Greatly simplify lifetime captures in edition 2024
Remove most of the `+ Captures` and `+ '_` from the compiler, since they are now unnecessary with the new edition 2021 lifetime capture rules. Use some `+ 'tcx` and `+ 'static` rather than being overly verbose with precise capturing syntax.
compiler: untangle SIMD alignment assumptions
There were a number of puzzling assumptions being made about SIMD types and their layout that I have corrected in this diff. These are mostly no-op edits in actual fact, but they do subtly alter a pair of checks in our invariant-checking and union layout computation that rested on those peculiar assumptions. Those unfortunately stand in the way of any further actual fixes. I submit this for review, even though it's not clearly motivated without its followups, because it should still be possible to independently conclude whether this is correct.
This pair of fn was introduced to perform invariant checks for scalars.
Their current behavior doesn't mesh as well with checking SIMD types,
so change the name of the fn to reflect their actual use-case and
refactor the corresponding checks.
Also simplify the returns from Option<AbiAndPrefAlign> to Option<Align>,
because every site was mapping away the "preferred" alignment anyways.
After the stabilization PR was opened, `extern "system"` functions were
added to `extended_varargs_abi_support`. This has a number of questions
regarding it that were not discussed and were somewhat surprising.
It deserves to be considered as its own feature, separate from
`extended_varargs_abi_support`.
These were a way to ensure hashes were stable over time for ExternAbi,
but simply hashing the strings is more stable in the face of changes.
As a result, we can do away with them.
Directly map each ExternAbi variant to its string and back again.
This has a few advantages:
- By making the ABIs compare equal to their strings, we can easily
lexicographically sort them and use that sorted slice at runtime.
- We no longer need a workaround to make sure the hashes remain stable,
as they already naturally are (by being the hashes of unique strings).
- The compiler can carry around less &str wide pointers
These are either residue of a long-term migration away from something,
or are simply trying too hard to be specifically useful:
nearest-match suggestions for ABI strings should handle this.
By moving this stability check into AST lowering, we effectively make
it impossible to accidentally miss, as it must happen to generate HIR.
Also, we put the ABI-stability code next to code that actually uses it!
This allows code that wants to reason about backend ABI implementations
to stop worrying about high-level concerns like syntax stability,
while still leaving it as the authority on what ABIs actually exist.
It also makes it easy to refactor things to have more consistent errors.
For now, we only apply this to generalize the existing messages a bit.
General housekeeping:
- Use less reexports from its rustc_target era
- Unify some imports as a result
- Split the Reg(ister) types into their own files
Generally moving stuff around because it makes the crate more consistent.
Add gpu-kernel calling convention
The amdgpu-kernel calling convention was reverted in commit f6b21e90d1 (#120495 and https://github.com/rust-lang/rust-analyzer/pull/16463) due to inactivity in the amdgpu target.
Introduce a `gpu-kernel` calling convention that translates to `ptx_kernel` or `amdgpu_kernel`, depending on the target that rust compiles for.
Tracking issue: #135467
amdgpu target tracking issue: #135024
The amdgpu-kernel calling convention was reverted in commit
f6b21e90d1 due to inactivity in the amdgpu
target.
Introduce a `gpu-kernel` calling convention that translates to
`ptx_kernel` or `amdgpu_kernel`, depending on the target that rust
compiles for.
previously field ordering was using the same seed for all instances of Foo,
now we pass seed values through the layout tree so that not only
the struct itself affects layout but also its fields
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
The initial naming of "Abi" was an awful mistake, conveying wrong ideas
about how psABIs worked and even more about what the enum meant.
It was only meant to represent the way the value would be described to
a codegen backend as it was lowered to that intermediate representation.
It was never meant to mean anything about the actual psABI handling!
The conflation is because LLVM typically will associate a certain form
with a certain ABI, but even that does not hold when the special cases
that actually exist arise, plus the IR annotations that modify the ABI.
Reframe `rustc_abi::Abi` as the `BackendRepr` of the type, and rename
`BackendRepr::Aggregate` as `BackendRepr::Memory`. Unfortunately, due to
the persistent misunderstandings, this too is now incorrect:
- Scattered ABI-relevant code is entangled with BackendRepr
- We do not always pre-compute a correct BackendRepr that reflects how
we "actually" want this value to be handled, so we leave the backend
interface to also inject various special-cases here
- In some cases `BackendRepr::Memory` is a "real" aggregate, but in
others it is in fact using memory, and in some cases it is a scalar!
Our rustc-to-backend lowering code handles this sort of thing right now.
That will eventually be addressed by lifting duplicated lowering code
to either rustc_codegen_ssa or rustc_target as appropriate.
Add `LayoutS::is_uninhabited` and use it
Use accessors for the things that accessors are good at: reducing everyone's need to be nosy and peek at the internals of every data structure.
Correct outdated object size limit
The comment here about 48 bit addresses being enough was written in 2016 but was made incorrect in 2019 by 5-level paging, and then persisted for another 5 years before being noticed and corrected.
The bolding of the "exclusive" part is merely to call attention to something I missed when reading it and doublechecking the math.
try-job: i686-msvc
try-job: test-various