Improve default target options for x86_64-unknown-linux-none
Without a standard library, we cannot unwind, so it should be panic=abort by default.
Additionally, it does not have std because while it is Linux, it cannot use libc, which std uses today for Linux.
Using PIE by default may be surprising to users, as shown in #134763, so I've documented it explicitly. I'm not sure if we want to count that as fixing the issue or not.
cc `@morr0ne,` as you added the target (and are the maintainer), and `@Noratrieb,` who reviewed that PR (:D).
Without a standard library, we cannot unwind, so it should be
panic=abort by default.
Additionally, it does not have std because while it is
Linux, it cannot use libc, which std uses today for Linux.
Re-export more `rustc_span::symbol` things from `rustc_span`.
`rustc_span::symbol` defines some things that are re-exported from `rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some closely related things such as `Ident` and `kw`. So you can do `use rustc_span::{Symbol, sym}` but you have to do `use rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`, and changes many `rustc_span::symbol::` qualifiers to `rustc_span::`. This is a 300+ net line of code reduction, mostly because many files with two `use rustc_span` items can be reduced to one.
r? `@jieyouxu`
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
Promote powerpc64le-unknown-linux-musl to tier 2 with host tools
MCP: https://github.com/rust-lang/compiler-team/issues/803
I'm using crosstool-ng for building a toolchain because GCC 9 from `musl-toolchain.sh` has float ABI issues (?) and can't compile LLVM, and writing a crosstool-ng config for a target feels less hacky than yet another target specific shell script. I also defined a kernel version, since there wasn't one specified before. If a lower version is desired, just let me know. I also tried to match the rust configure args with the loongarch64 musl tier 2 target.
The resulting compiler works fine, built with `DEPLOY=1 ./src/ci/docker/run.sh dist-powerpc64le-linux` and tested on Alpine Linux in a VM and on a bare metal POWER8 machine:
```
qemu-ppc64le:/tmp/rust-nightly-powerpc64le-unknown-linux-musl$ ash install.sh
install: creating uninstall script at /usr/local/lib/rustlib/uninstall.sh
install: installing component 'rustc'
install: installing component 'rust-std-powerpc64le-unknown-linux-musl'
install: installing component 'cargo'
install: installing component 'rustfmt-preview'
install: installing component 'rls-preview'
install: installing component 'rust-analyzer-preview'
install: installing component 'llvm-tools-preview'
install: installing component 'clippy-preview'
install: installing component 'miri-preview'
install: installing component 'rust-analysis-powerpc64le-unknown-linux-musl'
install: installing component 'llvm-bitcode-linker-preview'
install: WARNING: failed to run ldconfig. this may happen when not installing as root. run with --verbose to see the error
rust installed.
qemu-ppc64le:~$ echo 'fn main() { println!("hello world"); }' > test.rs
qemu-ppc64le:~$ rustc test.rs
qemu-ppc64le:~$ ./test
hello world
qemu-ppc64le:~$ file test
test: ELF 64-bit LSB executable, 64-bit PowerPC or cisco 7500, OpenPOWER ELF V2 ABI, version 1 (SYSV), statically linked, BuildID[sha1]=596ee6abf9add487ebc54fb71c2076fb6faea013, with debug_info, not stripped
```
try-job: dist-powerpc64le-linux
reject unsound toggling of RISCV target features
~~Stacked on top of https://github.com/rust-lang/rust/pull/133417, only the last commit is new.~~
Works towards https://github.com/rust-lang/rust/issues/132618 (but more [remains to be done](https://github.com/rust-lang/rust/pull/134337#issuecomment-2544228958))
Part of https://github.com/rust-lang/rust/issues/116344
Cc ``@beetrees`` I hope I got everything. I didn't do anything about "The f and zfinx features are incompatible" and that's not an ABI thing (right?) and I am not sure how to handle it with these ABI checks.
r? ``@workingjubilee``
Ideally we'd also reject target specs that disable the `f` feature but set an ABI that requires `f`... but I don't want to duplicate this logic. I have some ideas for how maybe the entire float ABI check logic should be different, now that we have some examples of what these ABI checks look like, but that will be a future PR.
This allows compile-time configuration based on this.
In the near future we should do this across all RISCV targets, probably,
but this cfg is essential for building software usable on these targets.
reject aarch64 target feature toggling that would change the float ABI
~~Stacked on top of https://github.com/rust-lang/rust/pull/133099. Only the last two commits are new.~~
The first new commit lays the groundwork for separately controlling whether a feature may be enabled or disabled. The second commit uses that to make it illegal to *disable* the `neon` feature (which is only possible via `-Ctarget-feature`, and so the new check just adds a warning). Enabling the `neon` feature remains allowed on targets that don't disable `neon` or `fp-armv8`, which is all our built-in targets. This way, the entire PR is not a breaking change.
Fixes https://github.com/rust-lang/rust/issues/131058 for hardfloat targets (together with https://github.com/rust-lang/rust/pull/133102 which fixed it for softfloat targets).
Part of https://github.com/rust-lang/rust/issues/116344.
Rollup of 6 pull requests
Successful merges:
- #133221 (Add external macros specific diagnostics for check-cfg)
- #133386 (Update linux_musl base to dynamically link the crt by default)
- #134191 (Make some types and methods related to Polonius + Miri public)
- #134227 (Update wasi-sdk used to build WASI targets)
- #134279 ((Re-)return adjustment target if adjust kind is never-to-any)
- #134295 (Encode coroutine-closures in SMIR)
r? `@ghost`
`@rustbot` modify labels: rollup
Update linux_musl base to dynamically link the crt by default
However, don't change the behavior of any existing targets at this time. For targets that used the old default, explicitly set `crt_static_default = true`.
This makes it easier for new targets to use the correct defaults while leaving the changing of individual targets to future PRs.
Related to https://github.com/rust-lang/compiler-team/issues/422
forbid toggling x87 and fpregs on hard-float targets
Part of https://github.com/rust-lang/rust/issues/116344, follow-up to https://github.com/rust-lang/rust/pull/129884:
The `x87` target feature on x86 and the `fpregs` target feature on ARM must not be disabled on a hardfloat target, as that would change the float ABI. However, *enabling* `fpregs` on ARM is [explicitly requested](https://github.com/rust-lang/rust/issues/130988) as it seems to be useful. Therefore, we need to refine the distinction of "forbidden" target features and "allowed" target features: all (un)stable target features can determine on a per-target basis whether they should be allowed to be toggled or not. `fpregs` then checks whether the current target has the `soft-float` feature, and if yes, `fpregs` is permitted -- otherwise, it is not. (Same for `x87` on x86).
Also fixes https://github.com/rust-lang/rust/issues/132351. Since `fpregs` and `x87` can be enabled on some builds and disabled on others, it would make sense that one can query it via `cfg`. Therefore, I made them behave in `cfg` like any other unstable target feature.
The first commit prepares the infrastructure, but does not change behavior. The second commit then wires up `fpregs` and `x87` with that new infrastructure.
r? `@workingjubilee`
ABI checks: add support for loongarch
LoongArch psABI[^1] specifies that LSX vector types are passed via general-purpose registers, while LASX vector types are passed indirectly through the stack.
This patch addresses the following warnings:
```
warning: this function call uses a SIMD vector type that is not currently supported with the chosen ABI
--> .../library/core/src/../../stdarch/crates/core_arch/src/loongarch64/lsx/generated.rs:3695:5
|
3695 | __lsx_vreplgr2vr_b(a)
| ^^^^^^^^^^^^^^^^^^^^^ function called here
|
= warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
= note: for more information, see issue #116558 <https://github.com/rust-lang/rust/issues/116558>
= note: `#[warn(abi_unsupported_vector_types)]` on by default
```
[^1]: https://github.com/loongson/la-abi-specs/blob/release/lapcs.adoc
r? `@workingjubilee`
LoongArch psABI[^1] specifies that LSX vector types are passed via general-purpose
registers, while LASX vector types are passed indirectly through the stack.
This patch addresses the following warnings:
```
warning: this function call uses a SIMD vector type that is not currently supported with the chosen ABI
--> .../library/core/src/../../stdarch/crates/core_arch/src/loongarch64/lsx/generated.rs:3695:5
|
3695 | __lsx_vreplgr2vr_b(a)
| ^^^^^^^^^^^^^^^^^^^^^ function called here
|
= warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
= note: for more information, see issue #116558 <https://github.com/rust-lang/rust/issues/116558>
= note: `#[warn(abi_unsupported_vector_types)]` on by default
```
[^1]: https://github.com/loongson/la-abi-specs/blob/release/lapcs.adoc
rustc_target: ppc64 target string fixes for LLVM 20
LLVM continues to clean these up, and we continue to make this consistent. This is similar to 9caced7bad, e985396145, and
a10e744faf.
```@rustbot``` label: +llvm-main
LLVM continues to clean these up, and we continue to make this
consistent. This is similar to 9caced7bad,
e985396145, and
a10e744faf.
`@rustbot` label: +llvm-main
rust_for_linux: -Zreg-struct-return commandline flag for X86 (#116973)
Command line flag `-Zreg-struct-return` for X86 (32-bit) for rust-for-linux.
This flag enables the same behavior as the `abi_return_struct_as_int` target spec key.
- Tracking issue: https://github.com/rust-lang/rust/issues/116973
Mark visionOS as supporting `std`
Cargo's -Zbuild-std has recently started checking this field, which causes it to fail to compile even though we have full support for the standard library on these targets.
[Example of failed build](https://github.com/rust-random/getrandom/actions/runs/12069033154/job/33655430622).
Affected targets: `aarch64-apple-visionos` and `aarch64-apple-visionos-sim`.
r? Noratrieb (because you've worked with `rustc` target metadata IIRC)
``@rustbot`` label O-visionos
Support input/output in vector registers of PowerPC inline assembly
This extends currently clobber-only vector registers (`vreg`) support to allow passing `#[repr(simd)]` types as input/output.
| Architecture | Register class | Target feature | Allowed types |
| ------------ | -------------- | -------------- | -------------- |
| PowerPC | `vreg` | `altivec` | `i8x16`, `i16x8`, `i32x4`, `f32x4` |
| PowerPC | `vreg` | `vsx` | `f32`, `f64`, `i64x2`, `f64x2` |
In addition to floats and `core::simd` types listed above, `core::arch` types and custom `#[repr(simd)]` types of the same size and type are also allowed. All allowed types and relevant target features are currently unstable.
r? `@Amanieu`
`@rustbot` label +O-PowerPC +A-inline-assembly
Add `+forced-atomics` feature to esp32s2 no_std target
Similar to https://github.com/rust-lang/rust/pull/114499 but for the Xtensa backend. The ESP32-S2 doesn't have native atomic support, but can have atomic load/stores as part of the ISA with this LLVM codegen feature.
Note: The current rev of LLVM that rustc is using doesn't contain the `+forced-atomics` feature for Xtensa, but I'm pushing this now to remove the patch from our fork in `esp-rs/rust`.
r? ``@Amanieu`` because you reviewed the related RISC-V PR
Fix target_feature handling in freg of LoongArch inline assembly
In LoongArch inline assembly, freg currently always accepts f32/f64 as input/output.
9b4d7c6a40/compiler/rustc_target/src/asm/loongarch.rs (L41)
However, these types actually require f/d target features as in RISC-V.
Otherwise, an (ugly) compile error will occur: https://godbolt.org/z/K61Gq1E9E
f32/f64 without f:
```
error: couldn't allocate output register for constraint '{$f1}'
--> <source>:12:11
|
12 | asm!("", in("$f1") x, lateout("$f1") y);
| ^
```
f64 with f but without d:
```
error: scalar-to-vector conversion failed, possible invalid constraint for vector type
--> <source>:19:11
|
19 | asm!("", in("$f1") x, lateout("$f1") y);
| ^
```
cc ``@heiher``
r? ``@Amanieu``
``@rustbot`` label +O-LoongArch +A-inline-assembly
Support `clobber_abi` in AVR inline assembly
This PR implements the `clobber_abi` part necessary to eventually stabilize the inline assembly for AVR. This is tracked in #93335.
This is heavily inspired by the sibling-PR #131310 for the MSP430. I've explained my reasoning in the first commit message in detail, which is reproduced below for easier reviewing:
This follows the [ABI documentation] of AVR-GCC:
> The [...] call-clobbered general purpose registers (GPRs) are registers that might be destroyed (clobbered) by a function call.
>
> - **R18–R27, R30, R31**
>
> These GPRs are call clobbered. An ordinary function may use them without restoring the contents. [...]
>
> - **R0, T-Flag**
>
> The temporary register and the T-flag in SREG are also call-clobbered, but this knowledge is not exposed explicitly to the compiler (R0 is a fixed register).
Therefore this commit lists the aforementioned registers `r18–r27`, `r30` and `r31` as clobbered registers. Since the `r0` register (listed above as well) is not available in inline assembly at all (potentially because the AVR-GCC considers it a fixed register causing the register to never be used in register allocation and LLVM adopting this), there is no need to list it in the clobber list (the `r0`-variant is not even available). A comment was added to ensure, that the `r0` gets added to the clobber-list once the register gets usable in inline ASM.
Since the SREG is normally considered clobbered anyways (unless the user supplies the `preserve_flags`-option), there is no need to explicitly list a bit in this register (which is not possible to list anyways).
Note, that this commit completely ignores the case of interrupts (that are described in the ABI-specification), since every register touched in an ISR need to be saved anyways.
[ABI documentation]: https://gcc.gnu.org/wiki/avr-gcc#Call-Used_Registers
r? ``@Amanieu``
``@rustbot`` label +O-AVR
ensure JSON-defined targets are consistent
We have a `check_consistency` check that ensures some invariants which (presumably) the rest of the compiler relies on. However, JSON targets can easily be written in a way that violates those invariants. So this PR applies the same consistency check to JSON targets that we already enforce for built-in targets.
I have converted many of the assertions in that function to new macros that show a nice error instead of a panic; if people are okay with the general approach here, I can do that for the rest of the checks as well.
This commit adds the relevant registers to the list of clobbered regis-
ters (part of #93335). This follows the [ABI documentation] of AVR-GCC:
> The [...] call-clobbered general purpose registers (GPRs) are
> registers that might be destroyed (clobbered) by a function call.
>
> - **R18–R27, R30, R31**
>
> These GPRs are call clobbered. An ordinary function may use them
> without restoring the contents. [...]
>
> - **R0, T-Flag**
>
> The temporary register and the T-flag in SREG are also call-
> clobbered, but this knowledge is not exposed explicitly to the
> compiler (R0 is a fixed register).
Therefore this commit lists the aforementioned registers `r18–r27`,
`r30` and `r31` as clobbered registers. Since the `r0` register (listed
above as well) is not available in inline assembly at all (potentially
because the AVR-GCC considers it a fixed register causing the register
to never be used in register allocation and LLVM adopting this), there
is no need to list it in the clobber list (the `r0`-variant is not even
available). A comment was added to ensure, that the `r0` gets added to
the clobber-list once the register gets usable in inline ASM.
Since the SREG is normally considered clobbered anyways (unless the user
supplies the `preserve_flags`-option), there is no need to explicitly
list a bit in this register (which is not possible to list anyways).
Note, that this commit completely ignores the case of interrupts (that
are described in the ABI-specification), since every register touched in
an ISR need to be saved anyways.
[ABI documentation]: https://gcc.gnu.org/wiki/avr-gcc#Call-Used_Registers
Cargo's -Zbuild-std has recently started checking this field, which
causes it to fail to compile even though we have full support for the
standard library on these targets.
Fix clobber_abi in RV32E and RV64E inline assembly
Currently clobber_abi in RV32E and RV64E inline assembly is implemented using InlineAsmClobberAbi::RiscV, but broken since x16-x31 cannot be used in RV32E and RV64E.
```
error: cannot use register `x16`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
error: cannot use register `x17`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
error: cannot use register `x28`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
error: cannot use register `x29`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
error: cannot use register `x30`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
error: cannot use register `x31`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
```
r? `@Amanieu`
`@rustbot` label O-riscv +A-inline-assembly
the emscripten OS no longer exists on non-wasm targets
https://github.com/rust-lang/rust/pull/117338 removed our asmjs targets, which AFAIK means that emscripten only exists on wasm targets. However at least one place in the code still checked "is wasm or is emscripten". Let's fix that.
Cc ```@workingjubilee```
Support input/output in vector registers of s390x inline assembly (under asm_experimental_reg feature)
This extends currently clobber-only vector registers (`vreg`) support to allow passing `#[repr(simd)]` types, floats (f32/f64/f128), and integers (i32/i64/i128) as input/output.
This is unstable and gated under new `#![feature(asm_experimental_reg)]` (tracking issue: https://github.com/rust-lang/rust/issues/133416). If the feature is not enabled, only clober is supported as before.
| Architecture | Register class | Target feature | Allowed types |
| ------------ | -------------- | -------------- | -------------- |
| s390x | `vreg` | `vector` | `i32`, `f32`, `i64`, `f64`, `i128`, `f128`, `i8x16`, `i16x8`, `i32x4`, `i64x2`, `f32x4`, `f64x2` |
This matches the list of types that are supported by the vector registers in LLVM:
https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/SystemZ/SystemZRegisterInfo.td#L301-L313
In addition to `core::simd` types and floats listed above, custom `#[repr(simd)]` types of the same size and type are also allowed. All allowed types other than i32/f32/i64/f64/i128, and relevant target features are currently unstable.
Currently there is no SIMD type for s390x in `core::arch`, but this is tracked in https://github.com/rust-lang/rust/issues/130869.
cc https://github.com/rust-lang/rust/issues/130869 about vector facility support in s390x
cc https://github.com/rust-lang/rust/issues/125398 & https://github.com/rust-lang/rust/issues/116909 about f128 support in asm
`@rustbot` label +O-SystemZ +A-inline-assembly
However, don't change the behavior of any existing targets at this time.
For targets that used the old default, explicitly set `crt_static_default = true`.
This makes it easier for new targets to use the correct defaults while
leaving the changing of individual targets to future PRs.
Related to https://github.com/rust-lang/compiler-team/issues/422
aarch64 softfloat target: always pass floats in int registers
This is a part of https://github.com/rust-lang/rust/issues/131058: on softfloat aarch64 targets, the float registers may be unavailable. And yet, LLVM will happily use them to pass float types if the corresponding target features are enabled. That's a problem as it means enabling/disabling `neon` instructions can change the ABI.
Other targets have a `soft-float` target feature that forces the use of the soft-float ABI no matter whether float registers are enabled or not; aarch64 has nothing like that.
So we follow the aarch64 [softfloat ABI](https://github.com/rust-lang/rust/issues/131058#issuecomment-2385027423) and treat floats like integers for `extern "C"` functions. For the "Rust" ABI, we do the same for scalars, and then just do something reasonable for ScalarPair that avoids the pointer indirection.
Cc ```@workingjubilee```
Emscripten: link with -sWASM_BIGINT
When linking an executable without dynamic linking, this is a pure improvement. It significantly reduces code size and avoids a lot of buggy behaviors. It is supported in all browsers for many years and in all maintained versions of Node.
It does change the ABI, so people who are dynamically linking with a library or executable that uses the old ABI may need to turn it off. It can be disabled if needed by passing `-Clink-arg -sWASM_BIGINT=0` to `rustc`. But few people will want to turn it off.
Note this includes a libc bump to 0.2.162!
When linking an executable without dynamic linking, this is a pure improvement.
It significantly reduces code size and avoids a lot of buggy behaviors. It is
supported in all browsers for many years and in all maintained versions of
Node.
It does change the ABI, so people who are dynamically linking with a library
or executable that uses the old ABI may need to turn it off. It can be disabled
if needed by passing `-Clink-arg -sWASM_BIGINT=0` to `rustc`. But few people
will want to turn it off.
For the `multivalue` and `reference-types` features this commit is
similar to #117457 in that it's stabilizing target features specific to
WebAssembly targets. The previous PR left out these two features because
they weren't expected to change much about compiled code so it was
unclear what the rationale was. It has [since been discovered][blog]
that `reference-types` can be useful as it changes the binary format of
the `call_indirect` instruction. Additionally [on Zulip][zulip] there's
a use case of detecting these features at compile time and generating a
compile error to better warn users about features not supported on
engines.
This PR then additionally adds the `tail-call` feature which corresponds
to the [tail-call] proposal to WebAssembly. This feature advanced to
"phase 4" in the WebAssembly CG awhile back and has been supported in
LLVM for quite some time now. Engines are finishing up implementations
or have already shipped implementations, so while this is a bit of a
late addition to Rust itself it reflects the current status of
WebAssembly's state of the feature.
A test has been added here not only for these features but other
WebAssembly features as well to showcase that they're usable without
feature gates in stable Rust.
[blog]: https://blog.rust-lang.org/2024/09/24/webassembly-targets-change-in-default-target-features.html
[zulip]: https://rust-lang.zulipchat.com/#narrow/stream/122651-general/topic/wasm32.20reference-types.20.2F.20multivalue.20in.201.2E82-beta.20not.20enabled/near/473893987
[tail-call]: https://github.com/webassembly/tail-call
Emit warning when calling/declaring functions with unavailable vectors.
On some architectures, vector types may have a different ABI depending on whether the relevant target features are enabled. (The ABI when the feature is disabled is often not specified, but LLVM implements some de-facto ABI.)
As discussed in rust-lang/lang-team#235, this turns out to very easily lead to unsound code.
This commit makes it a post-monomorphization future-incompat warning to declare or call functions using those vector types in a context in which the corresponding target features are disabled, if using an ABI for which the difference is relevant. This ensures that these functions are always called with a consistent ABI.
See the [nomination comment](https://github.com/rust-lang/rust/pull/127731#issuecomment-2288558187) for more discussion.
Part of #116558
r? RalfJung