stderr-per-bitwidth marker.
Fixes (again) https://github.com/rust-lang/rust/issues/105383.
Anonymous structs or unions are only allowed in struct field
definitions.
Co-authored-by: carbotaniuman <41451839+carbotaniuman@users.noreply.github.com>
```
error[E0596]: cannot borrow `*test` as mutable, as it is behind a `&` reference
--> $DIR/suggest-mut-iterator.rs:22:9
|
LL | for test in &tests {
| ------ this iterator yields `&` references
LL | test.add(2);
| ^^^^ `test` is a `&` reference, so the data it refers to cannot be borrowed as mutable
|
help: use a mutable iterator instead
|
LL | for test in &mut tests {
| +++
```
Address #114311.
Add support for `ptr::write`s for the `invalid_reference_casting` lint
This PR adds support for `ptr::write` and others for the `invalid_reference_casting` lint.
Detecting instances where instead of using the deref (`*`) operator to assign someone uses `ptr::write`, `ptr::write_unaligned` or `ptr::write_volatile`.
```rust
let data_len = 5u64;
std::ptr::write(
std::mem::transmute::<*const u64, *mut u64>(&data_len),
new_data_len,
);
```
r? ``@est31``
Don't do intra-pass validation on MIR shims
Fixes#114375
In the test that was committed, we end up generating the drop shim for `struct Foo` that looks like:
```
fn std::ptr::drop_in_place(_1: *mut Foo) -> () {
let mut _0: ();
bb0: {
goto -> bb5;
}
bb1: {
return;
}
bb2 (cleanup): {
resume;
}
bb3: {
goto -> bb1;
}
bb4 (cleanup): {
drop(((*_1).0: foo::WrapperWithDrop<()>)) -> [return: bb2, unwind terminate];
}
bb5: {
drop(((*_1).0: foo::WrapperWithDrop<()>)) -> [return: bb3, unwind: bb2];
}
}
```
In `bb4` and `bb5`, we assert that `(*_1).0` has type `WrapperWithDrop<()>`. However, In a user-facing param env, the type is actually `WrapperWithDrop<Tait>`. These types are not equal in a user-facing param-env (and can't be made equal even if we use `DefiningAnchor::Bubble`, since it's a non-local TAIT).
Warn on elided lifetimes in associated constants (`ELIDED_LIFETIMES_IN_ASSOCIATED_CONSTANT`)
Elided lifetimes in associated constants (in impls) erroneously resolve to fresh lifetime parameters on the impl since #97313. This is not correct behavior (see #38831).
I originally opened #114716 to fix this, but given the time that has passed, the crater results seem pretty bad: https://github.com/rust-lang/rust/pull/114716#issuecomment-1682091952
This PR alternatively implements a lint against this behavior, and I'm hoping to bump this to deny in a few versions.
Add `suggestion` for some `#[deprecated]` items
Consider code:
```rust
fn main() {
let _ = ["a", "b"].connect(" ");
}
```
Currently it shows deprecated warning:
```rust
warning: use of deprecated method `std::slice::<impl [T]>::connect`: renamed to join
--> src/main.rs:2:24
|
2 | let _ = ["a", "b"].connect(" ");
| ^^^^^^^
|
= note: `#[warn(deprecated)]` on by default
```
This PR adds `suggestion` for `connect` and some other deprecated items, so the warning will be changed to this:
```rust
warning: use of deprecated method `std::slice::<impl [T]>::connect`: renamed to join
--> src/main.rs:2:24
|
2 | let _ = ["a", "b"].connect(" ");
| ^^^^^^^
|
= note: `#[warn(deprecated)]` on by default
help: replace the use of the deprecated method
|
2 | let _ = ["a", "b"].join(" ");
| ^^^^
```
Avoid side-effects from `try_coerce` when suggesting borrowing LHS of cast
The name `try_coerce` is a bit misleading -- it has side-effects, so when it's used in diagnostics code, it sometimes causes spurious obligations to be registered which cause other errors to occur that really make no sense in context.
Addendum: let's just rename `try_coerce` to `coerce` -- the `try_` part doesn't really add much, imo.
Normalize return type of `deduce_future_output_from_obligations`
Fixes#114909
Also confirmed to fix#114727 manually
Now that we have weak/lazy type aliases, we need to normalize those in future signatures to ensure that `replace_opaque_types_with_inference_vars` actually sees TAITs behind them. This isn't needed in the new solver, but added a test to make sure it doesn't regress there either.
r? types cc `@oli-obk` (who's gone, worst case can delay this PR until he's back)
Fix ABI flags in RISC-V/LoongArch ELF file generated by rustc
Fix#114153
It turns out the current way to set these flags are completely wrong. In LLVM the target ABI is used instead of target features to determine these flags.
Not sure how to write a test though. Or maybe a test isn't necessary because this affects only those touching target json?
r? `@Nilstrieb`
`Nonterminal`-related cleanups
In #114647 I am trying to remove `Nonterminal`. It has a number of preliminary cleanups that are worth merging even if #114647 doesn't merge, so let's do them in this PR.
r? `@petrochenkov`
[RFC-3086] Restrict the parsing of `count`
Fix#111904
The original RFC didn't mention the possibility of using `${count(t,)}` and such thing isn't very semantically accurate which can lead to confusion.
Normalize before checking if local is freeze in `deduced_param_attrs`
Not normalizing the local type eagerly results in possibly exponential amounts of normalization happening downstream in `is_freeze_raw`.
Fixes#113372
Revert PR #114052 to fix invalid suggestion
This PR reverts https://github.com/rust-lang/rust/pull/114052 to fix the invalid suggestion produced by the PR.
Unfortunately the invalid suggestion cannot be improved from the current position where it's emitted since we lack enough information (is an assignment?, left or right?, ...) to be able to fix it here. Furthermore the previous wasn't wrong, just suboptimal, contrary to the current one which is just wrong.
Added a regression test and commented out some code instead of removing it so we can use it later.
Reopens https://github.com/rust-lang/rust/issues/114050
Fixes https://github.com/rust-lang/rust/issues/114925
Fix suggestion for attempting to define a string with single quotes
Currently attempting to compile `fn main() { let _ = '\\"'; }` will result in the following error message:
```
error: character literal may only contain one codepoint
--> src/main.rs:1:21
|
1 | fn main() { let _ = '\\"'; }
| ^^^^^
|
help: if you meant to write a `str` literal, use double quotes
|
1 | fn main() { let _ = "\\""; }
| ~~~~~
```
The suggestion is invalid as it fails to escape the `"`. This PR fixes the suggestion so that it now reads:
```
help: if you meant to write a `str` literal, use double quotes
|
1 | fn main() { let _ = "\\\""; }
| ~~~~~~
```
The relevant test is also updated to ensure that this does not regress in future.
Fix argument removal suggestion around macros
Fixes#112437.
Fixes#113866.
Helps with #114255.
The issue was that `span.find_ancestor_inside(outer)` could previously return a span with a different expansion context from `outer`.
This happens for example for the built-in macro `panic!`, which expands to another macro call of `panic_2021!` or `panic_2015!`. Because the call site of `panic_20xx!` has not associated source code, its span currently points to the call site of `panic!` instead.
Something similar also happens items that get desugared in AST->HIR lowering. For example, `for` loops get two spans: One "inner" span that has the `.desugaring_kind()` kind set to `DesugaringKind::ForLoop` and one "outer" span that does not. Similar to the macro situation, both of these spans point to the same source code, but have different expansion contexts.
This causes problems, because joining two spans with different expansion contexts will usually[^1] not actually join them together to avoid creating "spaghetti" spans that go from the macro definition to the macro call. For example, in the following snippet `full_span` might not actually contain the `adjusted_start` and `adjusted_end`. This caused the broken suggestion / debug ICE in the linked issues.
```rust
let adjusted_start = start.find_ancestor_inside(shared_ancestor);
let adjusted_end = end.find_ancestor_inside(shared_ancestor);
let full_span = adjusted_start.to(adjusted_end)
```
To fix the issue, this PR introduces a new method, `find_ancestor_inside_same_ctxt`, which combines the functionality of `find_ancestor_inside` and `find_ancestor_in_same_ctxt`: It finds an ancestor span that is contained within the parent *and* has the same syntax context, and is therefore safe to extend. This new method should probably be used everywhere, where the returned span is extended, but for now it is just used for the argument removal suggestion.
Additionally, this PR fixes a second issue where the function call itself is inside a macro but the arguments come from outside the macro. The test is added in the first commit to include stderr diff, so this is best reviewed commit by commit.
[^1]: If one expansion context is the root context and the other is not.
Don't add associated type bound for non-types
We had this fix for equality constraints (#99890), but for some reason not trait constraints 😅Fixes#114744
Cleaner assert_eq! & assert_ne! panic messages
This PR finishes refactoring of the assert messages per #94005. The panic message format change #112849 used to be part of this PR, but has been factored out and just merged. It might be better to keep both changes in the same release once FCP vote completes.
Modify panic message for `assert_eq!`, `assert_ne!`, the currently unstable `assert_matches!`, as well as the corresponding `debug_assert_*` macros.
```rust
assert_eq!(1 + 1, 3);
assert_eq!(1 + 1, 3, "my custom message value={}!", 42);
```
#### Old messages
```plain
thread 'main' panicked at $DIR/main.rs:6:5:
assertion failed: `(left == right)`
left: `2`,
right: `3`
```
```plain
thread 'main' panicked at $DIR/main.rs:6:5:
assertion failed: `(left == right)`
left: `2`,
right: `3`: my custom message value=42!
```
#### New messages
```plain
thread 'main' panicked at $DIR/main.rs:6:5:
assertion `left == right` failed
left: 2
right: 3
```
```plain
thread 'main' panicked at $DIR/main.rs:6:5:
assertion `left == right` failed: my custom message value=42!
left: 2
right: 3
```
History of fixing #94005
* #94016 was a lengthy PR that was abandoned
* #111030 was similar, but it stringified left and right arguments, and thus caused compile time performance issues, thus closed
* #112849 factored out the two-line formatting of all panic messages
Fixes#94005
r? `@m-ou-se`
Modify panic message for `assert_eq!`, `assert_ne!`, the currently unstable `assert_matches!`, as well as the corresponding `debug_assert_*` macros.
```rust
assert_eq!(1 + 1, 3);
assert_eq!(1 + 1, 3, "my custom message value={}!", 42);
```
```plain
thread 'main' panicked at $DIR/main.rs:6:5:
assertion failed: `(left == right)`
left: `2`,
right: `3`
```
```plain
thread 'main' panicked at $DIR/main.rs:6:5:
assertion failed: `(left == right)`
left: `2`,
right: `3`: my custom message value=42!
```
```plain
thread 'main' panicked at $DIR/main.rs:6:5:
assertion `left == right` failed
left: 2
right: 3
```
```plain
thread 'main' panicked at $DIR/main.rs:6:5:
assertion `left == right` failed: my custom message value=42!
left: 2
right: 3
```
This PR is a simpler subset of the #111030, but it does NOT stringify the original left and right source code assert expressions, thus should be faster to compile.
Point at return type when it influences non-first `match` arm
When encountering code like
```rust
fn foo() -> i32 {
match 0 {
1 => return 0,
2 => "",
_ => 1,
}
}
```
Point at the return type and not at the prior arm, as that arm has type `!` which isn't influencing the arm corresponding to arm `2`.
Fix#78124.
Deny `FnDef` in patterns
We can only see these via `const { .. }` patterns, which are unstable.
cc #76001 (tracking issue for inline const pats)
Fixes#114658Fixes#114659
Point out expectation even if we have `TypeError::RegionsInsufficientlyPolymorphic`
just a minor tweak, since saying "one type is more general than the other" kinda sucks if we don't actually point out two types.
Separate `consider_unsize_to_dyn_candidate` from other unsize candidates
Move the unsize candidate assembly *just for* `T -> dyn Trait` out of `assemble_candidates_via_self_ty` so that we only consider it once, instead of for every normalization step of the self ty. This makes sure that we don't assemble several candidates that are equal modulo normalization when we really don't care about normalizing the self type of an `T: Unsize<dyn Trait>` goal anyways.
Fixesrust-lang/trait-system-refactor-initiative#57
r? lcnr
Probe when assembling upcast candidates so they don't step on eachother's toes in new solver
Lack of a probe causes one candidate to disqualify the other due to inference side-effects.
r? lcnr
Upgrade std to gimli 0.28.0
Gimli 0.28 removed its `From<EndianSlice> for &[u8]` that was the root cause of #113238.
This dependency update mirrors rust-lang/backtrace-rs#557, but since that doesn't require any code changes in `backtrace`, we can also apply that right away for our nested `std/backtrace` feature.
Add test for unknown_lints from another file.
This adds a test for #84936 which was incidentally fixed via #97266. It is a strange issue where `#![allow(unknown_lints)]` at the crate root was not applying to unknown lints that fired in a non-inline-module. I did not dig further into how #97266 fixed it, but I did verify it. I couldn't find any existing tests which did anything similar.
Closes#84936
Warn on inductive cycle in coherence leading to impls being considered not overlapping
This PR implements a `coinductive_overlap_in_coherence` lint (#114040), which warns users against cases where two impls are considered **not** to overlap during coherence due to an inductive cycle disproving one of the predicates after unifying the two impls.
Cases where this lint fires will become an overlap error if we ever move to coinduction, so I'd like to make this a warning to avoid having more crates take advantage of this behavior in the mean time. Also, since the new trait solver treats inductive cycles as ambiguity, not an error, this is a blocker for landing the new trait solver in coherence.
add a csky-unknown-linux-gnuabiv2 target
This is the rustc side changes to support csky based Linux target(`csky-unknown-linux-gnuabiv2`).
Tier 3 policy:
> A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
I pledge to do my best maintaining it.
> Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
This `csky` section is the arch name and the `unknown-linux` section is the same as other linux target, and `gnuabiv2` is from the cross-compile toolchain of `gcc`
> Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
I think the explanation in platform support doc is enough to make this aspect clear.
> Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
It's using open source tools only.
> The target must not introduce license incompatibilities.
No new license
> Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).
Understood.
> The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
There are no new dependencies/features required.
> Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
As previously said it's using open source tools only.
> "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
There are no such terms present/
> Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
I'm not the reviewer here.
> This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
I'm not the reviewer here.
> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
It supports for std
> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
I have added the documentation, and I think it's clear.
> Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
Understood.
> Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
Understood.
> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
I believe I didn't break any other target.
> In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
I think there are no such problems in this PR.
When encountering code like
```rust
fn foo() -> i32 {
match 0 {
1 => return 0,
2 => "",
_ => 1,
}
}
```
Point at the return type and not at the prior arm, as that arm has type
`!` which isn't influencing the arm corresponding to arm `2`.
Fix#78124.
fixed *const [type error] does not implement the Copy trait
Removes "error: arguments for inline assembly must be copyable" when moving an unknown type
Fixes: #113788
Select obligations before processing wf obligation in `compare_method_predicate_entailment`
We need to select obligations before processing the WF obligation for the `IMPLIED_BOUNDS_ENTAILMENT` lint, since it skips over type variables.
Fixes#114783
r? `@jackh726`
TAITs do not constrain generic params
Fixes#108425
Not sure if I should rework those two failing tests. I guess `tests/ui/type-alias-impl-trait/coherence.rs` could just have the type parameter removed from it? IDK what `tests/ui/type-alias-impl-trait/coherence_generalization.rs` is even testing, though.
r? `@aliemjay`
cc `@lcnr` `@oli-obk` (when he's back from 🌴)
Also consider `mem::transmute` with the `invalid_reference_casting` lint
This PR extend the `invalid_reference_casting` lint with regard to the `std::mem::transmute` function.
```
error: casting `&T` to `&mut T` is undefined behavior, even if the reference is unused, consider instead using an `UnsafeCell`
--> $DIR/reference_casting.rs:27:16
|
LL | let _num = &mut *std::mem::transmute::<_, *mut i32>(&num);
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
```
*I encourage anyone reviewing this PR to do so [without whitespaces](https://github.blog/2011-10-21-github-secrets/#whitespace).*
normalize in `trait_ref_is_knowable` in new solver
fixes https://github.com/rust-lang/trait-system-refactor-initiative/issues/51
Alternatively we could avoid normalizing the self type and do this at the end of the `assemble_candidates_via_self_ty` stack by splitting candidates into:
- applicable without normalizing self type
- applicable for aliases, even if they can be normalized
- applicable for stuff which cannot get normalized further
I don't think this would have any significant benefits and it also seems non-trivial to avoid normalizing only the self type in `trait_ref_is_knowable`.
r? `@compiler-errors`
Rollup of 7 pull requests
Successful merges:
- #94455 (Partially stabilize `int_roundings`)
- #114132 (Better Debug for Vars and VarsOs)
- #114584 (E0277 nolonger points at phantom `.await`)
- #114667 (Record binder for bare trait object in LifetimeCollectVisitor)
- #114692 (downgrade `internal_features` to warn)
- #114703 (Cover ParamConst in smir)
- #114734 (Mark oli as "on vacation")
r? `@ghost`
`@rustbot` modify labels: rollup
Respect `#[expect]` the same way `#[allow]` is with the `dead_code` lint
This PR makes the `#[expect]` attribute being respected in the same way the `#[allow]` attribute is with the `dead_code` lint.
The fix is much more involved than I would have liked (and it's not because I didn't tried!), because the implementation took advantage of the fact that firing a lint in a allow context is a nop (for the user, as the lint is suppressed) to not fire-it at all.
And will it's fine for `#[allow]`, it definitively isn't for `#[expect]`, as the presence and absence of the lint is significant. So a big part of the PR is just adding the context information of whenever an item is on the worklist because of an `[allow]`/`#[expect]` or not.
Fixes https://github.com/rust-lang/rust/issues/114557
make `typeid::typeid_itanium_cxx_abi::transform_ty` evaluate length in array types
the ICE in https://github.com/rust-lang/rust/issues/114275 was caused by `transform_ty`
in compiler/rustc_symbol_mangling/src/typeid/typeid_itanium_cxx_abi.rs encountering an unevaluated const, while expecting it to already be evaluated.
Rollup of 7 pull requests
Successful merges:
- #114599 (Add impl trait declarations to SMIR)
- #114622 (rustc: Move `crate_types` and `stable_crate_id` from `Session` to `GlobalCtxt`)
- #114662 (Unlock trailing where-clauses for lazy type aliases)
- #114693 (Remove myself from the review rotation)
- #114694 (make the provisional cache slightly less broken)
- #114705 (Add spastorino to mailmap)
- #114712 (Fix a couple of bad comments)
r? `@ghost`
`@rustbot` modify labels: rollup
make the provisional cache slightly less broken
It is still broken for the following cycles:
```mermaid
graph LR
R["R: coinductive"] --> A["A: inductive"]
R --> B["B: coinductive"]
A --> B
B --> R
```
the `R -> A -> B -> R` cycle should be considered to not hold, as it is mixed, but because we first put `B` into the cache from the `R -> B -> R` cycle which is coinductive, it does hold.
This issue will also affect our new coinduction approach. Longterm cycles are coinductive as long as one step goes through an impl where-clause, see f4fc5bae36/crates/formality-prove/src/prove/prove_wc.rs (L51-L62). Here we would first have a fully inductive cycle `R -> B -> R` which is then entered by a cycle with a coinductive step `R -> A -coinductive-> B -> R`.
I don't know how to soundly implement a provisional cache for goals not on the stack without tracking all cycles the goal was involved in and whether they were inductive or not. We could then only use goals from the cache if the *inductivity?* of every cycle remained the same. This is a mess to implement. I therefore want to rip out the provisional cache entirely, but will wait with this until I talked about it with `@nikomatsakis.`
r? `@compiler-errors`
Unlock trailing where-clauses for lazy type aliases
Allows trailing where-clauses on lazy type aliases and forbids[^1] leading ones.
Completes #89122 (see section *Top-level type aliases*).
`@rustbot` label F-lazy_type_alias
r? `@oli-obk`
[^1]: This is absolutely fine since lazy type aliases are only meant to be stabilized as part of a new edition.
`Expr::can_have_side_effects()` is incorrect for struct/enum/array/tuple literals
It would return 'false' unless *all* sub-expressions had side effects. This would easily allow side effects to slip through, and also wrongly label empty literals as having side effects. Add some tests for the last point
The function is only used for simple lints and error messages, so not a serious bug.
this ICE was caused by `transform_ty`
in compiler/rustc_symbol_mangling/src/typeid/typeid_itanium_cxx_abi.rs
encountering an unevaluated const, while expecting it to already be evaluated.
add a regression test
Update tests/ui/sanitize/issue-114275-cfi-const-expr-in-arry-len.rs
Co-authored-by: Michael Goulet <michael@errs.io>
Update tests/ui/sanitize/issue-114275-cfi-const-expr-in-arry-len.rs
Co-authored-by: Michael Goulet <michael@errs.io>
fix test compiling for targets with -crt-static and failing
this was causign https://github.com/rust-lang/rust/pull/114686 to fail
Don't use `type_of` to determine if item has intrinsic shim
When we're calling `resolve_instance` on an inline const, we were previously looking at the `type_of` for that const, seeing that it was an `extern "intrinsic"` fn def, and treating it as if we were computing the instance of that intrinsic itself. This is incorrect.
Instead, we should be using the def-id of the item we're computing to determine if it's an intrinsic.
Fixes#114660
Detect method not found on arbitrary self type with different mutability
```
error[E0599]: no method named `x` found for struct `Pin<&S>` in the current scope
--> $DIR/arbitrary_self_type_mut_difference.rs:11:18
|
LL | Pin::new(&S).x();
| ^ help: there is a method with a similar name: `y`
|
note: method is available for `Pin<&mut S>`
--> $DIR/arbitrary_self_type_mut_difference.rs:6:5
|
LL | fn x(self: Pin<&mut Self>) {}
| ^^^^^^^^^^^^^^^^^^^^^^^^^^
```
Related to #57994, as one of the presented cases can lead to code like this.
feat: `riscv-interrupt-{m,s}` calling conventions
Similar to prior support added for the mips430, avr, and x86 targets this change implements the rough equivalent of clang's [`__attribute__((interrupt))`][clang-attr] for riscv targets, enabling e.g.
```rust
static mut CNT: usize = 0;
pub extern "riscv-interrupt-m" fn isr_m() {
unsafe {
CNT += 1;
}
}
```
to produce highly effective assembly like:
```asm
pub extern "riscv-interrupt-m" fn isr_m() {
420003a0: 1141 addi sp,sp,-16
unsafe {
CNT += 1;
420003a2: c62a sw a0,12(sp)
420003a4: c42e sw a1,8(sp)
420003a6: 3fc80537 lui a0,0x3fc80
420003aa: 63c52583 lw a1,1596(a0) # 3fc8063c <_ZN12esp_riscv_rt3CNT17hcec3e3a214887d53E.0>
420003ae: 0585 addi a1,a1,1
420003b0: 62b52e23 sw a1,1596(a0)
}
}
420003b4: 4532 lw a0,12(sp)
420003b6: 45a2 lw a1,8(sp)
420003b8: 0141 addi sp,sp,16
420003ba: 30200073 mret
```
(disassembly via `riscv64-unknown-elf-objdump -C -S --disassemble ./esp32c3-hal/target/riscv32imc-unknown-none-elf/release/examples/gpio_interrupt`)
This outcome is superior to hand-coded interrupt routines which, lacking visibility into any non-assembly body of the interrupt handler, have to be very conservative and save the [entire CPU state to the stack frame][full-frame-save]. By instead asking LLVM to only save the registers that it uses, we defer the decision to the tool with the best context: it can more accurately account for the cost of spills if it knows that every additional register used is already at the cost of an implicit spill.
At the LLVM level, this is apparently [implemented by] marking every register as "[callee-save]," matching the semantics of an interrupt handler nicely (it has to leave the CPU state just as it found it after its `{m|s}ret`).
This approach is not suitable for every interrupt handler, as it makes no attempt to e.g. save the state in a user-accessible stack frame. For a full discussion of those challenges and tradeoffs, please refer to [the interrupt calling conventions RFC][rfc].
Inside rustc, this implementation differs from prior art because LLVM does not expose the "all-saved" function flavor as a calling convention directly, instead preferring to use an attribute that allows for differentiating between "machine-mode" and "superivsor-mode" interrupts.
Finally, some effort has been made to guide those who may not yet be aware of the differences between machine-mode and supervisor-mode interrupts as to why no `riscv-interrupt` calling convention is exposed through rustc, and similarly for why `riscv-interrupt-u` makes no appearance (as it would complicate future LLVM upgrades).
[clang-attr]: https://clang.llvm.org/docs/AttributeReference.html#interrupt-risc-v
[full-frame-save]: 9281af2ecf/src/lib.rs (L440-L469)
[implemented by]: b7fb2a3fec/llvm/lib/Target/RISCV/RISCVRegisterInfo.cpp (L61-L67)
[callee-save]: 973f1fe7a8/llvm/lib/Target/RISCV/RISCVCallingConv.td (L30-L37)
[rfc]: https://github.com/rust-lang/rfcs/pull/3246
fix: not insert missing lifetime for `ConstParamTy`
Fixes#113462
We should ignore the missing lifetime, as it's illegal to include a lifetime in a const param.
r? ``@compiler-errors``
The change in 07f855d781 introduced a
trailing numeral of some kind after the `extern crate
compiler_builtins`, which appears to have caused at least two false
negatives (654b924 and 657fd24). Instead, this change normalizes the
test output to ignore the number (of symbols rustc recognizes?) to avoid
needing to re-`--bless` these two tests for unrelated changes.
Similar to prior support added for the mips430, avr, and x86 targets
this change implements the rough equivalent of clang's
[`__attribute__((interrupt))`][clang-attr] for riscv targets, enabling
e.g.
```rust
static mut CNT: usize = 0;
pub extern "riscv-interrupt-m" fn isr_m() {
unsafe {
CNT += 1;
}
}
```
to produce highly effective assembly like:
```asm
pub extern "riscv-interrupt-m" fn isr_m() {
420003a0: 1141 addi sp,sp,-16
unsafe {
CNT += 1;
420003a2: c62a sw a0,12(sp)
420003a4: c42e sw a1,8(sp)
420003a6: 3fc80537 lui a0,0x3fc80
420003aa: 63c52583 lw a1,1596(a0) # 3fc8063c <_ZN12esp_riscv_rt3CNT17hcec3e3a214887d53E.0>
420003ae: 0585 addi a1,a1,1
420003b0: 62b52e23 sw a1,1596(a0)
}
}
420003b4: 4532 lw a0,12(sp)
420003b6: 45a2 lw a1,8(sp)
420003b8: 0141 addi sp,sp,16
420003ba: 30200073 mret
```
(disassembly via `riscv64-unknown-elf-objdump -C -S --disassemble ./esp32c3-hal/target/riscv32imc-unknown-none-elf/release/examples/gpio_interrupt`)
This outcome is superior to hand-coded interrupt routines which, lacking
visibility into any non-assembly body of the interrupt handler, have to
be very conservative and save the [entire CPU state to the stack
frame][full-frame-save]. By instead asking LLVM to only save the
registers that it uses, we defer the decision to the tool with the best
context: it can more accurately account for the cost of spills if it
knows that every additional register used is already at the cost of an
implicit spill.
At the LLVM level, this is apparently [implemented by] marking every
register as "[callee-save]," matching the semantics of an interrupt
handler nicely (it has to leave the CPU state just as it found it after
its `{m|s}ret`).
This approach is not suitable for every interrupt handler, as it makes
no attempt to e.g. save the state in a user-accessible stack frame. For
a full discussion of those challenges and tradeoffs, please refer to
[the interrupt calling conventions RFC][rfc].
Inside rustc, this implementation differs from prior art because LLVM
does not expose the "all-saved" function flavor as a calling convention
directly, instead preferring to use an attribute that allows for
differentiating between "machine-mode" and "superivsor-mode" interrupts.
Finally, some effort has been made to guide those who may not yet be
aware of the differences between machine-mode and supervisor-mode
interrupts as to why no `riscv-interrupt` calling convention is exposed
through rustc, and similarly for why `riscv-interrupt-u` makes no
appearance (as it would complicate future LLVM upgrades).
[clang-attr]: https://clang.llvm.org/docs/AttributeReference.html#interrupt-risc-v
[full-frame-save]: 9281af2ecf/src/lib.rs (L440-L469)
[implemented by]: b7fb2a3fec/llvm/lib/Target/RISCV/RISCVRegisterInfo.cpp (L61-L67)
[callee-save]: 973f1fe7a8/llvm/lib/Target/RISCV/RISCVCallingConv.td (L30-L37)
[rfc]: https://github.com/rust-lang/rfcs/pull/3246
Restrict linker version script of proc-macro crates to just its two symbols
Restrict linker version script of proc-macro crates to just the two symbols of each proc-macro crate.
The main known effect of doing this is to stop including `#[no_mangle]` symbols in the linker version script.
Background:
The combination of a proc-macro crate with an import of another crate that itself exports a no_mangle function was broken for a period of time, because:
* In PR #99944 we stopped exporting no_mangle symbols from proc-macro crates; proc-macro crates have a very limited interface and are meant to be treated as a blackbox to everything except rustc itself. However: he constructed linker version script still referred to them, but resolving that discrepancy was left as a FIXME in the code, tagged with issue #99978.
* In PR #108017 we started telling the linker to check (via the`--no-undefined-version` linker invocation flag) that every symbol referenced in the "linker version script" is provided as linker input. So the unresolved discrepancy from #99978 started surfacing as a compile-time error (e.g. #111888).
Fix#111888Fix#99978.
tests: Uncomment now valid GAT code behind FIXME
The code fails to parse with `nightly-2021-02-05`:
$ cargo +nightly-2021-02-05 build
error: generic associated types in trait paths are currently not implemented
--> src/main.rs:9:42
|
9 | fn _bar<T: for<'a> StreamingIterator<Item<'a> = &'a [i32]>>(_iter: T) { /* ... */
| ^^^^
but parses with `nightly-2021-02-06`:
$ cargo +nightly-2021-02-06 build
warning: the feature `generic_associated_types` is incomplete and may not be safe to use and/or cause compiler crashes
warning: 1 warning emitted
because it was (with high probability) fixed by #79554 which was merged within that nightly range.
This PR is part of #44366 which is E-help-wanted.
CFI: Fix error compiling core with LLVM CFI enabled
Fix#90546 by filtering out global value function pointer types from the type tests, and adding the LowerTypeTests pass to the rustc LTO optimization pipelines.
add aarch64-unknown-teeos target
TEEOS is a mini os run in TrustZone, for trusted/security apps. The libc of TEEOS is a part of musl. The kernel of TEEOS is micro kernel.
This MR is to add a target for teeos.
MRs for libc and rust-std are in progress.
Compiler team MCP: [MCP](https://github.com/rust-lang/compiler-team/issues/652)
The code fails to parse with `nightly-2021-02-05`:
$ cargo +nightly-2021-02-05 build
error: generic associated types in trait paths are currently not implemented
--> src/main.rs:9:42
|
9 | fn _bar<T: for<'a> StreamingIterator<Item<'a> = &'a [i32]>>(_iter: T) { /* ... */
| ^^^^
but parses with `nightly-2021-02-06`:
$ cargo +nightly-2021-02-06 build
warning: the feature `generic_associated_types` is incomplete and may not be safe to use and/or cause compiler crashes
warning: 1 warning emitted
because it was (with high probability) fixed by PR 79554 which was merged
within that nightly range.
Map RPIT duplicated lifetimes back to fn captured lifetimes
Use the [`lifetime_mapping`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/struct.OpaqueTy.html#structfield.lifetime_mapping) to map an RPIT's captured lifetimes back to the early- or late-bound lifetimes from its parent function. We may be going thru several layers of mapping, since opaques can be nested, so we introduce `TyCtxt::map_rpit_lifetime_to_fn_lifetime` to loop through several opaques worth of mapping, and handle turning it into a `ty::Region` as well.
We can then use this instead of the identity substs for RPITs in `check_opaque_meets_bounds` to address #114285.
We can then also use `map_rpit_lifetime_to_fn_lifetime` to properly install bidirectional-outlives predicates for both RPITs and RPITITs. This addresses #114601.
I based this on #114574, but I don't actually know how much of that PR we still need, so some code may be redundant now... 🤷
---
Fixes#114597Fixes#114579Fixes#114285
Also fixes#114601, since it turns out we had other bugs with RPITITs and their duplicated lifetime params 😅.
Supersedes #114574
r? `@oli-obk`
Structurally normalize weak and inherent in new solver
It seems pretty obvious to me that we should be normalizing weak and inherent aliases too, since they can always be normalized. This PR still leaves open the question of what to do with opaques, though 💀
**Also**, we need to structurally resolve the target of a coercion, for the UI test to work.
r? `@lcnr`
Store the laziness of type aliases in their `DefKind`
Previously, we would treat paths referring to type aliases as *lazy* type aliases if the current crate had lazy type aliases enabled independently of whether the crate which the alias was defined in had the feature enabled or not.
With this PR, the laziness of a type alias depends on the crate it is defined in. This generally makes more sense to me especially if / once lazy type aliases become the default in a new edition and we need to think about *edition interoperability*:
Consider the hypothetical case where the dependency crate has an older edition (and thus eager type aliases), it exports a type alias with bounds & a where-clause (which are void but technically valid), the dependent crate has the latest edition (and thus lazy type aliases) and it uses that type alias. Arguably, the bounds should *not* be checked since at any time, the dependency crate should be allowed to change the bounds at will with a *non*-major version bump & without negatively affecting downstream crates.
As for the reverse case (dependency: lazy type aliases, dependent: eager type aliases), I guess it rules out anything from slight confusion to mild annoyance from upstream crate authors that would be caused by the compiler ignoring the bounds of their type aliases in downstream crates with older editions.
---
This fixes#114468 since before, my assumption that the type alias associated with a given weak projection was lazy (and therefore had its variances computed) did not necessarily hold in cross-crate scenarios (which [I kinda had a hunch about](https://github.com/rust-lang/rust/pull/114253#discussion_r1278608099)) as outlined above. Now it does hold.
`@rustbot` label F-lazy_type_alias
r? `@oli-obk`
Warn when #[macro_export] is applied on decl macros
The existing code checks if `#[macro_export]` is being applied to an item other than a macro, and warns in that case, but fails to take into account macros 2.0/decl macros, despite the attribute having no effect on these macros.
This PR adds a special case for decl macros with the aforementioned attribute, so that the warning is a bit more precise. Instead of just saying "this attribute has no effect", hint towards the fact that decl macros get exported and resolved like regular items.
It also removes a `#[macro_export]` attribute which was applied on one of `core`'s decl macros.
- core: Remove #[macro_export] from `debug_assert_matches`
- check_attrs: Warn when #[macro_export] is used on macros 2.0
Fix#90546 by filtering out global value function pointer types from the
type tests, and adding the LowerTypeTests pass to the rustc LTO
optimization pipelines.
The compiler should emit a more specific error when the `#[macro_export]`
attribute is present on a decl macro, instead of silently ignoring it.
This commit adds the required error message in rustc_passes/messages.ftl,
as well as a note. A new variant is added to the `errors::MacroExport`
enum, specifically for the case where the attribute is added to a macro
2.0.
Rollup of 9 pull requests
Successful merges:
- #113568 (Fix spurious test failure with `panic=abort`)
- #114196 (Bubble up nested goals from equation in `predicates_for_object_candidate`)
- #114485 (Add trait decls to SMIR)
- #114495 (Set max_atomic_width for AVR to 16)
- #114496 (Set max_atomic_width for sparc-unknown-linux-gnu to 32)
- #114510 (llvm-wrapper: adapt for LLVM API changes)
- #114562 (stabilize abi_thiscall)
- #114570 ([miri][typo] Fix a typo in a vector_block comment.)
- #114573 (CI: do not hide error logs in a group)
r? `@ghost`
`@rustbot` modify labels: rollup
Bubble up nested goals from equation in `predicates_for_object_candidate`
This used to be needed for https://github.com/rust-lang/rust/pull/114036#discussion_r1273987510, but since it's no longer, I'm opening this as a separate PR. This also fixes one ICEing UI test: (`tests/ui/unboxed-closures/issue-53448.rs`)
r? `@lcnr`
Make `unconditional_recursion` warning detect recursive drops
Closes#55388
Also closes#50049 unless we want to keep it for the second example which this PR does not solve, but I think it is better to track that work in #57965.
r? `@oli-obk` since you are the mentor for #55388
Unresolved questions:
- [x] There are two false positives that must be fixed before merging (see diff). I suspect the best way to solve them is to perform analysis after drop elaboration instead of before, as now, but I have not explored that any further yet. Could that be an option? **Answer:** Yes, that solved the problem.
`@rustbot` label +T-compiler +C-enhancement +A-lint
Add a new `compare_bytes` intrinsic instead of calling `memcmp` directly
As discussed in #113435, this lets the backends be the place that can have the "don't call the function if n == 0" logic, if it's needed for the target. (I didn't actually *add* those checks, though, since as I understood it we didn't actually need them on known targets?)
Doing this also let me make it `const` (unstable), which I don't think `extern "C" fn memcmp` can be.
cc `@RalfJung` `@Amanieu`
Remove FIXME about NLL diagnostic that is already improved
The FIXME was added in #46984 when the diagnostic message looked like this:
// FIXME(#46983): error message should be better
&s.0 //~ ERROR free region `` does not outlive free region `'static`
The message was improved in #90667 and now looks like this:
&s.0 //~ ERROR lifetime may not live long enough
but the FIXME was not removed. The issue #46983 about that diagnostics should be improved has been closed. We can remove the FIXME now.
(This PR was made for #44366.)
The FIXME was added in 46984 when the diagnostic message looked like
this:
// FIXME(#46983): error message should be better
&s.0 //~ ERROR free region `` does not outlive free region `'static`
The message was improved in 90667 and now looks like this:
&s.0 //~ ERROR lifetime may not live long enough
but the FIXME was not removed. The issue 46983 about that diagnostics
should be improved has been closed. We can remove the FIXME now.
Avoid invalid NaN lint machine-applicable suggestion in const context
This PR removes the machine-applicable suggestion in const context for the `invalid_nan_comparision` lint ~~and replace it with a simple help~~.
Fixes https://github.com/rust-lang/rust/issues/114471
Rename tests/ui/issues/issue-100605.rs to ../type/option-ref-advice.rs
The test is a regression test for a [bug ](https://github.com/rust-lang/rust/issues/100605) where the compiler gave bad advice for an `Option<&String>`. Rename the file appropriately.
Part of #73494
Resolve visibility paths as modules not as types.
Asking for a resolution with `opt_ns = Some(TypeNS)` allows path resolution to look for type-relative paths, leaving unresolved segments behind. However, for visibility paths we really need to look for a module, so we need to pass `opt_ns = None`.
Fixes https://github.com/rust-lang/rust/issues/109146
r? `@petrochenkov`
Convert builtin "global" late lints to run per module
The compiler currently has 4 non-incremental lints:
1. `clashing_extern_declarations`;
2. `missing_debug_implementations`;
3. ~`unnameable_test_items`;~ changed by https://github.com/rust-lang/rust/pull/114414
4. `missing_docs`.
Non-incremental lints get reexecuted for each compilation, which is slow. Moreover, those lints are allow-by-default, so run for nothing most of the time. This PR attempts to make them more incremental-friendly.
`clashing_extern_declarations` is moved to a standalone query.
`missing_debug_implementation` can use `non_blanket_impls_for_ty` instead of recomputing it.
`missing_docs` is harder as it needs to track if there is a `doc(hidden)` module surrounding. I hack around this using the lint level engine. That's easy to implement and allows to re-enable the lint for a re-exported module, while a more proper solution would reuse the same device as `unnameable_test_items`.