Ignore `close_read_wakes_up` test on SGX platform
PR #94714 enabled the `close_read_wakes_up` test for all platforms. This is incorrect. This test should be ignored at least for the SGX platform.
cc: ``@mzohreva`` ``@jethrogb``
Add Iterator::collect_into
This PR adds `Iterator::collect_into` as proposed by ``@cormacrelf`` in #48597 (see https://github.com/rust-lang/rust/pull/48597#issuecomment-842083688).
Followup of #92982.
This adds the following method to the Iterator trait:
```rust
fn collect_into<E: Extend<Self::Item>>(self, collection: &mut E) -> &mut E
```
Mention intent of `From` trait in its docs
This pr is a docs modification to add to the documentation of the `From` trait a note about its intent as a perfect conversion. This is already stated in the `TryFrom` docs so this is simply adding that information in a more visible way.
unix: reduce the size of DirEntry
On platforms where we call `readdir` instead of `readdir_r`, we store
the name as an allocated `CString` for variable length. There's no point
carrying around a full `dirent64` with its fixed-length `d_name` too.
Reverted atomic_mut_ptr feature removal causing compilation break
Fixes a regression introduced as part of https://github.com/rust-lang/rust/pull/94546
Std no longer compiles on nightly while using the following commnd:
export RUSTFLAGS='-C target-feature=+atomics,+bulk-memory'
cargo build --target wasm32-unknown-unknown -Z build-std=panic_abort,std
I can help add tests to avoid future breaks but i couldn't understand the test framework
unix: Avoid name conversions in `remove_dir_all_recursive`
Each recursive call was creating an `OsString` for a `&Path`, only for
it to be turned into a `CString` right away. Instead we can directly
pass `.name_cstr()`, saving two allocations each time.
Add core::hint::must_use
The example code in this documentation is minimized from a real-world situation in the `anyhow` crate where this function would have been valuable.
Having this provided by the standard library is especially useful for proc macros, even more than for macro_rules. That's because proc macro crates aren't allowed to export anything other than macros, so they couldn't make their own `must_use` function for their macro-generated code to call.
<br>
## Rendered documentation
> An identity function that causes an `unused_must_use` warning to be triggered if the given value is not used (returned, stored in a variable, etc) by the caller.
>
> This is primarily intended for use in macro-generated code, in which a [`#[must_use]` attribute][must_use] either on a type or a function would not be convenient.
>
> [must_use]: https://doc.rust-lang.org/reference/attributes/diagnostics.html#the-must_use-attribute
>
> ### Example
>
> ```rust
> #![feature(hint_must_use)]
>
> use core::fmt;
>
> pub struct Error(/* ... */);
>
> #[macro_export]
> macro_rules! make_error {
> ($($args:expr),*) => {
> core::hint::must_use({
> let error = $crate::make_error(core::format_args!($($args),*));
> error
> })
> };
> }
>
> // Implementation detail of make_error! macro.
> #[doc(hidden)]
> pub fn make_error(args: fmt::Arguments<'_>) -> Error {
> Error(/* ... */)
> }
>
> fn demo() -> Option<Error> {
> if true {
> // Oops, meant to write `return Some(make_error!("..."));`
> Some(make_error!("..."));
> }
> None
> }
> ```
>
> In the above example, we'd like an `unused_must_use` lint to apply to the value created by `make_error!`. However, neither `#[must_use]` on a struct nor `#[must_use]` on a function is appropriate here, so the macro expands using `core::hint::must_use` instead.
>
> - We wouldn't want `#[must_use]` on the `struct Error` because that would make the following unproblematic code trigger a warning:
>
> ```rust
> fn f(arg: &str) -> Result<(), Error>
>
> #[test]
> fn t() {
> // Assert that `f` returns error if passed an empty string.
> // A value of type `Error` is unused here but that's not a problem.
> f("").unwrap_err();
> }
> ```
>
> - Using `#[must_use]` on `fn make_error` can't help because the return value *is* used, as the right-hand side of a `let` statement. The `let` statement looks useless but is in fact necessary for ensuring that temporaries within the `format_args` expansion are not kept alive past the creation of the `Error`, as keeping them alive past that point can cause autotrait issues in async code:
>
> ```rust
> async fn f() {
> // Using `let` inside the make_error expansion causes temporaries like
> // `unsync()` to drop at the semicolon of that `let` statement, which
> // is prior to the await point. They would otherwise stay around until
> // the semicolon on *this* statement, which is after the await point,
> // and the enclosing Future would not implement Send.
> log(make_error!("look: {:p}", unsync())).await;
> }
>
> async fn log(error: Error) {/* ... */}
>
> // Returns something without a Sync impl.
> fn unsync() -> *const () {
> 0 as *const ()
> }
> ```
Enable `close_read_wakes_up` test on Windows
I wonder if we could/should try enabling this again? It was closed by #38867 due to #31657. I've tried running this test (along with other tests) on my machine a number of times and haven't seen this fail yet,
Caveat: the worst that can happen is this succeeds initially but then causes random hangs in CI. This is not a great failure mode and would be a reason not to do this.
If this does work out, closes#39006
r? `@Mark-Simulacrum`
On platforms where we call `readdir` instead of `readdir_r`, we store
the name as an allocated `CString` for variable length. There's no point
carrying around a full `dirent64` with its fixed-length `d_name` too.
Remove argument from closure in thread::Scope::spawn.
This implements ```@danielhenrymantilla's``` [suggestion](https://github.com/rust-lang/rust/issues/93203#issuecomment-1040798286) for improving the scoped threads interface.
Summary:
The `Scope` type gets an extra lifetime argument, which represents basically its own lifetime that will be used in `&'scope Scope<'scope, 'env>`:
```diff
- pub struct Scope<'env> { .. };
+ pub struct Scope<'scope, 'env: 'scope> { .. }
pub fn scope<'env, F, T>(f: F) -> T
where
- F: FnOnce(&Scope<'env>) -> T;
+ F: for<'scope> FnOnce(&'scope Scope<'scope, 'env>) -> T;
```
This simplifies the `spawn` function, which now no longer passes an argument to the closure you give it, and now uses the `'scope` lifetime for everything:
```diff
- pub fn spawn<'scope, F, T>(&'scope self, f: F) -> ScopedJoinHandle<'scope, T>
+ pub fn spawn<F, T>(&'scope self, f: F) -> ScopedJoinHandle<'scope, T>
where
- F: FnOnce(&Scope<'env>) -> T + Send + 'env,
+ F: FnOnce() -> T + Send + 'scope,
- T: Send + 'env;
+ T: Send + 'scope;
```
The only difference the user will notice, is that their closure now takes no arguments anymore, even when spawning threads from spawned threads:
```diff
thread::scope(|s| {
- s.spawn(|_| {
+ s.spawn(|| {
...
});
- s.spawn(|s| {
+ s.spawn(|| {
...
- s.spawn(|_| ...);
+ s.spawn(|| ...);
});
});
```
<details><summary>And, as a bonus, errors get <em>slightly</em> better because now any lifetime issues point to the outermost <code>s</code> (since there is only one <code>s</code>), rather than the innermost <code>s</code>, making it clear that the lifetime lasts for the entire <code>thread::scope</code>.
</summary>
```diff
error[E0373]: closure may outlive the current function, but it borrows `a`, which is owned by the current function
--> src/main.rs:9:21
|
- 7 | s.spawn(|s| {
- | - has type `&Scope<'1>`
+ 6 | thread::scope(|s| {
+ | - lifetime `'1` appears in the type of `s`
9 | s.spawn(|| println!("{:?}", a)); // might run after `a` is dropped
| ^^ - `a` is borrowed here
| |
| may outlive borrowed value `a`
|
note: function requires argument type to outlive `'1`
--> src/main.rs:9:13
|
9 | s.spawn(|| println!("{:?}", a)); // might run after `a` is dropped
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
help: to force the closure to take ownership of `a` (and any other referenced variables), use the `move` keyword
|
9 | s.spawn(move || println!("{:?}", a)); // might run after `a` is dropped
| ++++
"
```
</details>
The downside is that the signature of `scope` and `Scope` gets slightly more complex, but in most cases the user wouldn't need to write those, as they just use the argument provided by `thread::scope` without having to name its type.
Another downside is that this does not work nicely in Rust 2015 and Rust 2018, since in those editions, `s` would be captured by reference and not by copy. In those editions, the user would need to use `move ||` to capture `s` by copy. (Which is what the compiler suggests in the error.)
Add Result::{ok, err, and, or, unwrap_or} as const
Already opened tracking issue #92384.
I don't think that this should actually cause any issues as long as the constness is unstable, but we may want to double-check that this doesn't get interpreted as a weird `Drop` bound even for non-const usages.
Each recursive call was creating an `OsString` for a `&Path`, only for
it to be turned into a `CString` right away. Instead we can directly
pass `.name_cstr()`, saving two allocations each time.
Stabilize const_fn_fn_ptr_basics, const_fn_trait_bound, and const_impl_trait
# Stabilization Report
This PR serves as a request for stabilization for three const evaluation features:
1. `const_fn_fn_ptr_basics`
2. `const_fn_trait_bound`
3. `const_impl_trait`
These are being stabilized together because they are relatively minor and related updates to existing functionality.
## `const_fn_fn_ptr_basics`
Allows creating, passing, and casting function pointers in a `const fn`.
The following is an example of what is now allowed:
```rust
const fn get_function() -> fn() {
fn foo() {
println!("Hello, World!");
}
foo
}
```
Casts between function pointer types are allowed, as well as transmuting from integers:
```rust
const fn get_function() -> fn() {
unsafe {
std::mem::transmute(0x1234usize)
}
}
```
However, casting from a function pointer to an integer is not allowed:
```rust
const fn fn_to_usize(f: fn()) -> usize {
f as usize //~ pointers cannot be cast to integers during const eval
}
```
Calling function pointers is also not allowed.
```rust
const fn call_fn_ptr(f: fn()) {
f() //~ function pointers are not allowed in const fn
}
```
### Test Coverage
The following tests include code that exercises this feature:
- `src/test/ui/consts/issue-37550.rs`
- `src/test/ui/consts/issue-46553.rs`
- `src/test/ui/consts/issue-56164.rs`
- `src/test/ui/consts/min_const_fn/allow_const_fn_ptr_run_pass.rs`
- `src/test/ui/consts/min_const_fn/cast_fn.rs`
- `src/test/ui/consts/min_const_fn/cmp_fn_pointers.rs`
## `const_fn_trait_bound`
Allows trait bounds in `const fn`. Additionally, this feature allows creating and passing `dyn Trait` objects.
Examples such as the following are allowed by this feature:
```rust
const fn do_thing<T: Foo>(_x: &T) {
// ...
}
```
Previously only `Sized` was allowed as a trait bound.
There is no way to call methods from the trait because trait methods cannot currently be marked as const. Allowing trait bounds in const functions does allow the const function to use the trait's associated types and constants.
This feature also allowes `dyn Trait` types. These work equivalently to non-const code. Similar to other pointers in const code, the value of a `dyn Trait` pointer cannot be observed.
Note that due to https://github.com/rust-lang/rust/issues/90912, it was already possible to do the example above as follows:
```rust
const fn do_thing<T>(_x: &T) where (T,): Foo {
// ...
}
```
### Test Coverage
The following tests include code that exercises `const_fn_trait_bound`:
- `src/test/ui/consts/const-fn.rs`
- `src/test/ui/consts/issue-88071.rs`
- `src/test/ui/consts/min_const_fn/min_const_fn.rs`
- `src/test/ui/consts/min_const_fn/min_const_fn_dyn.rs`
- `src/test/ui/nll/issue-55825-const-fn.rs`
- Many of the tests in `src/test/ui/rfc-2632-const-trait-impl/` also exercise this feature.
## `const_impl_trait`
Allows argument and return position `impl Trait` in a `const fn`, such as in the following example:
```rust
const fn do_thing(x: impl Foo) -> impl Foo {
x
}
```
Similar to generic parameters and function pointers, this allows the creation of such opaque types, but not doing anything with them beyond accessing associated types and constants.
### Test Coverage
The following tests exercise this feature:
- `src/test/ui/type-alias-impl-trait/issue-53096.rs`
- `src/test/ui/type-alias-impl-trait/issue-53678-generator-and-const-fn.rs`
## Documentation
These features are documented along with the other const evaluation features in the Rust Reference at https://doc.rust-lang.org/stable/reference/const_eval.html.
There is a PR that updates this documentation to reflect the capabilities enabled by these features at https://github.com/rust-lang/reference/pull/1166.
Tracking issues: #57563, #63997, #93706
libunwind: readd link attrs to _Unwind_Backtrace
It seems the removal of these in 1c07096a45 was unintended; readding them fixes the build.
fixesrust-lang/rust#93349
r? `@alexcrichton`
Unix path::absolute: Fix leading "." component
Testing leading `.` and `..` components were missing from the unix tests.
This PR adds them and fixes the leading `.` case. It also fixes the test cases so that they do an exact comparison.
This problem reported by ``@axetroy``
UNIX `remove_dir_all()`: Try recursing first on the slow path
This only affects the _slow_ code path - if there is no `dirent.d_type` or if it is `DT_UNKNOWN`.
POSIX specifies that calling `unlink()` or `unlinkat(..., 0)` on a directory is allowed to succeed:
> The _path_ argument shall not name a directory unless the process has appropriate privileges and the implementation supports using _unlink()_ on directories.
This however can cause dangling inodes requiring an fsck e.g. on Illumos UFS, so we have to avoid that in the common case. We now just try to recurse into it first and unlink() if we can't open it as a directory.
The other two commits integrate the Macos x86-64 implementation reducing redundancy. Split into two commits for better reviewing.
Fixes#94335.