Splitting transform/instrument_coverage.rs into transform/coverage/...

This commit is contained in:
Rich Kadel 2020-10-23 00:45:07 -07:00
parent c7747cc772
commit c7ae4c2cb6
7 changed files with 766 additions and 730 deletions

View File

@ -0,0 +1,54 @@
use rustc_middle::mir::coverage::*;
/// Manages the counter and expression indexes/IDs to generate `CoverageKind` components for MIR
/// `Coverage` statements.
pub(crate) struct CoverageCounters {
function_source_hash: u64,
next_counter_id: u32,
num_expressions: u32,
}
impl CoverageCounters {
pub fn new(function_source_hash: u64) -> Self {
Self {
function_source_hash,
next_counter_id: CounterValueReference::START.as_u32(),
num_expressions: 0,
}
}
pub fn make_counter(&mut self) -> CoverageKind {
CoverageKind::Counter {
function_source_hash: self.function_source_hash,
id: self.next_counter(),
}
}
pub fn make_expression(
&mut self,
lhs: ExpressionOperandId,
op: Op,
rhs: ExpressionOperandId,
) -> CoverageKind {
let id = self.next_expression();
CoverageKind::Expression { id, lhs, op, rhs }
}
/// Counter IDs start from one and go up.
fn next_counter(&mut self) -> CounterValueReference {
assert!(self.next_counter_id < u32::MAX - self.num_expressions);
let next = self.next_counter_id;
self.next_counter_id += 1;
CounterValueReference::from(next)
}
/// Expression IDs start from u32::MAX and go down because a Expression can reference
/// (add or subtract counts) of both Counter regions and Expression regions. The counter
/// expression operand IDs must be unique across both types.
fn next_expression(&mut self) -> InjectedExpressionId {
assert!(self.next_counter_id < u32::MAX - self.num_expressions);
let next = u32::MAX - self.num_expressions;
self.num_expressions += 1;
InjectedExpressionId::from(next)
}
}

View File

@ -0,0 +1,70 @@
use super::graph::BasicCoverageBlocks;
use super::spans::CoverageSpan;
use crate::util::pretty;
use crate::util::spanview::{self, SpanViewable};
use rustc_middle::mir::{self, TerminatorKind};
use rustc_middle::ty::TyCtxt;
/// Generates the MIR pass `CoverageSpan`-specific spanview dump file.
pub(crate) fn dump_coverage_spanview(
tcx: TyCtxt<'tcx>,
mir_body: &mir::Body<'tcx>,
basic_coverage_blocks: &BasicCoverageBlocks,
pass_name: &str,
coverage_spans: &Vec<CoverageSpan>,
) {
let mir_source = mir_body.source;
let def_id = mir_source.def_id();
let span_viewables = span_viewables(tcx, mir_body, basic_coverage_blocks, &coverage_spans);
let mut file = pretty::create_dump_file(tcx, "html", None, pass_name, &0, mir_source)
.expect("Unexpected error creating MIR spanview HTML file");
let crate_name = tcx.crate_name(def_id.krate);
let item_name = tcx.def_path(def_id).to_filename_friendly_no_crate();
let title = format!("{}.{} - Coverage Spans", crate_name, item_name);
spanview::write_document(tcx, def_id, span_viewables, &title, &mut file)
.expect("Unexpected IO error dumping coverage spans as HTML");
}
/// Converts the computed `BasicCoverageBlock`s into `SpanViewable`s.
fn span_viewables(
tcx: TyCtxt<'tcx>,
mir_body: &mir::Body<'tcx>,
basic_coverage_blocks: &BasicCoverageBlocks,
coverage_spans: &Vec<CoverageSpan>,
) -> Vec<SpanViewable> {
let mut span_viewables = Vec::new();
for coverage_span in coverage_spans {
let tooltip = coverage_span.format_coverage_statements(tcx, mir_body);
let CoverageSpan { span, bcb_leader_bb: bb, .. } = coverage_span;
let bcb = &basic_coverage_blocks[*bb];
let id = bcb.id();
let leader_bb = bcb.leader_bb();
span_viewables.push(SpanViewable { bb: leader_bb, span: *span, id, tooltip });
}
span_viewables
}
/// Returns a simple string representation of a `TerminatorKind` variant, indenpendent of any
/// values it might hold.
pub(crate) fn term_type(kind: &TerminatorKind<'tcx>) -> &'static str {
match kind {
TerminatorKind::Goto { .. } => "Goto",
TerminatorKind::SwitchInt { .. } => "SwitchInt",
TerminatorKind::Resume => "Resume",
TerminatorKind::Abort => "Abort",
TerminatorKind::Return => "Return",
TerminatorKind::Unreachable => "Unreachable",
TerminatorKind::Drop { .. } => "Drop",
TerminatorKind::DropAndReplace { .. } => "DropAndReplace",
TerminatorKind::Call { .. } => "Call",
TerminatorKind::Assert { .. } => "Assert",
TerminatorKind::Yield { .. } => "Yield",
TerminatorKind::GeneratorDrop => "GeneratorDrop",
TerminatorKind::FalseEdge { .. } => "FalseEdge",
TerminatorKind::FalseUnwind { .. } => "FalseUnwind",
TerminatorKind::InlineAsm { .. } => "InlineAsm",
}
}

View File

@ -0,0 +1,274 @@
use rustc_index::bit_set::BitSet;
use rustc_index::vec::IndexVec;
use rustc_middle::mir::{self, BasicBlock, BasicBlockData, TerminatorKind};
const ID_SEPARATOR: &str = ",";
/// A BasicCoverageBlock (BCB) represents the maximal-length sequence of CFG (MIR) BasicBlocks
/// without conditional branches.
///
/// The BCB allows coverage analysis to be performed on a simplified projection of the underlying
/// MIR CFG, without altering the original CFG. Note that running the MIR `SimplifyCfg` transform,
/// is not sufficient, and therefore not necessary, since the BCB-based CFG projection is a more
/// aggressive simplification. For example:
///
/// * The BCB CFG projection ignores (trims) branches not relevant to coverage, such as unwind-
/// related code that is injected by the Rust compiler but has no physical source code to
/// count. This also means a BasicBlock with a `Call` terminator can be merged into its
/// primary successor target block, in the same BCB.
/// * Some BasicBlock terminators support Rust-specific concerns--like borrow-checking--that are
/// not relevant to coverage analysis. `FalseUnwind`, for example, can be treated the same as
/// a `Goto`, and merged with its successor into the same BCB.
///
/// Each BCB with at least one computed `CoverageSpan` will have no more than one `Counter`.
/// In some cases, a BCB's execution count can be computed by `CounterExpression`. Additional
/// disjoint `CoverageSpan`s in a BCB can also be counted by `CounterExpression` (by adding `ZERO`
/// to the BCB's primary counter or expression).
///
/// Dominator/dominated relationships (which are fundamental to the coverage analysis algorithm)
/// between two BCBs can be computed using the `mir::Body` `dominators()` with any `BasicBlock`
/// member of each BCB. (For consistency, BCB's use the first `BasicBlock`, also referred to as the
/// `bcb_leader_bb`.)
///
/// The BCB CFG projection is critical to simplifying the coverage analysis by ensuring graph
/// path-based queries (`is_dominated_by()`, `predecessors`, `successors`, etc.) have branch
/// (control flow) significance.
#[derive(Debug, Clone)]
pub(crate) struct BasicCoverageBlock {
pub blocks: Vec<BasicBlock>,
}
impl BasicCoverageBlock {
pub fn leader_bb(&self) -> BasicBlock {
self.blocks[0]
}
pub fn id(&self) -> String {
format!(
"@{}",
self.blocks
.iter()
.map(|bb| bb.index().to_string())
.collect::<Vec<_>>()
.join(ID_SEPARATOR)
)
}
}
pub(crate) struct BasicCoverageBlocks {
vec: IndexVec<BasicBlock, Option<BasicCoverageBlock>>,
}
impl BasicCoverageBlocks {
pub fn from_mir(mir_body: &mir::Body<'tcx>) -> Self {
let mut basic_coverage_blocks =
BasicCoverageBlocks { vec: IndexVec::from_elem_n(None, mir_body.basic_blocks().len()) };
basic_coverage_blocks.extract_from_mir(mir_body);
basic_coverage_blocks
}
pub fn iter(&self) -> impl Iterator<Item = &BasicCoverageBlock> {
self.vec.iter().filter_map(|bcb| bcb.as_ref())
}
pub fn num_nodes(&self) -> usize {
self.vec.len()
}
pub fn extract_from_mir(&mut self, mir_body: &mir::Body<'tcx>) {
// Traverse the CFG but ignore anything following an `unwind`
let cfg_without_unwind = ShortCircuitPreorder::new(&mir_body, |term_kind| {
let mut successors = term_kind.successors();
match &term_kind {
// SwitchInt successors are never unwind, and all of them should be traversed.
// NOTE: TerminatorKind::FalseEdge targets from SwitchInt don't appear to be
// helpful in identifying unreachable code. I did test the theory, but the following
// changes were not beneficial. (I assumed that replacing some constants with
// non-deterministic variables might effect which blocks were targeted by a
// `FalseEdge` `imaginary_target`. It did not.)
//
// Also note that, if there is a way to identify BasicBlocks that are part of the
// MIR CFG, but not actually reachable, here are some other things to consider:
//
// Injecting unreachable code regions will probably require computing the set
// difference between the basic blocks found without filtering out unreachable
// blocks, and the basic blocks found with the filter; then computing the
// `CoverageSpans` without the filter; and then injecting `Counter`s or
// `CounterExpression`s for blocks that are not unreachable, or injecting
// `Unreachable` code regions otherwise. This seems straightforward, but not
// trivial.
//
// Alternatively, we might instead want to leave the unreachable blocks in
// (bypass the filter here), and inject the counters. This will result in counter
// values of zero (0) for unreachable code (and, notably, the code will be displayed
// with a red background by `llvm-cov show`).
//
// TerminatorKind::SwitchInt { .. } => {
// let some_imaginary_target = successors.clone().find_map(|&successor| {
// let term = mir_body.basic_blocks()[successor].terminator();
// if let TerminatorKind::FalseEdge { imaginary_target, .. } = term.kind {
// if mir_body.predecessors()[imaginary_target].len() == 1 {
// return Some(imaginary_target);
// }
// }
// None
// });
// if let Some(imaginary_target) = some_imaginary_target {
// box successors.filter(move |&&successor| successor != imaginary_target)
// } else {
// box successors
// }
// }
//
// Note this also required changing the closure signature for the
// `ShortCurcuitPreorder` to:
//
// F: Fn(&'tcx TerminatorKind<'tcx>) -> Box<dyn Iterator<Item = &BasicBlock> + 'a>,
TerminatorKind::SwitchInt { .. } => successors,
// For all other kinds, return only the first successor, if any, and ignore unwinds
_ => successors.next().into_iter().chain(&[]),
}
});
// Walk the CFG using a Preorder traversal, which starts from `START_BLOCK` and follows
// each block terminator's `successors()`. Coverage spans must map to actual source code,
// so compiler generated blocks and paths can be ignored. To that end the CFG traversal
// intentionally omits unwind paths.
let mut blocks = Vec::new();
for (bb, data) in cfg_without_unwind {
if let Some(last) = blocks.last() {
let predecessors = &mir_body.predecessors()[bb];
if predecessors.len() > 1 || !predecessors.contains(last) {
// The `bb` has more than one _incoming_ edge, and should start its own
// `BasicCoverageBlock`. (Note, the `blocks` vector does not yet include `bb`;
// it contains a sequence of one or more sequential blocks with no intermediate
// branches in or out. Save these as a new `BasicCoverageBlock` before starting
// the new one.)
self.add_basic_coverage_block(blocks.split_off(0));
debug!(
" because {}",
if predecessors.len() > 1 {
"predecessors.len() > 1".to_owned()
} else {
format!("bb {} is not in precessors: {:?}", bb.index(), predecessors)
}
);
}
}
blocks.push(bb);
let term = data.terminator();
match term.kind {
TerminatorKind::Return { .. }
| TerminatorKind::Abort
| TerminatorKind::Assert { .. }
| TerminatorKind::Yield { .. }
| TerminatorKind::SwitchInt { .. } => {
// The `bb` has more than one _outgoing_ edge, or exits the function. Save the
// current sequence of `blocks` gathered to this point, as a new
// `BasicCoverageBlock`.
self.add_basic_coverage_block(blocks.split_off(0));
debug!(" because term.kind = {:?}", term.kind);
// Note that this condition is based on `TerminatorKind`, even though it
// theoretically boils down to `successors().len() != 1`; that is, either zero
// (e.g., `Return`, `Abort`) or multiple successors (e.g., `SwitchInt`), but
// since the Coverage graph (the BCB CFG projection) ignores things like unwind
// branches (which exist in the `Terminator`s `successors()` list) checking the
// number of successors won't work.
}
TerminatorKind::Goto { .. }
| TerminatorKind::Resume
| TerminatorKind::Unreachable
| TerminatorKind::Drop { .. }
| TerminatorKind::DropAndReplace { .. }
| TerminatorKind::Call { .. }
| TerminatorKind::GeneratorDrop
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::FalseUnwind { .. }
| TerminatorKind::InlineAsm { .. } => {}
}
}
if !blocks.is_empty() {
// process any remaining blocks into a final `BasicCoverageBlock`
self.add_basic_coverage_block(blocks.split_off(0));
debug!(" because the end of the CFG was reached while traversing");
}
}
fn add_basic_coverage_block(&mut self, blocks: Vec<BasicBlock>) {
let leader_bb = blocks[0];
let bcb = BasicCoverageBlock { blocks };
debug!("adding BCB: {:?}", bcb);
self.vec[leader_bb] = Some(bcb);
}
}
impl std::ops::Index<BasicBlock> for BasicCoverageBlocks {
type Output = BasicCoverageBlock;
fn index(&self, index: BasicBlock) -> &Self::Output {
self.vec[index].as_ref().expect("is_some if BasicBlock is a BasicCoverageBlock leader")
}
}
pub struct ShortCircuitPreorder<
'a,
'tcx,
F: Fn(&'tcx TerminatorKind<'tcx>) -> mir::Successors<'tcx>,
> {
body: &'a mir::Body<'tcx>,
visited: BitSet<BasicBlock>,
worklist: Vec<BasicBlock>,
filtered_successors: F,
}
impl<'a, 'tcx, F: Fn(&'tcx TerminatorKind<'tcx>) -> mir::Successors<'tcx>>
ShortCircuitPreorder<'a, 'tcx, F>
{
pub fn new(
body: &'a mir::Body<'tcx>,
filtered_successors: F,
) -> ShortCircuitPreorder<'a, 'tcx, F> {
let worklist = vec![mir::START_BLOCK];
ShortCircuitPreorder {
body,
visited: BitSet::new_empty(body.basic_blocks().len()),
worklist,
filtered_successors,
}
}
}
impl<'a: 'tcx, 'tcx, F: Fn(&'tcx TerminatorKind<'tcx>) -> mir::Successors<'tcx>> Iterator
for ShortCircuitPreorder<'a, 'tcx, F>
{
type Item = (BasicBlock, &'a BasicBlockData<'tcx>);
fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> {
while let Some(idx) = self.worklist.pop() {
if !self.visited.insert(idx) {
continue;
}
let data = &self.body[idx];
if let Some(ref term) = data.terminator {
self.worklist.extend((self.filtered_successors)(&term.kind));
}
return Some((idx, data));
}
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
let size = self.body.basic_blocks().len() - self.visited.count();
(size, Some(size))
}
}

View File

@ -0,0 +1,241 @@
pub mod query;
mod counters;
mod debug;
mod graph;
mod spans;
use counters::CoverageCounters;
use graph::BasicCoverageBlocks;
use spans::{CoverageSpan, CoverageSpans};
use crate::transform::MirPass;
use crate::util::pretty;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::Lrc;
use rustc_index::vec::IndexVec;
use rustc_middle::hir;
use rustc_middle::hir::map::blocks::FnLikeNode;
use rustc_middle::ich::StableHashingContext;
use rustc_middle::mir::coverage::*;
use rustc_middle::mir::{self, BasicBlock, Coverage, Statement, StatementKind};
use rustc_middle::ty::TyCtxt;
use rustc_span::def_id::DefId;
use rustc_span::{CharPos, Pos, SourceFile, Span, Symbol};
/// Inserts `StatementKind::Coverage` statements that either instrument the binary with injected
/// counters, via intrinsic `llvm.instrprof.increment`, and/or inject metadata used during codegen
/// to construct the coverage map.
pub struct InstrumentCoverage;
impl<'tcx> MirPass<'tcx> for InstrumentCoverage {
fn run_pass(&self, tcx: TyCtxt<'tcx>, mir_body: &mut mir::Body<'tcx>) {
let mir_source = mir_body.source;
// If the InstrumentCoverage pass is called on promoted MIRs, skip them.
// See: https://github.com/rust-lang/rust/pull/73011#discussion_r438317601
if mir_source.promoted.is_some() {
trace!(
"InstrumentCoverage skipped for {:?} (already promoted for Miri evaluation)",
mir_source.def_id()
);
return;
}
let hir_id = tcx.hir().local_def_id_to_hir_id(mir_source.def_id().expect_local());
let is_fn_like = FnLikeNode::from_node(tcx.hir().get(hir_id)).is_some();
// Only instrument functions, methods, and closures (not constants since they are evaluated
// at compile time by Miri).
// FIXME(#73156): Handle source code coverage in const eval, but note, if and when const
// expressions get coverage spans, we will probably have to "carve out" space for const
// expressions from coverage spans in enclosing MIR's, like we do for closures. (That might
// be tricky if const expressions have no corresponding statements in the enclosing MIR.
// Closures are carved out by their initial `Assign` statement.)
if !is_fn_like {
trace!("InstrumentCoverage skipped for {:?} (not an FnLikeNode)", mir_source.def_id());
return;
}
// FIXME(richkadel): By comparison, the MIR pass `ConstProp` includes associated constants,
// with functions, methods, and closures. I assume Miri is used for associated constants as
// well. If not, we may need to include them here too.
trace!("InstrumentCoverage starting for {:?}", mir_source.def_id());
Instrumentor::new(&self.name(), tcx, mir_body).inject_counters();
trace!("InstrumentCoverage starting for {:?}", mir_source.def_id());
}
}
struct Instrumentor<'a, 'tcx> {
pass_name: &'a str,
tcx: TyCtxt<'tcx>,
mir_body: &'a mut mir::Body<'tcx>,
body_span: Span,
basic_coverage_blocks: BasicCoverageBlocks,
coverage_counters: CoverageCounters,
}
impl<'a, 'tcx> Instrumentor<'a, 'tcx> {
fn new(pass_name: &'a str, tcx: TyCtxt<'tcx>, mir_body: &'a mut mir::Body<'tcx>) -> Self {
let hir_body = hir_body(tcx, mir_body.source.def_id());
let body_span = hir_body.value.span;
let function_source_hash = hash_mir_source(tcx, hir_body);
let basic_coverage_blocks = BasicCoverageBlocks::from_mir(mir_body);
Self {
pass_name,
tcx,
mir_body,
body_span,
basic_coverage_blocks,
coverage_counters: CoverageCounters::new(function_source_hash),
}
}
fn inject_counters(&'a mut self) {
let tcx = self.tcx;
let source_map = tcx.sess.source_map();
let mir_source = self.mir_body.source;
let def_id = mir_source.def_id();
let body_span = self.body_span;
debug!("instrumenting {:?}, span: {}", def_id, source_map.span_to_string(body_span));
////////////////////////////////////////////////////
// Compute `CoverageSpan`s from the `BasicCoverageBlocks`.
let coverage_spans = CoverageSpans::generate_coverage_spans(
&self.mir_body,
body_span,
&self.basic_coverage_blocks,
);
if pretty::dump_enabled(tcx, self.pass_name, def_id) {
debug::dump_coverage_spanview(
tcx,
self.mir_body,
&self.basic_coverage_blocks,
self.pass_name,
&coverage_spans,
);
}
self.inject_coverage_span_counters(coverage_spans);
}
/// Inject a counter for each `CoverageSpan`. There can be multiple `CoverageSpan`s for a given
/// BCB, but only one actual counter needs to be incremented per BCB. `bcb_counters` maps each
/// `bcb` to its `Counter`, when injected. Subsequent `CoverageSpan`s for a BCB that already has
/// a `Counter` will inject an `Expression` instead, and compute its value by adding `ZERO` to
/// the BCB `Counter` value.
fn inject_coverage_span_counters(&mut self, coverage_spans: Vec<CoverageSpan>) {
let tcx = self.tcx;
let source_map = tcx.sess.source_map();
let body_span = self.body_span;
let source_file = source_map.lookup_source_file(body_span.lo());
let file_name = Symbol::intern(&source_file.name.to_string());
let mut bb_counters = IndexVec::from_elem_n(None, self.mir_body.basic_blocks().len());
for CoverageSpan { span, bcb_leader_bb: bb, .. } in coverage_spans {
if let Some(&counter_operand) = bb_counters[bb].as_ref() {
let expression = self.coverage_counters.make_expression(
counter_operand,
Op::Add,
ExpressionOperandId::ZERO,
);
debug!(
"Injecting counter expression {:?} at: {:?}:\n{}\n==========",
expression,
span,
source_map.span_to_snippet(span).expect("Error getting source for span"),
);
let code_region = make_code_region(file_name, &source_file, span, body_span);
inject_statement(self.mir_body, expression, bb, Some(code_region));
} else {
let counter = self.coverage_counters.make_counter();
debug!(
"Injecting counter {:?} at: {:?}:\n{}\n==========",
counter,
span,
source_map.span_to_snippet(span).expect("Error getting source for span"),
);
let counter_operand = counter.as_operand_id();
bb_counters[bb] = Some(counter_operand);
let code_region = make_code_region(file_name, &source_file, span, body_span);
inject_statement(self.mir_body, counter, bb, Some(code_region));
}
}
}
}
fn inject_statement(
mir_body: &mut mir::Body<'tcx>,
counter_kind: CoverageKind,
bb: BasicBlock,
some_code_region: Option<CodeRegion>,
) {
debug!(
" injecting statement {:?} for {:?} at code region: {:?}",
counter_kind, bb, some_code_region
);
let data = &mut mir_body[bb];
let source_info = data.terminator().source_info;
let statement = Statement {
source_info,
kind: StatementKind::Coverage(box Coverage {
kind: counter_kind,
code_region: some_code_region,
}),
};
data.statements.push(statement);
}
/// Convert the Span into its file name, start line and column, and end line and column
fn make_code_region(
file_name: Symbol,
source_file: &Lrc<SourceFile>,
span: Span,
body_span: Span,
) -> CodeRegion {
let (start_line, mut start_col) = source_file.lookup_file_pos(span.lo());
let (end_line, end_col) = if span.hi() == span.lo() {
let (end_line, mut end_col) = (start_line, start_col);
// Extend an empty span by one character so the region will be counted.
let CharPos(char_pos) = start_col;
if span.hi() == body_span.hi() {
start_col = CharPos(char_pos - 1);
} else {
end_col = CharPos(char_pos + 1);
}
(end_line, end_col)
} else {
source_file.lookup_file_pos(span.hi())
};
CodeRegion {
file_name,
start_line: start_line as u32,
start_col: start_col.to_u32() + 1,
end_line: end_line as u32,
end_col: end_col.to_u32() + 1,
}
}
fn hir_body<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> &'tcx rustc_hir::Body<'tcx> {
let hir_node = tcx.hir().get_if_local(def_id).expect("expected DefId is local");
let fn_body_id = hir::map::associated_body(hir_node).expect("HIR node is a function with body");
tcx.hir().body(fn_body_id)
}
fn hash_mir_source<'tcx>(tcx: TyCtxt<'tcx>, hir_body: &'tcx rustc_hir::Body<'tcx>) -> u64 {
let mut hcx = tcx.create_no_span_stable_hashing_context();
hash(&mut hcx, &hir_body.value).to_smaller_hash()
}
fn hash(
hcx: &mut StableHashingContext<'tcx>,
node: &impl HashStable<StableHashingContext<'tcx>>,
) -> Fingerprint {
let mut stable_hasher = StableHasher::new();
node.hash_stable(hcx, &mut stable_hasher);
stable_hasher.finish()
}

View File

@ -0,0 +1,113 @@
use rustc_middle::mir::coverage::*;
use rustc_middle::mir::visit::Visitor;
use rustc_middle::mir::{Coverage, CoverageInfo, Location};
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::TyCtxt;
use rustc_span::def_id::DefId;
/// The `query` provider for `CoverageInfo`, requested by `codegen_coverage()` (to inject each
/// counter) and `FunctionCoverage::new()` (to extract the coverage map metadata from the MIR).
pub(crate) fn provide(providers: &mut Providers) {
providers.coverageinfo = |tcx, def_id| coverageinfo_from_mir(tcx, def_id);
}
/// The `num_counters` argument to `llvm.instrprof.increment` is the max counter_id + 1, or in
/// other words, the number of counter value references injected into the MIR (plus 1 for the
/// reserved `ZERO` counter, which uses counter ID `0` when included in an expression). Injected
/// counters have a counter ID from `1..num_counters-1`.
///
/// `num_expressions` is the number of counter expressions added to the MIR body.
///
/// Both `num_counters` and `num_expressions` are used to initialize new vectors, during backend
/// code generate, to lookup counters and expressions by simple u32 indexes.
///
/// MIR optimization may split and duplicate some BasicBlock sequences, or optimize out some code
/// including injected counters. (It is OK if some counters are optimized out, but those counters
/// are still included in the total `num_counters` or `num_expressions`.) Simply counting the
/// calls may not work; but computing the number of counters or expressions by adding `1` to the
/// highest ID (for a given instrumented function) is valid.
///
/// This visitor runs twice, first with `add_missing_operands` set to `false`, to find the maximum
/// counter ID and maximum expression ID based on their enum variant `id` fields; then, as a
/// safeguard, with `add_missing_operands` set to `true`, to find any other counter or expression
/// IDs referenced by expression operands, if not already seen.
///
/// Ideally, every expression operand in the MIR will have a corresponding Counter or Expression,
/// but since current or future MIR optimizations can theoretically optimize out segments of a
/// MIR, it may not be possible to guarantee this, so the second pass ensures the `CoverageInfo`
/// counts include all referenced IDs.
struct CoverageVisitor {
info: CoverageInfo,
add_missing_operands: bool,
}
impl CoverageVisitor {
// If an expression operand is encountered with an ID outside the range of known counters and
// expressions, the only way to determine if the ID is a counter ID or an expression ID is to
// assume a maximum possible counter ID value.
const MAX_COUNTER_GUARD: u32 = (u32::MAX / 2) + 1;
#[inline(always)]
fn update_num_counters(&mut self, counter_id: u32) {
self.info.num_counters = std::cmp::max(self.info.num_counters, counter_id + 1);
}
#[inline(always)]
fn update_num_expressions(&mut self, expression_id: u32) {
let expression_index = u32::MAX - expression_id;
self.info.num_expressions = std::cmp::max(self.info.num_expressions, expression_index + 1);
}
fn update_from_expression_operand(&mut self, operand_id: u32) {
if operand_id >= self.info.num_counters {
let operand_as_expression_index = u32::MAX - operand_id;
if operand_as_expression_index >= self.info.num_expressions {
if operand_id <= Self::MAX_COUNTER_GUARD {
self.update_num_counters(operand_id)
} else {
self.update_num_expressions(operand_id)
}
}
}
}
}
impl Visitor<'_> for CoverageVisitor {
fn visit_coverage(&mut self, coverage: &Coverage, _location: Location) {
if self.add_missing_operands {
match coverage.kind {
CoverageKind::Expression { lhs, rhs, .. } => {
self.update_from_expression_operand(u32::from(lhs));
self.update_from_expression_operand(u32::from(rhs));
}
_ => {}
}
} else {
match coverage.kind {
CoverageKind::Counter { id, .. } => {
self.update_num_counters(u32::from(id));
}
CoverageKind::Expression { id, .. } => {
self.update_num_expressions(u32::from(id));
}
_ => {}
}
}
}
}
fn coverageinfo_from_mir<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> CoverageInfo {
let mir_body = tcx.optimized_mir(def_id);
let mut coverage_visitor = CoverageVisitor {
info: CoverageInfo { num_counters: 0, num_expressions: 0 },
add_missing_operands: false,
};
coverage_visitor.visit_body(mir_body);
coverage_visitor.add_missing_operands = true;
coverage_visitor.visit_body(mir_body);
coverage_visitor.info
}

View File

@ -1,396 +1,24 @@
use crate::transform::MirPass;
use crate::util::pretty;
use crate::util::spanview::{self, source_range_no_file, SpanViewable};
use super::debug::term_type;
use super::graph::{BasicCoverageBlock, BasicCoverageBlocks};
use crate::util::spanview::source_range_no_file;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::graph::dominators::Dominators;
use rustc_data_structures::graph::WithNumNodes;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::Lrc;
use rustc_index::bit_set::BitSet;
use rustc_index::vec::IndexVec;
use rustc_middle::hir;
use rustc_middle::hir::map::blocks::FnLikeNode;
use rustc_middle::ich::StableHashingContext;
use rustc_middle::mir;
use rustc_middle::mir::coverage::*;
use rustc_middle::mir::visit::Visitor;
use rustc_middle::mir::{
AggregateKind, BasicBlock, BasicBlockData, Coverage, CoverageInfo, FakeReadCause, Location,
Rvalue, Statement, StatementKind, Terminator, TerminatorKind,
self, AggregateKind, BasicBlock, FakeReadCause, Rvalue, Statement, StatementKind, Terminator,
TerminatorKind,
};
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::TyCtxt;
use rustc_span::def_id::DefId;
use rustc_span::source_map::original_sp;
use rustc_span::{BytePos, CharPos, Pos, SourceFile, Span, Symbol, SyntaxContext};
use rustc_span::{BytePos, Span, SyntaxContext};
use std::cmp::Ordering;
const ID_SEPARATOR: &str = ",";
/// The `query` provider for `CoverageInfo`, requested by `codegen_coverage()` (to inject each
/// counter) and `FunctionCoverage::new()` (to extract the coverage map metadata from the MIR).
pub(crate) fn provide(providers: &mut Providers) {
providers.coverageinfo = |tcx, def_id| coverageinfo_from_mir(tcx, def_id);
}
/// The `num_counters` argument to `llvm.instrprof.increment` is the max counter_id + 1, or in
/// other words, the number of counter value references injected into the MIR (plus 1 for the
/// reserved `ZERO` counter, which uses counter ID `0` when included in an expression). Injected
/// counters have a counter ID from `1..num_counters-1`.
///
/// `num_expressions` is the number of counter expressions added to the MIR body.
///
/// Both `num_counters` and `num_expressions` are used to initialize new vectors, during backend
/// code generate, to lookup counters and expressions by simple u32 indexes.
///
/// MIR optimization may split and duplicate some BasicBlock sequences, or optimize out some code
/// including injected counters. (It is OK if some counters are optimized out, but those counters
/// are still included in the total `num_counters` or `num_expressions`.) Simply counting the
/// calls may not work; but computing the number of counters or expressions by adding `1` to the
/// highest ID (for a given instrumented function) is valid.
///
/// This visitor runs twice, first with `add_missing_operands` set to `false`, to find the maximum
/// counter ID and maximum expression ID based on their enum variant `id` fields; then, as a
/// safeguard, with `add_missing_operands` set to `true`, to find any other counter or expression
/// IDs referenced by expression operands, if not already seen.
///
/// Ideally, every expression operand in the MIR will have a corresponding Counter or Expression,
/// but since current or future MIR optimizations can theoretically optimize out segments of a
/// MIR, it may not be possible to guarantee this, so the second pass ensures the `CoverageInfo`
/// counts include all referenced IDs.
struct CoverageVisitor {
info: CoverageInfo,
add_missing_operands: bool,
}
impl CoverageVisitor {
// If an expression operand is encountered with an ID outside the range of known counters and
// expressions, the only way to determine if the ID is a counter ID or an expression ID is to
// assume a maximum possible counter ID value.
const MAX_COUNTER_GUARD: u32 = (u32::MAX / 2) + 1;
#[inline(always)]
fn update_num_counters(&mut self, counter_id: u32) {
self.info.num_counters = std::cmp::max(self.info.num_counters, counter_id + 1);
}
#[inline(always)]
fn update_num_expressions(&mut self, expression_id: u32) {
let expression_index = u32::MAX - expression_id;
self.info.num_expressions = std::cmp::max(self.info.num_expressions, expression_index + 1);
}
fn update_from_expression_operand(&mut self, operand_id: u32) {
if operand_id >= self.info.num_counters {
let operand_as_expression_index = u32::MAX - operand_id;
if operand_as_expression_index >= self.info.num_expressions {
if operand_id <= Self::MAX_COUNTER_GUARD {
self.update_num_counters(operand_id)
} else {
self.update_num_expressions(operand_id)
}
}
}
}
}
impl Visitor<'_> for CoverageVisitor {
fn visit_coverage(&mut self, coverage: &Coverage, _location: Location) {
if self.add_missing_operands {
match coverage.kind {
CoverageKind::Expression { lhs, rhs, .. } => {
self.update_from_expression_operand(u32::from(lhs));
self.update_from_expression_operand(u32::from(rhs));
}
_ => {}
}
} else {
match coverage.kind {
CoverageKind::Counter { id, .. } => {
self.update_num_counters(u32::from(id));
}
CoverageKind::Expression { id, .. } => {
self.update_num_expressions(u32::from(id));
}
_ => {}
}
}
}
}
fn coverageinfo_from_mir<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> CoverageInfo {
let mir_body = tcx.optimized_mir(def_id);
let mut coverage_visitor = CoverageVisitor {
info: CoverageInfo { num_counters: 0, num_expressions: 0 },
add_missing_operands: false,
};
coverage_visitor.visit_body(mir_body);
coverage_visitor.add_missing_operands = true;
coverage_visitor.visit_body(mir_body);
coverage_visitor.info
}
/// Inserts `StatementKind::Coverage` statements that either instrument the binary with injected
/// counters, via intrinsic `llvm.instrprof.increment`, and/or inject metadata used during codegen
/// to construct the coverage map.
pub struct InstrumentCoverage;
impl<'tcx> MirPass<'tcx> for InstrumentCoverage {
fn run_pass(&self, tcx: TyCtxt<'tcx>, mir_body: &mut mir::Body<'tcx>) {
let mir_source = mir_body.source;
// If the InstrumentCoverage pass is called on promoted MIRs, skip them.
// See: https://github.com/rust-lang/rust/pull/73011#discussion_r438317601
if mir_source.promoted.is_some() {
trace!(
"InstrumentCoverage skipped for {:?} (already promoted for Miri evaluation)",
mir_source.def_id()
);
return;
}
let hir_id = tcx.hir().local_def_id_to_hir_id(mir_source.def_id().expect_local());
let is_fn_like = FnLikeNode::from_node(tcx.hir().get(hir_id)).is_some();
// Only instrument functions, methods, and closures (not constants since they are evaluated
// at compile time by Miri).
// FIXME(#73156): Handle source code coverage in const eval, but note, if and when const
// expressions get coverage spans, we will probably have to "carve out" space for const
// expressions from coverage spans in enclosing MIR's, like we do for closures. (That might
// be tricky if const expressions have no corresponding statements in the enclosing MIR.
// Closures are carved out by their initial `Assign` statement.)
if !is_fn_like {
trace!("InstrumentCoverage skipped for {:?} (not an FnLikeNode)", mir_source.def_id());
return;
}
// FIXME(richkadel): By comparison, the MIR pass `ConstProp` includes associated constants,
// with functions, methods, and closures. I assume Miri is used for associated constants as
// well. If not, we may need to include them here too.
trace!("InstrumentCoverage starting for {:?}", mir_source.def_id());
Instrumentor::new(&self.name(), tcx, mir_body).inject_counters();
trace!("InstrumentCoverage starting for {:?}", mir_source.def_id());
}
}
/// A BasicCoverageBlock (BCB) represents the maximal-length sequence of CFG (MIR) BasicBlocks
/// without conditional branches.
///
/// The BCB allows coverage analysis to be performed on a simplified projection of the underlying
/// MIR CFG, without altering the original CFG. Note that running the MIR `SimplifyCfg` transform,
/// is not sufficient, and therefore not necessary, since the BCB-based CFG projection is a more
/// aggressive simplification. For example:
///
/// * The BCB CFG projection ignores (trims) branches not relevant to coverage, such as unwind-
/// related code that is injected by the Rust compiler but has no physical source code to
/// count. This also means a BasicBlock with a `Call` terminator can be merged into its
/// primary successor target block, in the same BCB.
/// * Some BasicBlock terminators support Rust-specific concerns--like borrow-checking--that are
/// not relevant to coverage analysis. `FalseUnwind`, for example, can be treated the same as
/// a `Goto`, and merged with its successor into the same BCB.
///
/// Each BCB with at least one computed `CoverageSpan` will have no more than one `Counter`.
/// In some cases, a BCB's execution count can be computed by `CounterExpression`. Additional
/// disjoint `CoverageSpan`s in a BCB can also be counted by `CounterExpression` (by adding `ZERO`
/// to the BCB's primary counter or expression).
///
/// Dominator/dominated relationships (which are fundamental to the coverage analysis algorithm)
/// between two BCBs can be computed using the `mir::Body` `dominators()` with any `BasicBlock`
/// member of each BCB. (For consistency, BCB's use the first `BasicBlock`, also referred to as the
/// `bcb_leader_bb`.)
///
/// The BCB CFG projection is critical to simplifying the coverage analysis by ensuring graph
/// path-based queries (`is_dominated_by()`, `predecessors`, `successors`, etc.) have branch
/// (control flow) significance.
#[derive(Debug, Clone)]
struct BasicCoverageBlock {
pub blocks: Vec<BasicBlock>,
}
impl BasicCoverageBlock {
pub fn leader_bb(&self) -> BasicBlock {
self.blocks[0]
}
pub fn id(&self) -> String {
format!(
"@{}",
self.blocks
.iter()
.map(|bb| bb.index().to_string())
.collect::<Vec<_>>()
.join(ID_SEPARATOR)
)
}
}
struct BasicCoverageBlocks {
vec: IndexVec<BasicBlock, Option<BasicCoverageBlock>>,
}
impl BasicCoverageBlocks {
pub fn from_mir(mir_body: &mir::Body<'tcx>) -> Self {
let mut basic_coverage_blocks =
BasicCoverageBlocks { vec: IndexVec::from_elem_n(None, mir_body.basic_blocks().len()) };
basic_coverage_blocks.extract_from_mir(mir_body);
basic_coverage_blocks
}
pub fn iter(&self) -> impl Iterator<Item = &BasicCoverageBlock> {
self.vec.iter().filter_map(|bcb| bcb.as_ref())
}
pub fn num_nodes(&self) -> usize {
self.vec.len()
}
pub fn extract_from_mir(&mut self, mir_body: &mir::Body<'tcx>) {
// Traverse the CFG but ignore anything following an `unwind`
let cfg_without_unwind = ShortCircuitPreorder::new(&mir_body, |term_kind| {
let mut successors = term_kind.successors();
match &term_kind {
// SwitchInt successors are never unwind, and all of them should be traversed.
// NOTE: TerminatorKind::FalseEdge targets from SwitchInt don't appear to be
// helpful in identifying unreachable code. I did test the theory, but the following
// changes were not beneficial. (I assumed that replacing some constants with
// non-deterministic variables might effect which blocks were targeted by a
// `FalseEdge` `imaginary_target`. It did not.)
//
// Also note that, if there is a way to identify BasicBlocks that are part of the
// MIR CFG, but not actually reachable, here are some other things to consider:
//
// Injecting unreachable code regions will probably require computing the set
// difference between the basic blocks found without filtering out unreachable
// blocks, and the basic blocks found with the filter; then computing the
// `CoverageSpans` without the filter; and then injecting `Counter`s or
// `CounterExpression`s for blocks that are not unreachable, or injecting
// `Unreachable` code regions otherwise. This seems straightforward, but not
// trivial.
//
// Alternatively, we might instead want to leave the unreachable blocks in
// (bypass the filter here), and inject the counters. This will result in counter
// values of zero (0) for unreachable code (and, notably, the code will be displayed
// with a red background by `llvm-cov show`).
//
// TerminatorKind::SwitchInt { .. } => {
// let some_imaginary_target = successors.clone().find_map(|&successor| {
// let term = mir_body.basic_blocks()[successor].terminator();
// if let TerminatorKind::FalseEdge { imaginary_target, .. } = term.kind {
// if mir_body.predecessors()[imaginary_target].len() == 1 {
// return Some(imaginary_target);
// }
// }
// None
// });
// if let Some(imaginary_target) = some_imaginary_target {
// box successors.filter(move |&&successor| successor != imaginary_target)
// } else {
// box successors
// }
// }
//
// Note this also required changing the closure signature for the
// `ShortCurcuitPreorder` to:
//
// F: Fn(&'tcx TerminatorKind<'tcx>) -> Box<dyn Iterator<Item = &BasicBlock> + 'a>,
TerminatorKind::SwitchInt { .. } => successors,
// For all other kinds, return only the first successor, if any, and ignore unwinds
_ => successors.next().into_iter().chain(&[]),
}
});
// Walk the CFG using a Preorder traversal, which starts from `START_BLOCK` and follows
// each block terminator's `successors()`. Coverage spans must map to actual source code,
// so compiler generated blocks and paths can be ignored. To that end the CFG traversal
// intentionally omits unwind paths.
let mut blocks = Vec::new();
for (bb, data) in cfg_without_unwind {
if let Some(last) = blocks.last() {
let predecessors = &mir_body.predecessors()[bb];
if predecessors.len() > 1 || !predecessors.contains(last) {
// The `bb` has more than one _incoming_ edge, and should start its own
// `BasicCoverageBlock`. (Note, the `blocks` vector does not yet include `bb`;
// it contains a sequence of one or more sequential blocks with no intermediate
// branches in or out. Save these as a new `BasicCoverageBlock` before starting
// the new one.)
self.add_basic_coverage_block(blocks.split_off(0));
debug!(
" because {}",
if predecessors.len() > 1 {
"predecessors.len() > 1".to_owned()
} else {
format!("bb {} is not in precessors: {:?}", bb.index(), predecessors)
}
);
}
}
blocks.push(bb);
let term = data.terminator();
match term.kind {
TerminatorKind::Return { .. }
| TerminatorKind::Abort
| TerminatorKind::Assert { .. }
| TerminatorKind::Yield { .. }
| TerminatorKind::SwitchInt { .. } => {
// The `bb` has more than one _outgoing_ edge, or exits the function. Save the
// current sequence of `blocks` gathered to this point, as a new
// `BasicCoverageBlock`.
self.add_basic_coverage_block(blocks.split_off(0));
debug!(" because term.kind = {:?}", term.kind);
// Note that this condition is based on `TerminatorKind`, even though it
// theoretically boils down to `successors().len() != 1`; that is, either zero
// (e.g., `Return`, `Abort`) or multiple successors (e.g., `SwitchInt`), but
// since the Coverage graph (the BCB CFG projection) ignores things like unwind
// branches (which exist in the `Terminator`s `successors()` list) checking the
// number of successors won't work.
}
TerminatorKind::Goto { .. }
| TerminatorKind::Resume
| TerminatorKind::Unreachable
| TerminatorKind::Drop { .. }
| TerminatorKind::DropAndReplace { .. }
| TerminatorKind::Call { .. }
| TerminatorKind::GeneratorDrop
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::FalseUnwind { .. }
| TerminatorKind::InlineAsm { .. } => {}
}
}
if !blocks.is_empty() {
// process any remaining blocks into a final `BasicCoverageBlock`
self.add_basic_coverage_block(blocks.split_off(0));
debug!(" because the end of the CFG was reached while traversing");
}
}
fn add_basic_coverage_block(&mut self, blocks: Vec<BasicBlock>) {
let leader_bb = blocks[0];
let bcb = BasicCoverageBlock { blocks };
debug!("adding BCB: {:?}", bcb);
self.vec[leader_bb] = Some(bcb);
}
}
impl std::ops::Index<BasicBlock> for BasicCoverageBlocks {
type Output = BasicCoverageBlock;
fn index(&self, index: BasicBlock) -> &Self::Output {
self.vec[index].as_ref().expect("is_some if BasicBlock is a BasicCoverageBlock leader")
}
}
#[derive(Debug, Copy, Clone)]
enum CoverageStatement {
pub(crate) enum CoverageStatement {
Statement(BasicBlock, Span, usize),
Terminator(BasicBlock, Span),
}
@ -428,28 +56,6 @@ impl CoverageStatement {
}
}
/// Returns a simple string representation of a `TerminatorKind` variant, indenpendent of any
/// values it might hold.
fn term_type(kind: &TerminatorKind<'tcx>) -> &'static str {
match kind {
TerminatorKind::Goto { .. } => "Goto",
TerminatorKind::SwitchInt { .. } => "SwitchInt",
TerminatorKind::Resume => "Resume",
TerminatorKind::Abort => "Abort",
TerminatorKind::Return => "Return",
TerminatorKind::Unreachable => "Unreachable",
TerminatorKind::Drop { .. } => "Drop",
TerminatorKind::DropAndReplace { .. } => "DropAndReplace",
TerminatorKind::Call { .. } => "Call",
TerminatorKind::Assert { .. } => "Assert",
TerminatorKind::Yield { .. } => "Yield",
TerminatorKind::GeneratorDrop => "GeneratorDrop",
TerminatorKind::FalseEdge { .. } => "FalseEdge",
TerminatorKind::FalseUnwind { .. } => "FalseUnwind",
TerminatorKind::InlineAsm { .. } => "InlineAsm",
}
}
/// A BCB is deconstructed into one or more `Span`s. Each `Span` maps to a `CoverageSpan` that
/// references the originating BCB and one or more MIR `Statement`s and/or `Terminator`s.
/// Initially, the `Span`s come from the `Statement`s and `Terminator`s, but subsequent
@ -461,7 +67,7 @@ fn term_type(kind: &TerminatorKind<'tcx>) -> &'static str {
/// or is subsumed by the `Span` associated with this `CoverageSpan`, and it's `BasicBlock`
/// `is_dominated_by()` the `BasicBlock`s in this `CoverageSpan`.
#[derive(Debug, Clone)]
struct CoverageSpan {
pub(crate) struct CoverageSpan {
pub span: Span,
pub bcb_leader_bb: BasicBlock,
pub coverage_statements: Vec<CoverageStatement>,
@ -547,220 +153,6 @@ impl CoverageSpan {
}
}
struct Instrumentor<'a, 'tcx> {
pass_name: &'a str,
tcx: TyCtxt<'tcx>,
mir_body: &'a mut mir::Body<'tcx>,
body_span: Span,
basic_coverage_blocks: BasicCoverageBlocks,
coverage_counters: CoverageCounters,
}
impl<'a, 'tcx> Instrumentor<'a, 'tcx> {
fn new(pass_name: &'a str, tcx: TyCtxt<'tcx>, mir_body: &'a mut mir::Body<'tcx>) -> Self {
let hir_body = hir_body(tcx, mir_body.source.def_id());
let body_span = hir_body.value.span;
let function_source_hash = hash_mir_source(tcx, hir_body);
let basic_coverage_blocks = BasicCoverageBlocks::from_mir(mir_body);
Self {
pass_name,
tcx,
mir_body,
body_span,
basic_coverage_blocks,
coverage_counters: CoverageCounters::new(function_source_hash),
}
}
fn inject_counters(&'a mut self) {
let tcx = self.tcx;
let source_map = tcx.sess.source_map();
let mir_source = self.mir_body.source;
let def_id = mir_source.def_id();
let body_span = self.body_span;
debug!("instrumenting {:?}, span: {}", def_id, source_map.span_to_string(body_span));
////////////////////////////////////////////////////
// Compute `CoverageSpan`s from the `BasicCoverageBlocks`.
let coverage_spans = CoverageSpans::generate_coverage_spans(
&self.mir_body,
body_span,
&self.basic_coverage_blocks,
);
if pretty::dump_enabled(tcx, self.pass_name, def_id) {
dump_coverage_spanview(
tcx,
self.mir_body,
&self.basic_coverage_blocks,
self.pass_name,
&coverage_spans,
);
}
self.inject_coverage_span_counters(coverage_spans);
}
/// Inject a counter for each `CoverageSpan`. There can be multiple `CoverageSpan`s for a given
/// BCB, but only one actual counter needs to be incremented per BCB. `bcb_counters` maps each
/// `bcb` to its `Counter`, when injected. Subsequent `CoverageSpan`s for a BCB that already has
/// a `Counter` will inject an `Expression` instead, and compute its value by adding `ZERO` to
/// the BCB `Counter` value.
fn inject_coverage_span_counters(&mut self, coverage_spans: Vec<CoverageSpan>) {
let tcx = self.tcx;
let source_map = tcx.sess.source_map();
let body_span = self.body_span;
let source_file = source_map.lookup_source_file(body_span.lo());
let file_name = Symbol::intern(&source_file.name.to_string());
let mut bb_counters = IndexVec::from_elem_n(None, self.mir_body.basic_blocks().len());
for CoverageSpan { span, bcb_leader_bb: bb, .. } in coverage_spans {
if let Some(&counter_operand) = bb_counters[bb].as_ref() {
let expression = self.coverage_counters.make_expression(
counter_operand,
Op::Add,
ExpressionOperandId::ZERO,
);
debug!(
"Injecting counter expression {:?} at: {:?}:\n{}\n==========",
expression,
span,
source_map.span_to_snippet(span).expect("Error getting source for span"),
);
let code_region = make_code_region(file_name, &source_file, span, body_span);
inject_statement(self.mir_body, expression, bb, Some(code_region));
} else {
let counter = self.coverage_counters.make_counter();
debug!(
"Injecting counter {:?} at: {:?}:\n{}\n==========",
counter,
span,
source_map.span_to_snippet(span).expect("Error getting source for span"),
);
let counter_operand = counter.as_operand_id();
bb_counters[bb] = Some(counter_operand);
let code_region = make_code_region(file_name, &source_file, span, body_span);
inject_statement(self.mir_body, counter, bb, Some(code_region));
}
}
}
}
/// Generates the MIR pass `CoverageSpan`-specific spanview dump file.
fn dump_coverage_spanview(
tcx: TyCtxt<'tcx>,
mir_body: &mir::Body<'tcx>,
basic_coverage_blocks: &BasicCoverageBlocks,
pass_name: &str,
coverage_spans: &Vec<CoverageSpan>,
) {
let mir_source = mir_body.source;
let def_id = mir_source.def_id();
let span_viewables = span_viewables(tcx, mir_body, basic_coverage_blocks, &coverage_spans);
let mut file = pretty::create_dump_file(tcx, "html", None, pass_name, &0, mir_source)
.expect("Unexpected error creating MIR spanview HTML file");
let crate_name = tcx.crate_name(def_id.krate);
let item_name = tcx.def_path(def_id).to_filename_friendly_no_crate();
let title = format!("{}.{} - Coverage Spans", crate_name, item_name);
spanview::write_document(tcx, def_id, span_viewables, &title, &mut file)
.expect("Unexpected IO error dumping coverage spans as HTML");
}
/// Converts the computed `BasicCoverageBlock`s into `SpanViewable`s.
fn span_viewables(
tcx: TyCtxt<'tcx>,
mir_body: &mir::Body<'tcx>,
basic_coverage_blocks: &BasicCoverageBlocks,
coverage_spans: &Vec<CoverageSpan>,
) -> Vec<SpanViewable> {
let mut span_viewables = Vec::new();
for coverage_span in coverage_spans {
let tooltip = coverage_span.format_coverage_statements(tcx, mir_body);
let CoverageSpan { span, bcb_leader_bb: bb, .. } = coverage_span;
let bcb = &basic_coverage_blocks[*bb];
let id = bcb.id();
let leader_bb = bcb.leader_bb();
span_viewables.push(SpanViewable { bb: leader_bb, span: *span, id, tooltip });
}
span_viewables
}
/// Manages the counter and expression indexes/IDs to generate `CoverageKind` components for MIR
/// `Coverage` statements.
struct CoverageCounters {
function_source_hash: u64,
next_counter_id: u32,
num_expressions: u32,
}
impl CoverageCounters {
pub fn new(function_source_hash: u64) -> Self {
Self {
function_source_hash,
next_counter_id: CounterValueReference::START.as_u32(),
num_expressions: 0,
}
}
pub fn make_counter(&mut self) -> CoverageKind {
CoverageKind::Counter {
function_source_hash: self.function_source_hash,
id: self.next_counter(),
}
}
pub fn make_expression(
&mut self,
lhs: ExpressionOperandId,
op: Op,
rhs: ExpressionOperandId,
) -> CoverageKind {
let id = self.next_expression();
CoverageKind::Expression { id, lhs, op, rhs }
}
/// Counter IDs start from one and go up.
fn next_counter(&mut self) -> CounterValueReference {
assert!(self.next_counter_id < u32::MAX - self.num_expressions);
let next = self.next_counter_id;
self.next_counter_id += 1;
CounterValueReference::from(next)
}
/// Expression IDs start from u32::MAX and go down because a Expression can reference
/// (add or subtract counts) of both Counter regions and Expression regions. The counter
/// expression operand IDs must be unique across both types.
fn next_expression(&mut self) -> InjectedExpressionId {
assert!(self.next_counter_id < u32::MAX - self.num_expressions);
let next = u32::MAX - self.num_expressions;
self.num_expressions += 1;
InjectedExpressionId::from(next)
}
}
fn inject_statement(
mir_body: &mut mir::Body<'tcx>,
counter_kind: CoverageKind,
bb: BasicBlock,
some_code_region: Option<CodeRegion>,
) {
debug!(
" injecting statement {:?} for {:?} at code region: {:?}",
counter_kind, bb, some_code_region
);
let data = &mut mir_body[bb];
let source_info = data.terminator().source_info;
let statement = Statement {
source_info,
kind: StatementKind::Coverage(box Coverage {
kind: counter_kind,
code_region: some_code_region,
}),
};
data.statements.push(statement);
}
/// Converts the initial set of `CoverageSpan`s (one per MIR `Statement` or `Terminator`) into a
/// minimal set of `CoverageSpan`s, using the BCB CFG to determine where it is safe and useful to:
///
@ -818,7 +210,7 @@ pub struct CoverageSpans<'a, 'tcx> {
}
impl<'a, 'tcx> CoverageSpans<'a, 'tcx> {
fn generate_coverage_spans(
pub(crate) fn generate_coverage_spans(
mir_body: &'a mir::Body<'tcx>,
body_span: Span,
basic_coverage_blocks: &'a BasicCoverageBlocks,
@ -1366,111 +758,3 @@ fn is_goto(term_kind: &TerminatorKind<'tcx>) -> bool {
_ => false,
}
}
/// Convert the Span into its file name, start line and column, and end line and column
fn make_code_region(
file_name: Symbol,
source_file: &Lrc<SourceFile>,
span: Span,
body_span: Span,
) -> CodeRegion {
let (start_line, mut start_col) = source_file.lookup_file_pos(span.lo());
let (end_line, end_col) = if span.hi() == span.lo() {
let (end_line, mut end_col) = (start_line, start_col);
// Extend an empty span by one character so the region will be counted.
let CharPos(char_pos) = start_col;
if span.hi() == body_span.hi() {
start_col = CharPos(char_pos - 1);
} else {
end_col = CharPos(char_pos + 1);
}
(end_line, end_col)
} else {
source_file.lookup_file_pos(span.hi())
};
CodeRegion {
file_name,
start_line: start_line as u32,
start_col: start_col.to_u32() + 1,
end_line: end_line as u32,
end_col: end_col.to_u32() + 1,
}
}
fn hir_body<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> &'tcx rustc_hir::Body<'tcx> {
let hir_node = tcx.hir().get_if_local(def_id).expect("expected DefId is local");
let fn_body_id = hir::map::associated_body(hir_node).expect("HIR node is a function with body");
tcx.hir().body(fn_body_id)
}
fn hash_mir_source<'tcx>(tcx: TyCtxt<'tcx>, hir_body: &'tcx rustc_hir::Body<'tcx>) -> u64 {
let mut hcx = tcx.create_no_span_stable_hashing_context();
hash(&mut hcx, &hir_body.value).to_smaller_hash()
}
fn hash(
hcx: &mut StableHashingContext<'tcx>,
node: &impl HashStable<StableHashingContext<'tcx>>,
) -> Fingerprint {
let mut stable_hasher = StableHasher::new();
node.hash_stable(hcx, &mut stable_hasher);
stable_hasher.finish()
}
pub struct ShortCircuitPreorder<
'a,
'tcx,
F: Fn(&'tcx TerminatorKind<'tcx>) -> mir::Successors<'tcx>,
> {
body: &'a mir::Body<'tcx>,
visited: BitSet<BasicBlock>,
worklist: Vec<BasicBlock>,
filtered_successors: F,
}
impl<'a, 'tcx, F: Fn(&'tcx TerminatorKind<'tcx>) -> mir::Successors<'tcx>>
ShortCircuitPreorder<'a, 'tcx, F>
{
pub fn new(
body: &'a mir::Body<'tcx>,
filtered_successors: F,
) -> ShortCircuitPreorder<'a, 'tcx, F> {
let worklist = vec![mir::START_BLOCK];
ShortCircuitPreorder {
body,
visited: BitSet::new_empty(body.basic_blocks().len()),
worklist,
filtered_successors,
}
}
}
impl<'a: 'tcx, 'tcx, F: Fn(&'tcx TerminatorKind<'tcx>) -> mir::Successors<'tcx>> Iterator
for ShortCircuitPreorder<'a, 'tcx, F>
{
type Item = (BasicBlock, &'a BasicBlockData<'tcx>);
fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> {
while let Some(idx) = self.worklist.pop() {
if !self.visited.insert(idx) {
continue;
}
let data = &self.body[idx];
if let Some(ref term) = data.terminator {
self.worklist.extend((self.filtered_successors)(&term.kind));
}
return Some((idx, data));
}
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
let size = self.body.basic_blocks().len() - self.visited.count();
(size, Some(size))
}
}

View File

@ -22,6 +22,7 @@ pub mod check_packed_ref;
pub mod check_unsafety;
pub mod cleanup_post_borrowck;
pub mod const_prop;
pub mod coverage;
pub mod deaggregator;
pub mod dest_prop;
pub mod dump_mir;
@ -31,7 +32,6 @@ pub mod function_item_references;
pub mod generator;
pub mod inline;
pub mod instcombine;
pub mod instrument_coverage;
pub mod match_branches;
pub mod multiple_return_terminators;
pub mod no_landing_pads;
@ -85,7 +85,7 @@ pub(crate) fn provide(providers: &mut Providers) {
},
..*providers
};
instrument_coverage::provide(providers);
coverage::query::provide(providers);
}
fn is_mir_available(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
@ -306,7 +306,7 @@ fn mir_promoted(
];
let opt_coverage: &[&dyn MirPass<'tcx>] = if tcx.sess.opts.debugging_opts.instrument_coverage {
&[&instrument_coverage::InstrumentCoverage]
&[&coverage::InstrumentCoverage]
} else {
&[]
};