The inliner integrates call destination place with callee return place
by remapping the local and adding extra projections as necessary.
If a call destination place contains any projections (which is already
possible) and a return place is used in an indexing projection (most
likely doesn't happen yet) the end result would be incorrect.
Add an assertion to ensure that potential issue won't go unnoticed in
the presence of more sophisticated copy propagation scheme.
The renumber pass is long gone
Originally, there has been a dedicated pass for renumbering
AST NodeIds to have actual values. This pass had been added by
commit a5ad4c3794.
Then, later, this step was moved to where it resides now,
macro expansion. See commit c86c8d41a2
or PR #36438.
The comment snippet, added by the original commit, has
survived the times without any change, becoming outdated
at removal of the dedicated pass.
Nowadays, grepping for the next_node_id function will show up
multiple places in the compiler that call it, but the main
rewriting that the comment talks about is still done in the
expansion step, inside an innocious looking visit_id function
that's called during macro invocation collection.
inliner: Copy unevaluated constants only after successful inlining
Inliner copies the unevaluated constants from the callee body to the
caller at the point where decision to inline is yet to be made. The
constants will be unnecessary if inlining were to fail.
Organize the code moving items from callee to the caller together in one
place to avoid the issue.
Fix unreachable sub-branch detection in or-patterns
The previous implementation was too eager to avoid unnecessary "unreachable pattern" warnings. I feel more confident about this implementation than I felt about the previous one.
Fixes https://github.com/rust-lang/rust/issues/76836.
``@rustbot`` modify labels: +A-exhaustiveness-checking
Working expression optimization, and some improvements to branch-level source coverage
This replaces PR #78040 after reorganizing the original commits (by request) into a more logical sequence of major changes.
Most of the work is in the MIR `transform/coverage/` directory (originally, `transform/instrument_coverage.rs`).
Note this PR includes some significant additional debugging capabilities, to help myself and any future developer working on coverage improvements or issues.
In particular, there's a new Graphviz (.dot file) output for the coverage graph (the `BasicCoverageBlock` control flow graph) that provides ways to get some very good insight into the relationships between the MIR, the coverage graph BCBs, coverage spans, and counters. (There are also some cool debugging options, available via environment variable, to alter how some data in the graph appears.)
And the code for this Graphviz view is actually generic... it can be used by any implementation of the Rust `Graph` traits.
Finally (for now), I also now output information from `llvm-cov` that shows the actual counters and spans it found in the coverage map, and their counts (from the `--debug` flag). I found this to be enormously helpful in debugging some coverage issues, so I kept it in the test results as well for additional context.
`@tmandry` `@wesleywiser`
r? `@tmandry`
Here's an example of the new coverage graph:
* Within each `BasicCoverageBlock` (BCB), you can see each `CoverageSpan` and its contributing statements (MIR `Statement`s and/or `Terminator`s)
* Each `CoverageSpan` has a `Counter` or and `Expression`, and `Expression`s show their Add/Subtract operation with nested operations. (This can be changed to show the Counter and Expression IDs instead, or in addition to, the BCB.)
* The terminators of all MIR `BasicBlock`s in the BCB, including one final `Terminator`
* If an "edge counter" is required (because we need to count an edge between blocks, in some cases) the edge's Counter or Expression is shown next to its label. (Not shown in the example below.) (FYI, Edge Counters are converted into a new MIR `BasicBlock` with `Goto`)
<img width="1116" alt="Screen Shot 2020-10-17 at 12 23 29 AM" src="https://user-images.githubusercontent.com/3827298/96331095-616cb480-100f-11eb-8212-60f2d433e2d8.png">
r? `@tmandry`
FYI: `@wesleywiser`
Implementing the Graph traits for the BasicCoverageBlock
graph.
optimized replacement of counters with expressions plus new BCB graphviz
* Avoid adding coverage to unreachable blocks.
* Special case for Goto at the end of the body. Make it non-reportable.
Improved debugging and formatting options (from env)
Don't automatically add counters to BCBs without CoverageSpans. They may
still get counters but only if there are dependencies from
other BCBs that have spans, I think.
Make CodeRegions optional for Counters too. It is
possible to inject counters (`llvm.instrprof.increment` intrinsic calls
without corresponding code regions in the coverage map. An expression
can still uses these counter values.
Refactored instrument_coverage.rs -> instrument_coverage/mod.rs, and
then broke up the mod into multiple files.
Compiling with coverage, with the expression optimization, works on
the json5format crate and its dependencies.
Refactored debug features from mod.rs to debug.rs
Originally, there has been a dedicated pass for renumbering
AST NodeIds to have actual values. This pass had been added by
commit a5ad4c3794.
Then, later, this step was moved to where it resides now,
macro expansion. See commit c86c8d41a2
or PR #36438.
The comment snippet, added by the original commit, has
survived the times without any change, becoming outdated
at removal of the dedicated pass.
Nowadays, grepping for the next_node_id function will show up
multiple places in the compiler that call it, but the main
rewriting that the comment talks about is still done in the
expansion step, inside an innocious looking visit_id function
that's called during macro invocation collection.
reverse binding order in matches to allow the subbinding of copyable fields in bindings after @
Fixes#69971
### TODO
- [x] Regression tests
r? `@oli-obk`
Inliner copies the unevaluated constants from the callee body to the
caller at the point where decision to inline is yet to be made. The
constants will be unnecessary if inlining were to fail.
Organize the code moving items from callee to the caller together in one
place to avoid the issue.
Provide diagnostic suggestion in ExprUseVisitor Delegate
The [Delegate trait](981346fc07/compiler/rustc_typeck/src/expr_use_visitor.rs (L28-L38)) currently use `PlaceWithHirId` which is composed of Hir `Place` and the
corresponding expression id.
Even though this is an accurate way of expressing how a Place is used,
it can cause confusion during diagnostics.
Eg:
```
let arr : [String; 5];
let [a, ...] = arr;
^^^ E1 ^^^ = ^^E2^^
```
Here `arr` is moved because of the binding created E1. However, when we
point to E1 in diagnostics with the message `arr` was moved, it can be
confusing. Rather we would like to report E2 to the user.
Closes: https://github.com/rust-lang/project-rfc-2229/issues/20
r? `@ghost`
Refactorings in preparation for const value trees
cc #72396
This PR changes the `Scalar::Bits { data: u128, size: u8 }` variant to `Scalar::Bits(ScalarInt)` where `ScalarInt` contains the same information, but is `repr(packed)`. The reason for using a packed struct is to allow enum variant packing to keep the original size of `Scalar` instead of adding another word to its size due to padding.
Other than that the PR just gets rid of all the inspection of the internal fields of `Scalar::Bits` which were frankly scary. These fields have invariants that we need to uphold and we can't do that without making the fields private.
r? `@ghost`