Suggest turning `if let` into irrefutable `let` if appropriate
When encountering an `if let` tail expression without an `else` arm for an enum with a single variant, suggest writing an irrefutable `let` binding instead.
```
error[E0317]: `if` may be missing an `else` clause
--> $DIR/irrefutable-if-let-without-else.rs:8:5
|
LL | fn foo(x: Enum) -> i32 {
| --- expected `i32` because of this return type
LL | / if let Enum::Variant(value) = x {
LL | | value
LL | | }
| |_____^ expected `i32`, found `()`
|
= note: `if` expressions without `else` evaluate to `()`
= help: consider adding an `else` block that evaluates to the expected type
help: consider using an irrefutable `let` binding instead
|
LL ~ let Enum::Variant(value) = x;
LL ~ value
|
```
Fix#61788.
Mark "unused binding" suggestion as maybe incorrect
Ignoring unused bindings should be a determination made by a human, `rustfix` shouldn't auto-apply the suggested change.
Fix#54196.
various const interning cleanups
After #119044 I noticed that some things can be simplified and refactored.
This is also a requirement for https://github.com/rust-lang/rust/pull/116564 as there we'll need to treat the base allocation differently from the others
r? ````@RalfJung````
- In `emit_producing_error_guaranteed`, only allow `Level::Error`.
- In `emit_diagnostic`, only produce `ErrorGuaranteed` for `Level` and
`DelayedBug`. (Not `Bug` or `Fatal`. They don't need it, because the
relevant `emit` methods abort.)
- Add/update various comments.
When `catch_fatal_errors` catches a `FatalErrorMarker`, it returns an
`ErrorGuaranteed` that is conjured out of thin air with
`unchecked_claim_error_was_emitted`. But that `ErrorGuaranteed` is never
used.
This commit changes it to instead conjure a `FatalError` out of thin
air. (A non-deprecated action!) This makes more sense because
`FatalError` and `FatalErrorMarker` are a natural pairing -- a
`FatalErrorMarker` is created by calling `FatalError::raise`, so this is
effectively getting back the original `FatalError`.
This requires a tiny change in `catch_with_exit_code`. The old result of
the `catch_fatal_errors` call there was
`Result<Result<(), ErrorGuaranteed>, ErrorGuaranteed>` which could be
`flatten`ed into `Result<(), ErrorGuaranteed>`. The new result of the
`catch_fatal_errors` calls is
`Result<Result<(), ErrorGuaranteed>, FatalError>`, which can't be
`flatten`ed but is still easily matched for the success case.
Don't expect early-bound region to be local when reporting errors in RPITIT well-formedness
The implicit lifetime in the example code gets replaced with `ReError`, which fails a `sub_regions` check in the lexical region solver. Error reporting ends up calling `is_suitable_region` on an early bound region in the *trait* definition. This causes an ICE because we `expect_local()`.
This is kind of a bad explanation, but this code just makes diagnostics reporting a bit more gracefully fallible. If the reviewer wants a thorough investigation of exactly where we get this region outlives obligation, I can write one up. Doesn't really seem worth it, though, imo.
Fixes#120638Fixes#120648
Normalize type outlives obligations in NLL for new solver
Normalize the type outlives assumptions and obligations in MIR borrowck. This should fix any of the lazy-norm-related MIR borrowck problems.
Also some cleanups from last PR:
1. Normalize obligations in a loop in lexical region resolution
2. Use `deeply_normalize_with_skipped_universes` in lexical resolution since we may have, e.g. `for<'a> Alias<'a>: 'b`.
r? lcnr
Account for non-overlapping unmet trait bounds in suggestion
When a method not found on a type parameter could have been provided by any
of multiple traits, suggest each trait individually, instead of a single
suggestion to restrict the type parameter with *all* of them.
Before:
```
error[E0599]: the method `cmp` exists for reference `&T`, but its trait bounds were not satisfied
--> $DIR/method-on-unbounded-type-param.rs:5:10
|
LL | (&a).cmp(&b)
| ^^^ method cannot be called on `&T` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`T: Ord`
which is required by `&T: Ord`
`&T: Iterator`
which is required by `&mut &T: Iterator`
`T: Iterator`
which is required by `&mut T: Iterator`
help: consider restricting the type parameters to satisfy the trait bounds
|
LL | fn g<T>(a: T, b: T) -> std::cmp::Ordering where T: Iterator, T: Ord {
| +++++++++++++++++++++++++
```
After:
```
error[E0599]: the method `cmp` exists for reference `&T`, but its trait bounds were not satisfied
--> $DIR/method-on-unbounded-type-param.rs:5:10
|
LL | (&a).cmp(&b)
| ^^^ method cannot be called on `&T` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`T: Ord`
which is required by `&T: Ord`
`&T: Iterator`
which is required by `&mut &T: Iterator`
`T: Iterator`
which is required by `&mut T: Iterator`
= help: items from traits can only be used if the type parameter is bounded by the trait
help: the following traits define an item `cmp`, perhaps you need to restrict type parameter `T` with one of them:
|
LL | fn g<T: Ord>(a: T, b: T) -> std::cmp::Ordering {
| +++++
LL | fn g<T: Iterator>(a: T, b: T) -> std::cmp::Ordering {
| ++++++++++
```
Fix#108428.
Follow up to #120396, only last commit is relevant.
update indirect structural match lints to match RFC and to show up for dependencies
This is a large step towards implementing https://github.com/rust-lang/rfcs/pull/3535.
We currently have five lints related to "the structural match situation":
- nontrivial_structural_match
- indirect_structural_match
- pointer_structural_match
- const_patterns_without_partial_eq
- illegal_floating_point_literal_pattern
This PR concerns the first 3 of them. (The 4th already is set up to show for dependencies, and the 5th is removed by https://github.com/rust-lang/rust/pull/116284.) nontrivial_structural_match is being removed as per the RFC; the other two are enabled to show up in dependencies.
Fixes https://github.com/rust-lang/rust/issues/73448 by removing the affected analysis.
Account for unbounded type param receiver in suggestions
When encountering
```rust
fn f<T>(a: T, b: T) -> std::cmp::Ordering {
a.cmp(&b) //~ ERROR E0599
}
```
output
```
error[E0599]: no method named `cmp` found for type parameter `T` in the current scope
--> $DIR/method-on-unbounded-type-param.rs:2:7
|
LL | fn f<T>(a: T, b: T) -> std::cmp::Ordering {
| - method `cmp` not found for this type parameter
LL | a.cmp(&b)
| ^^^ method cannot be called on `T` due to unsatisfied trait bounds
|
= help: items from traits can only be used if the type parameter is bounded by the trait
help: the following traits define an item `cmp`, perhaps you need to restrict type parameter `T` with one of them:
|
LL | fn f<T: Ord>(a: T, b: T) -> std::cmp::Ordering {
| +++++
LL | fn f<T: Iterator>(a: T, b: T) -> std::cmp::Ordering {
| ++++++++++
```
Fix#120186.
pattern_analysis: use a plain `Vec` in `DeconstructedPat`
The use of an arena-allocated slice in `DeconstructedPat` dates to when we needed the arena anyway for lifetime reasons. Now that we don't, I'm thinking that if `thir::Pat` can use plain old `Vec`s, maybe so can I.
r? ```@ghost```
hir: Stop keeping prefixes for most of `use` list stems
And make sure all other imports have non-empty resolution lists.
Addresses one of FIXMEs in https://github.com/rust-lang/rust/pull/120206.
rustc_monomorphize: fix outdated comment in partition
`max_cgu_count` was removed in 51821515b3, but not comment (usage in `merge_codegen_units` was removed earlier).
r? `@nnethercote`
Suggest `[tail @ ..]` on `[..tail]` and `[...tail]` where `tail` is unresolved
Fixes#120591.
~~Will conflict with #120570~~ (rebased).
r? estebank or compiler
Some cleanups around diagnostic levels.
Plus some refactoring in and around diagnostic levels and emission. Details in the individual commit logs.
r? ````@oli-obk````
Rework support for async closures; allow them to return futures that borrow from the closure's captures
This PR implements a new lowering for async closures via `TyKind::CoroutineClosure` which handles the curious relationship between the closure and the coroutine that it returns.
I wrote up a bunch in [this hackmd](https://hackmd.io/`@compiler-errors/S1HvqQxca)` which will be copied to the dev guide after this PR lands, and hopefully left sufficient comments in the source code explaining why this change is as large as it is.
This also necessitates that they begin implementing the `AsyncFn`-family of traits, rather than the `Fn`-family of traits -- if you need `Fn` implementations, you should probably use the non-sugar `|| async {}` syntax instead.
Notably this PR does not yet implement `async Fn()` syntax sugar for bounds, but I expect to add those soon (**edit:** #120392). For now, users must use `AsyncFn()` traits directly, which necessitates adding the `async_fn_traits` feature gate as well. I will add this as a follow-up very soon.
r? oli-obk
This is based on top of #120322, but that PR is minimal.
This rewrite makes the cache-updating nature of the function slightly clearer, using the Entry API into the hash table for region names to capture the update-insert nature of the method. May be marginally more efficient since it only runtime-borrows the map once, but in this context the performance impact is almost certainly completely negligible.
When encountering an `if let` tail expression without an `else` arm for an
enum with a single variant, suggest writing an irrefutable `let` binding
instead.
```
error[E0317]: `if` may be missing an `else` clause
--> $DIR/irrefutable-if-let-without-else.rs:8:5
|
LL | fn foo(x: Enum) -> i32 {
| --- expected `i32` because of this return type
LL | / if let Enum::Variant(value) = x {
LL | | value
LL | | }
| |_____^ expected `i32`, found `()`
|
= note: `if` expressions without `else` evaluate to `()`
= help: consider adding an `else` block that evaluates to the expected type
help: consider using an irrefutable `let` binding instead
|
LL ~ let Enum::Variant(value) = x;
LL ~ value
|
```
Fix#61788.
That is, change `diagnostic_outside_of_impl` and
`untranslatable_diagnostic` from `allow` to `deny`, because more than
half of the compiler has be converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow`
attributes, which proves that this change is warranted.
Introduce support for `async` bound modifier on `Fn*` traits
Adds `async` to the list of `TraitBoundModifiers`, which instructs AST lowering to map the trait to an async flavor of the trait. For now, this is only supported for `Fn*` to `AsyncFn*`, and I expect that this manual mapping via lang items will be replaced with a better system in the future.
The motivation for adding these bounds is to separate the users of async closures from the exact trait desugaring of their callable bounds. Instead of users needing to be concerned with the `AsyncFn` trait, they should be able to write `async Fn()` and it will desugar to whatever underlying trait we decide is best for the lowering of async closures.
Note: rustfmt support can be done in the rustfmt repo after a subtree sync.
pattern_analysis: Gracefully abort on type incompatibility
This leaves the option for a consumer of the crate to return `Err` instead of panicking on type error. rust-analyzer could use that (e.g. https://github.com/rust-lang/rust-analyzer/issues/15808).
Since the only use of `TypeCx::bug` is in `Constructor::is_covered_by`, it is tempting to return `false` instead of `Err()`, but that would cause "non-exhaustive match" false positives.
r? `@compiler-errors`
All the other `emit`/`emit_diagnostic` methods were recently made
consuming (e.g. #119606), but this one wasn't. But it makes sense to.
Much of this is straightforward, and lots of `clone` calls are avoided.
There are a couple of tricky bits.
- `Emitter::primary_span_formatted` no longer takes a `Diagnostic` and
returns a pair. Instead it takes the two fields from `Diagnostic` that
it used (`span` and `suggestions`) as `&mut`, and modifies them. This
is necessary to avoid the cloning of `diag.children` in two emitters.
- `from_errors_diagnostic` is rearranged so various uses of `diag` occur
before the consuming `emit_diagnostic` call.
target: default to the medium code model on LoongArch targets
The Rust LoongArch targets have been using the default LLVM code model so far, which is "small" in LLVM-speak and "normal" in LoongArch-speak. As [described][1] in the "Code Model" section of LoongArch ELF psABI spec v20231219, one can only make function calls as far as ±128MiB with the "normal" code model; this is insufficient for very large software containing Rust components that needs to be linked into the big text section, such as Chromium.
Because:
* we do not want to ask users to recompile std if they are to build such software,
* objects compiled with larger code models can be linked with those with smaller code models without problems, and
* the "medium" code model is comparable to the "small"/"normal" one performance-wise (same data access pattern; each function call becomes 2-insn long and indirect, but this may be relaxed back into the direct 1-insn form in a future LLVM version), but is able to perform function calls within ±128GiB,
it is better to just switch the targets to the "medium" code model, which is also "medium" in LLVM-speak.
[1]: https://github.com/loongson/la-abi-specs/blob/v2.30/laelf.adoc#code-models
riscv only supports split_debuginfo=off for now
Disable packed/unpacked options for riscv linux/android. Other riscv targets already only have the off option.
The packed/unpacked options might be supported in the future. See upstream issue for more details:
https://github.com/llvm/llvm-project/issues/56642Fixes#110224
make matching on NaN a hard error, and remove the rest of illegal_floating_point_literal_pattern
These arms would never be hit anyway, so the pattern makes little sense. We have had a future-compat lint against float matches in general for a *long* time, so I hope we can get away with immediately making this a hard error.
This is part of implementing https://github.com/rust-lang/rfcs/pull/3535.
Closes https://github.com/rust-lang/rust/issues/41620 by removing the lint.
https://github.com/rust-lang/reference/pull/1456 updates the reference to match.
The Rust LoongArch targets have been using the default LLVM code model
so far, which is "small" in LLVM-speak and "normal" in LoongArch-speak.
As described in the "Code Model" section of LoongArch ELF psABI spec
v20231219 [1], one can only make function calls as far as ±128MiB with
the "normal" code model; this is insufficient for very large software
containing Rust components that needs to be linked into the big text
section, such as Chromium.
Because:
* we do not want to ask users to recompile std if they are to build
such software,
* objects compiled with larger code models can be linked with those
with smaller code models without problems, and
* the "medium" code model is comparable to the "small"/"normal" one
performance-wise (same data access pattern; each function call
becomes 2-insn long and indirect, but this may be relaxed back into
the direct 1-insn form in a future LLVM version), but is able to
perform function calls within ±128GiB,
it is better to just switch the targets to the "medium" code model,
which is also "medium" in LLVM-speak.
[1]: https://github.com/loongson/la-abi-specs/blob/v2.30/laelf.adoc#code-models
coverage: Improve handling of function/closure spans
This is a combination of some loosely-related changes that touch the same code:
1. Make unexpansion of closure bodies more precise, by unexpanding back to the context of the closure declaration, instead of unexpanding all the way back to the top-level context. This preserves the way we handle async desugaring and closures containing a single bang-macro, while also giving better results for closures defined in macros.
2. Skip the normal span-refinement code when dealing with the trivial outer part of an async function.
3. Be more explicit about the fact that `fn_sig_span` has been extended to the start of the function body, and is not necessarily present.
---
`@rustbot` label +A-code-coverage
Move predicate, region, and const stuff into their own modules in middle
This PR mostly moves things around, and in a few cases adds some `ty::` to the beginning of names to avoid one-off imports.
I don't mean this to be the most *thorough* move/refactor. I just generally wanted to begin to split up `ty/mod.rs` and `ty/sty.rs` which are huge and hard to distinguish, and have a lot of non-ty stuff in them.
r? lcnr
This sidesteps the normal span refinement code in cases where we know that we
are only dealing with the special signature span that represents having called
an async function.
The two kinds of delayed bug have quite different semantics so a
stronger conceptual separation is nice. (`is_error` is a good example,
because the two kinds have different behaviour.)
The commit also moves the `DelayedBug` variant after `Error` in `Level`,
to reflect the fact that it's weaker than `Error` -- it might trigger an
error but also might not. (The pre-existing `downgrade_to_delayed_bug`
function also reflects the notion that delayed bugs are lower/after
normal errors.)
Plus it condenses some of the comments on `Level` into a table, for
easier reading, and introduces `can_be_top_or_sub` to indicate which
levels can be used in top-level diagnostics vs. subdiagnostics.
Finally, it renames `DiagCtxtInner::span_delayed_bugs` as
`DiagCtxtInner::delayed_bugs`. The `span_` prefix is unnecessary because
some delayed bugs don't have a span.
- Combine two different blocks involving
`diagnostic.level.get_expectation_id()` into one.
- Combine several `if`s involving `diagnostic.level` into a single
`match`.
This requires reordering some of the operations, but this has no
functional effect.
Rollup of 8 pull requests
Successful merges:
- #119759 (Add FileCheck annotations to dataflow-const-prop tests)
- #120323 (On E0277 be clearer about implicit `Sized` bounds on type params and assoc types)
- #120473 (Only suggest removal of `as_*` and `to_` conversion methods on E0308)
- #120540 (add test for try-block-in-match-arm)
- #120547 (`#![feature(inline_const_pat)]` is no longer incomplete)
- #120552 (Correctly check `never_type` feature gating)
- #120555 (put pnkfelix (me) back on the review queue.)
- #120556 (Improve the diagnostics for unused generic parameters)
r? `@ghost`
`@rustbot` modify labels: rollup
It doesn't affect behaviour, but makes sense with (a) `FailureNote` having
`()` as its emission guarantee, and (b) in `Level` the `is_error` levels
now are all listed before the non-`is_error` levels.
Rollup of 8 pull requests
Successful merges:
- #120484 (Avoid ICE when is_val_statically_known is not of a supported type)
- #120516 (pattern_analysis: cleanup manual impls)
- #120517 (never patterns: It is correct to lower `!` to `_`.)
- #120523 (Improve `io::Read::read_buf_exact` error case)
- #120528 (Store SHOULD_CAPTURE as AtomicU8)
- #120529 (Update data layouts in custom target tests for LLVM 18)
- #120531 (Remove a bunch of `has_errors` checks that have no meaningful or the wrong effect)
- #120533 (Correct paths for hexagon-unknown-none-elf platform doc)
r? `@ghost`
`@rustbot` modify labels: rollup
Improve the diagnostics for unused generic parameters
* Don't emit two errors (namely E0091 *and* E0392) for unused type parameters on *lazy* type aliases
* Fix the diagnostic help message of E0392 for *lazy* type aliases: Don't talk about the “fields” of lazy type aliases (use the term “body” instead) and don't suggest `PhantomData` for them, it doesn't make much sense
* Consolidate the diagnostics for E0091 (unused type parameters in type aliases) and E0392 (unused generic parameters due to bivariance) and make it translatable
* Still keep the error codes distinct (for now)
* Naturally leads to better diagnostics for E0091
r? ```@oli-obk``` (to ballast your review load :P) or compiler
Correctly check `never_type` feature gating
Fixes#120542.
The feature wasn't tested on return type of a generic function type, so it got under the radar in https://github.com/rust-lang/rust/pull/120316.
r? ```@compiler-errors```
`#![feature(inline_const_pat)]` is no longer incomplete
Now that borrow checking and safety checking is implemented for inline constant patterns, the incomplete feature status is not necessary. Stabilizing this feature requires more testing and has some of the same unresolved questions as inline constants.
cc #76001
it works when a non-const context that does not enable effects
calls into a const effects-enabled trait. We'd simply suggest the
non-const trait bound in this case consistent to its fallback.
never patterns: It is correct to lower `!` to `_`.
This is just a comment update but a non-trivial one: it is correct to lower `!` patterns as `_`. The reasoning is that `!` matches all the possible values of the type, since the type is empty. Moreover, we do want to warn that the `Err` is redundant in:
```rust
match x {
!,
Err(!),
}
```
which is consistent with `!` behaving like a wildcard.
I did try to introduce `Constructor::Never` and it ended up needing to behave exactly like `Constructor::Wildcard`.
r? ```@compiler-errors```
Avoid ICE when is_val_statically_known is not of a supported type
2 ICE with 1 stone!
1. Implement `llvm.is.constant.ptr` to avoid first ICE in linked issue.
2. return `false` when the argument is not one of `i*`/`f*`/`ptr` to avoid second ICE.
fixes#120480
hir: Remove the generic type parameter from `MaybeOwned`
It's only ever used with a reference to `OwnerInfo` as an argument.
Follow up to https://github.com/rust-lang/rust/pull/120346.
Remove `BorrowckErrors::tainted_by_errors`
This PR removes one of the `tainted_by_errors` occurrences, replacing it with direct use of `ErrorGuaranteed`.
r? `@oli-obk`
Suggest changing type to const parameters if we encounter a type in the trait bound position
The first commit is just drive-by cleanup.
Provide a structured suggestion if the user forgot to prefix a “const parameter” with `const`, e.g., in `struct Tagged<TAG: u64>;`. This happens to me from time to time. Maybe C++ devs are also prone to this mistake given template syntax looks like `template<typename T, uint32_t N>`.
`emit_future_breakage` calls
`self.dcx().take_future_breakage_diagnostics()` and then passes the
result to `self.dcx().emit_future_breakage_report(diags)`. This commit
removes the first of these and lets `emit_future_breakage_report` do the
taking.
It also inlines and removes what is left of `emit_future_breakage`,
which has a single call site.
- `emitted_at` isn't used outside the crate.
- `code` and `messages` are public fields, so there's no point have
trivial getters/setters for them.
- `suggestions` is public, so the comment about "functionality on
`Diagnostic`" isn't needed.
`BorrowckErrors` stores a mix of error and non-error diags in
`buffered`. As a result, it downgrades `DiagnosticBuilder`s to
`Diagnostic`s, losing the emission guarantees, and so has to use a
`tainted_by_errors` field to record whether an error has occurred.
This commit splits `buffered` into `buffered_errors` and
`buffered_non_errors`, keeping them as `DiagnosticBuilder`s and
preserving the emission guarantees.
This also requires fixing a bunch of incorrect lifetimes on
`DiagnosticBuilder` use points.
* Get rid of a typo in a function name
* Rename `currently_processing_generics`: The old name confused me at first since
I assumed it referred to generic *parameters* when it was in fact referring to
generic *arguments*. Generics are typically short for generic params.
* Get rid of a few unwraps by properly leveraging slice patterns
This makes it possible for two nodes/edges in the coverage graph to share the
same counter, without causing the instrumentor to inject unwanted duplicate
counter-increment statements.
When there are two possibilities, both of which use a `String`, it's
nicer to use a struct than an enum. Especially when mapping the contents
into a tuple.
It contains an `i128`, but when creating them we convert any number
outside the range -100..100 to a string, because Fluent uses an `f64`.
It's all a bit strange.
This commit changes the `i128` to an `i32`, which fits safely in
Fluent's `f64`, and removes the -100..100 range check. This means that
only integers outside the range of `i32` will be converted to strings.
```
error[E0277]: the size for values of type `[i32]` cannot be known at compilation time
--> f100.rs:2:33
|
2 | let _ = std::mem::size_of::<[i32]>();
| ^^^^^ doesn't have a size known at compile-time
|
= help: the trait `Sized` is not implemented for `[i32]`
note: required by an implicit `Sized` bound in `std::mem::size_of`
--> /home/gh-estebank/rust/library/core/src/mem/mod.rs:312:22
|
312 | pub const fn size_of<T>() -> usize {
| ^ required by the implicit `Sized` requirement on this bound in `size_of`
```
Fix#120178.
Since the only use of `TypeCx::bug` is in `Constructor::is_covered_by`,
it is tempting to return `false` instead of `Err()`, but that would
cause "non-exhaustive match" false positives.
Don't hash lints differently to non-lints.
`Diagnostic::keys`, which is used for hashing and equating diagnostics, has a surprising behaviour: it ignores children, but only for lints. This was added in #88493 to fix some duplicated diagnostics, but it doesn't seem necessary any more.
This commit removes the special case and only four tests have changed output, with additional errors. And those additional errors aren't exact duplicates, they're just similar. For example, in src/tools/clippy/tests/ui/same_name_method.rs we currently have this error:
```
error: method's name is the same as an existing method in a trait
--> $DIR/same_name_method.rs:75:13
|
LL | fn foo() {}
| ^^^^^^^^^^^
|
note: existing `foo` defined here
--> $DIR/same_name_method.rs:79:9
|
LL | impl T1 for S {}
| ^^^^^^^^^^^^^^^^
```
and with this change we also get this error:
```
error: method's name is the same as an existing method in a trait
--> $DIR/same_name_method.rs:75:13
|
LL | fn foo() {}
| ^^^^^^^^^^^
|
note: existing `foo` defined here
--> $DIR/same_name_method.rs:81:9
|
LL | impl T2 for S {}
|
```
I think printing this second argument is reasonable, possibly even preferable to hiding it. And the other cases are similar.
r? `@estebank`
Provide more context on derived obligation error primary label
Expand the primary span of E0277 when the immediate unmet bound is not what the user wrote:
```
error[E0277]: the trait bound `i32: Bar` is not satisfied
--> f100.rs:6:6
|
6 | <i32 as Foo>::foo();
| ^^^ the trait `Bar` is not implemented for `i32`, which is required by `i32: Foo`
|
help: this trait has no implementations, consider adding one
--> f100.rs:2:1
|
2 | trait Bar {}
| ^^^^^^^^^
note: required for `i32` to implement `Foo`
--> f100.rs:3:14
|
3 | impl<T: Bar> Foo for T {}
| --- ^^^ ^
| |
| unsatisfied trait bound introduced here
```
Fix#40120.
pattern_analysis: cleanup the contexts
This cleans up a bit the various `*Ctxt`s I had left lying around. As a bonus this made it possible to make `PatternColumn` public. I don't have a use for that yet but that could come useful.
`UsefulnessCtxt` looks useless right now but I'll be adding a field or two in subsequent PRs.
r? `````@compiler-errors`````
Further improve `space_between`
`space_between` is used by `print_tts` to decide when spaces should be put between tokens. This PR improves it in two ways:
- avoid unnecessary spaces before semicolons, and
- don't omit some necessary spaces before/after some punctuation symbols.
r? `@petrochenkov`
Disable packed/unpacked options for riscv linux/android.
Other riscv targets already only have the off option.
The packed/unpacked options might be supported in the future.
See upstream issue for more details:
https://github.com/llvm/llvm-project/issues/56642Fixes#110224
Expand the primary span of E0277 when the immediate unmet bound is not what the user wrote:
```
error[E0277]: the trait bound `i32: Bar` is not satisfied
--> f100.rs:6:6
|
6 | <i32 as Foo>::foo();
| ^^^ the trait `Bar` is not implemented for `i32`, which is required by `i32: Foo`
|
help: this trait has no implementations, consider adding one
--> f100.rs:2:1
|
2 | trait Bar {}
| ^^^^^^^^^
note: required for `i32` to implement `Foo`
--> f100.rs:3:14
|
3 | impl<T: Bar> Foo for T {}
| --- ^^^ ^
| |
| unsatisfied trait bound introduced here
```
Fix#40120.
`Diagnostic::keys`, which is used for hashing and equating diagnostics,
has a surprising behaviour: it ignores children, but only for lints.
This was added in #88493 to fix some duplicated diagnostics, but it
doesn't seem necessary any more.
This commit removes the special case and only four tests have changed
output, with additional errors. And those additional errors aren't
exact duplicates, they're just similar. For example, in
src/tools/clippy/tests/ui/same_name_method.rs we currently have this
error:
```
error: method's name is the same as an existing method in a trait
--> $DIR/same_name_method.rs:75:13
|
LL | fn foo() {}
| ^^^^^^^^^^^
|
note: existing `foo` defined here
--> $DIR/same_name_method.rs:79:9
|
LL | impl T1 for S {}
| ^^^^^^^^^^^^^^^^
```
and with this change we also get this error:
```
error: method's name is the same as an existing method in a trait
--> $DIR/same_name_method.rs:75:13
|
LL | fn foo() {}
| ^^^^^^^^^^^
|
note: existing `foo` defined here
--> $DIR/same_name_method.rs:81:9
|
LL | impl T2 for S {}
| ^^^^^^^^^^^^^^^^
```
I think printing this second argument is reasonable, possibly even
preferable to hiding it. And the other cases are similar.
When a method not found on a type parameter could have been provided by any
of multiple traits, suggest each trait individually, instead of a single
suggestion to restrict the type parameter with *all* of them.
Before:
```
error[E0599]: the method `cmp` exists for reference `&T`, but its trait bounds were not satisfied
--> $DIR/method-on-unbounded-type-param.rs:5:10
|
LL | (&a).cmp(&b)
| ^^^ method cannot be called on `&T` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`T: Ord`
which is required by `&T: Ord`
`&T: Iterator`
which is required by `&mut &T: Iterator`
`T: Iterator`
which is required by `&mut T: Iterator`
help: consider restricting the type parameters to satisfy the trait bounds
|
LL | fn g<T>(a: T, b: T) -> std::cmp::Ordering where T: Iterator, T: Ord {
| +++++++++++++++++++++++++
```
After:
```
error[E0599]: the method `cmp` exists for reference `&T`, but its trait bounds were not satisfied
--> $DIR/method-on-unbounded-type-param.rs:5:10
|
LL | (&a).cmp(&b)
| ^^^ method cannot be called on `&T` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`T: Ord`
which is required by `&T: Ord`
`&T: Iterator`
which is required by `&mut &T: Iterator`
`T: Iterator`
which is required by `&mut T: Iterator`
= help: items from traits can only be used if the type parameter is bounded by the trait
help: the following traits define an item `cmp`, perhaps you need to restrict type parameter `T` with one of them:
|
LL | fn g<T: Ord>(a: T, b: T) -> std::cmp::Ordering {
| +++++
LL | fn g<T: Iterator>(a: T, b: T) -> std::cmp::Ordering {
| ++++++++++
```
Fix#108428.
Normalize region obligation in lexical region resolution with next-gen solver
This normalizes region obligations when we `resolve_regions`, since they may be unnormalized with deferred projection equality.
It's pretty hard to add tests that exercise this without also triggering MIR borrowck errors (because we don't normalize there yet). I've added one test with two revisions that should test that we both 1. normalize region obligations in the param env, and 2. normalize registered region obligations during lexical region resolution.
When encountering
```rust
fn f<T>(a: T, b: T) -> std::cmp::Ordering {
a.cmp(&b) //~ ERROR E0599
}
```
output
```
error[E0599]: no method named `cmp` found for type parameter `T` in the current scope
--> $DIR/method-on-unbounded-type-param.rs:2:7
|
LL | fn f<T>(a: T, b: T) -> std::cmp::Ordering {
| - method `cmp` not found for this type parameter
LL | a.cmp(&b)
| ^^^ method cannot be called on `T` due to unsatisfied trait bounds
|
= help: items from traits can only be used if the type parameter is bounded by the trait
help: the following traits define an item `cmp`, perhaps you need to restrict type parameter `T` with one of them:
|
LL | fn f<T: Ord>(a: T, b: T) -> std::cmp::Ordering {
| +++++
LL | fn f<T: Iterator>(a: T, b: T) -> std::cmp::Ordering {
| ++++++++++
```
Fix#120186.
Remove some unnecessary check logic for lang items in HIR typeck
Obvious bugs with `#[no_core]` do not deserve customized recovery logic, since they are bugs we do not expect users to ever encounter, and if users are experimenting with `#[no_core]`, they should really be familiar with the compiler implementation.
These error recoveries are implemented now only where issues have been reported in the past, rather than systematically validating lang items.
See https://github.com/rust-lang/compiler-team/issues/620
> In particular, one-off fixes for particular assumptions about lang items or intrinsics that introduce additional complexity into the compiler are not accepted.
r? Nilstrieb
Improve error message when `cargo build` is used to build the compiler
Inspired by #76446.
Doing it for `core` is probably higher value but also way harder because tools like cargo or rustc-build-sysroot would need to be fixed first, which I don't feel like doing.
Revert outdated version of "Add the wasm32-wasi-preview2 target"
An outdated version of #119616 was merged in rollup #120309.
This reverts those changes to enable #119616 to “retain the intended diff” after a rebase.
```@rylev``` has agreed that this would be the cleanest approach with respect to the history.
Unblocks #119616.
r? ```@petrochenkov``` or compiler or libs
Remove various `has_errors` or `err_count` uses
follow up to https://github.com/rust-lang/rust/pull/119895
r? `@nnethercote` since you recently did something similar.
There are so many more of these, but I wanted to get a PR out instead of growing the commit list indefinitely. The commits all work on their own and can be reviewed commit by commit.
Deduplicate more sized errors on call exprs
Change the implicit `Sized` `Obligation` `Span` for call expressions to include the whole expression. This aids the existing deduplication machinery to reduce the number of errors caused by a single unsized expression.
Suppress unhelpful diagnostics for unresolved top level attributes
Fixes#118455, unresolved top level attribute error didn't imported prelude and already have emitted an error, report builtin macro and attributes error by the way, so `check_invalid_crate_level_attr` in can ignore them.
Also fixes#89566, fixes#67107.
r? `@petrochenkov`
The query accept arbitrary DefIds, not just owner DefIds.
The return can be an `Option` because if there are no nodes, then it doesn't matter whether it's due to NonOwner or Phantom.
Also rename the query to `opt_hir_owner_nodes`.
Be more careful about interpreting a label/lifetime as a mistyped char literal.
Currently the parser interprets any label/lifetime in certain positions as a mistyped char literal, on the assumption that the trailing single quote was accidentally omitted. In such cases it gives an error with a suggestion to add the trailing single quote, and then puts the appropriate char literal into the AST. This behaviour was introduced in #101293.
This is reasonable for a case like this:
```
let c = 'a;
```
because `'a'` is a valid char literal. It's less reasonable for a case like this:
```
let c = 'abc;
```
because `'abc'` is not a valid char literal.
Prior to #120329 this could result in some sub-optimal suggestions in error messages, but nothing else. But #120329 changed `LitKind::from_token_lit` to assume that the char/byte/string literals it receives are valid, and to assert if not. This is reasonable because the lexer does not produce invalid char/byte/string literals in general. But in this "interpret label/lifetime as unclosed char literal" case the parser can produce an invalid char literal with contents such as `abc`, which triggers an assertion failure.
This PR changes the parser so it's more cautious about interpreting labels/lifetimes as unclosed char literals.
Fixes#120397.
r? `@compiler-errors`
Fixes footnote handling in rustdoc
Fixes#100638.
You can now declare footnotes like this:
```rust
//! Reference to footnotes A[^1], B[^2] and C[^3].
//!
//! [^1]: Footnote A.
//! [^2]: Footnote B.
//! [^3]: Footnote C.
```
r? `@notriddle`
Make the coroutine def id of an async closure the child of the closure def id
Adjust def collection to make the (inner) coroutine returned by an async closure be a def id child of the (outer) closure. This makes it easy to map from coroutine -> closure by using `tcx.parent`, since currently it's not trivial to do this.
Because it's almost always static.
This makes `impl IntoDiagnosticArg for DiagnosticArgValue` trivial,
which is nice.
There are a few diagnostics constructed in
`compiler/rustc_mir_build/src/check_unsafety.rs` and
`compiler/rustc_mir_transform/src/errors.rs` that now need symbols
converted to `String` with `to_string` instead of `&str` with `as_str`,
but that' no big deal, and worth it for the simplifications elsewhere.
only assemble alias bound candidates for rigid aliases
fixes https://github.com/rust-lang/trait-system-refactor-initiative/issues/77
This also causes `<Wrapper<?0> as Trait>::Unwrap: Trait` to always be ambig, as we now normalize the self type before checking whether it is an inference variable.
I cannot think of an approach to the underlying issues here which does not require the "may-define means must-define" restriction for opaque types. Going to go ahead with this and added this restriction to the tracking issue for the new solver to make sure we don't stabilize it without getting types + lang signoff here.
r? `@compiler-errors`
Do not attempt to provide an accurate suggestion for `impl Trait`
in bare trait types when linting. Instead, only do the object
safety check when an E0782 is already going to be emitted in the
2021 edition.
Fix#120241.
Borrow check inline const patterns
Add type annotations to MIR so that borrowck can pass constraints from inline constants in patterns to the containing function.
Also enables some inline constant pattern tests that were fixed by the THIR unsafeck stabilization.
cc #76001
Improve handling of expressions in patterns
Closes#112593.
Methodcalls' dots in patterns are silently recovered as commas (e.g. `Foo("".len())` -> `Foo("", len())`) so extra diagnostics are emitted:
```rs
struct Foo(u8, String, u8);
fn bar(foo: Foo) -> bool {
match foo {
Foo(4, "yippee".yeet(), 7) => true,
_ => false
}
}
```
```
error: expected one of `)`, `,`, `...`, `..=`, `..`, or `|`, found `.`
--> main.rs:5:24
|
5 | Foo(4, "yippee".yeet(), 7) => true,
| ^
| |
| expected one of `)`, `,`, `...`, `..=`, `..`, or `|`
| help: missing `,`
error[E0531]: cannot find tuple struct or tuple variant `yeet` in this scope
--> main.rs:5:25
|
5 | Foo(4, "yippee".yeet(), 7) => true,
| ^^^^ not found in this scope
error[E0023]: this pattern has 4 fields, but the corresponding tuple struct has 3 fields
--> main.rs:5:13
|
1 | struct Foo(u8, String, u8);
| -- ------ -- tuple struct has 3 fields
...
5 | Foo(4, "yippee".yeet(), 7) => true,
| ^ ^^^^^^^^ ^^^^^^ ^ expected 3 fields, found 4
error: aborting due to 3 previous errors
```
This PR checks for patterns that ends with a dot and a lowercase ident (as structs/variants should be uppercase):
```
error: expected a pattern, found a method call
--> main.rs:5:16
|
5 | Foo(4, "yippee".yeet(), 7) => true,
| ^^^^^^^^^^^^^^^ method calls are not allowed in patterns
error: aborting due to 1 previous error
```
Also check for expressions:
```rs
fn is_idempotent(x: f32) -> bool {
match x {
x * x => true,
_ => false,
}
}
fn main() {
let mut t: [i32; 5];
let t[0] = 1;
}
```
```
error: expected a pattern, found an expression
--> main.rs:3:9
|
3 | x * x => true,
| ^^^^^ arbitrary expressions are not allowed in patterns
error: expected a pattern, found an expression
--> main.rs:10:9
|
10 | let t[0] = 1;
| ^^^^ arbitrary expressions are not allowed in patterns
```
Would be cool if the compiler could suggest adding a guard for `match`es, but I've no idea how to do it.
---
`@rustbot` label +A-diagnostics +A-parser +A-patterns +C-enhancement
Currently the parser will interpret any label/lifetime in certain
positions as a mistyped char literal, on the assumption that the
trailing single quote was accidentally omitted. This is reasonable for a
something like 'a (because 'a' would be valid) but not reasonable for a
something like 'abc (because 'abc' is not valid).
This commit restricts this behaviour only to labels/lifetimes that would
be valid char literals, via the new `could_be_unclosed_char_literal`
function. The commit also augments the `label-is-actually-char.rs` test
in a couple of ways:
- Adds testing of labels/lifetimes with identifiers longer than one
char, e.g. 'abc.
- Adds a new match with simpler patterns, because the
`recover_unclosed_char` call in `parse_pat_with_range_pat` was not
being exercised (in this test or any other ui tests).
Fixes#120397, an assertion failure, which was caused by this behaviour
in the parser interacting with some new stricter char literal checking
added in #120329.
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
This makes no sense, and has no effect. I suspect it's been confused
with a `code = "{code}"` attribute on a subdiagnostic suggestion, where
it is valid (but the "code" there is suggested source code, rather than
an error code.)
Merge into larger interval set
This reduces the work done while merging rows. In at least one case (#50450), we have thousands of union([range], [20,000 ranges]), which previously inserted each of the 20,000 ranges one by one. Now we only insert one range into the right hand set after copying the set over.
This cuts the runtime of the test case in #50450 from ~26 seconds to ~6 seconds locally, though it doesn't change the memory usage peak (~9.5GB).
llvm: change data layout bug to an error and make it trigger more
Fixes#33446.
Don't skip the inconsistent data layout check for custom LLVMs or non-built-in targets.
With #118708, all targets will have a simple test that would trigger this error if LLVM's data layouts do change - so data layouts would be corrected during the LLVM upgrade. Therefore, with builtin targets, this error won't happen with our LLVM because each target will have been confirmed to work. With non-builtin targets, this error is probably useful to have because you can change the data layout in your target and if it is wrong then that could lead to bugs.
When using a custom LLVM, the same justification makes sense for non-builtin targets as with our LLVM, the user can update their target to match their LLVM and that's probably a good thing to do. However, with a custom LLVM, the user cannot change the builtin target data layouts if they don't match - though given that the compiler's data layout is used for layout computation and a bunch of other things - you could get some bugs because of the mismatch and probably want to know about that. I'm not sure if this is something that people do and is okay, but I doubt it?
`CFG_LLVM_ROOT` was also always set during local development with `download-ci-llvm` so this bug would never trigger locally.
In #33446, two points are raised:
- In the issue itself, changing this from a `bug!` to a proper error is what is suggested, by using `isCompatibleDataLayout` from LLVM, but that function still just does the same thing that we do and check for equality, so I've avoided the additional code necessary to do that FFI call.
- `@Mark-Simulacrum` suggests a different check is necessary to maintain backwards compatibility with old LLVM versions. I don't know how often this comes up, but we can do that with some simple string manipulation + LLVM version checks as happens already for LLVM 17 just above this diff.
Improve handling of numbers in `IntoDiagnosticArg`
While working on https://github.com/rust-lang/rust/pull/120393, I realize that my fluent selectors were not working. So here is an improvement (not a fix unfortunately).
ScopeTree: remove destruction_scopes as unused
last usages removed by https://github.com/rust-lang/rust/pull/116170
Unused, but still presented in memory at `t-gmax` (in DHAT termonology)
Properly recover from trailing attr in body
When encountering an attribute in a body, we try to recover from an attribute on an expression (as opposed to a statement). We need to properly clean up when the attribute is at the end of the body where a tail expression would be.
Fix#118164, fix#118575.
Add the unstable option to reduce the binary size of dynamic library…
# Motivation
The average length of symbol names in the rust standard library is about 100 bytes, while the average length of symbol names in the C++ standard library is about 65 bytes. In some embedded environments where dynamic library are widely used, rust dynamic library symbol name space hash become one of the key bottlenecks of application, Especially when the existing C/C++ module is reconstructed into the rust module.
The unstable option `-Z symbol_mangling_version=hashed` is added to solve the bottleneck caused by too long dynamic library symbol names.
## Test data
The following is a set of test data on the ubuntu 18.04 LTS environment. With this plug-in, the space saving rate of dynamic libraries can reach about 20%.
The test object is the standard library of rust (built based on Xargo), tokio crate, and hyper crate.
The contents of the Cargo.toml file in the construction project of the three dynamic libraries are as follows:
```txt
# Cargo.toml
[profile.release]
panic = "abort"
opt-leve="z"
codegen-units=1
strip=true
debug=true
```
The built dynamic library also removes the `.rustc` segments that are not needed at run time and then compares the size. The detailed data is as follows:
1. libstd.so
> | symbol_mangling_version | size | saving rate |
> | --- | --- | --- |
> | legacy | 804896 ||
> | hashed | 608288 | 0.244 |
> | v0 | 858144 ||
> | hashed | 608288 | 0.291 |
2. libhyper.so
> | symbol_mangling_version(libhyper.so) | symbol_mangling_version(libstd.so) | size | saving rate |
> | --- | --- | --- | --- |
> | legacy | legacy | 866312 ||
> | hashed | legacy | 645128 |0.255|
> | legacy | hashed | 854024 ||
> | hashed | hashed | 632840 |0.259|
When encountering an attribute in a body, we try to recover from an
attribute on an expression (as opposed to a statement). We need to
properly clean up when the attribute is at the end of the body where a
tail expression would be.
Fix#118164.
Classify closure arguments in refutable pattern in argument error
You can call it a function (and people may or may not agree with that), but it's better to just say those are closure arguments instead.
Normalize field types before checking validity
I forgot to normalize field types when checking ADT-like aggregates in the MIR validator.
This normalization is needed due to a crude check for opaque types in `mir_assign_valid_types` which prevents opaque type cycles -- if we pass in an unnormalized type, we may not detect that the destination type is an opaque, and therefore will call `type_of(opaque)` later on, which causes a cycle error -> ICE.
Fixes#120253
Rename `pointer` field on `Pin`
A few days ago, I was helping another user create a self-referential type using `PhantomPinned`. However, I noticed an odd behavior when I tried to access one of the type's fields via `Pin`'s `Deref` impl:
```rust
use std::{marker::PhantomPinned, ptr};
struct Pinned {
data: i32,
pointer: *const i32,
_pin: PhantomPinned,
}
fn main() {
let mut b = Box::pin(Pinned {
data: 42,
pointer: ptr::null(),
_pin: PhantomPinned,
});
{
let pinned = unsafe { b.as_mut().get_unchecked_mut() };
pinned.pointer = &pinned.data;
}
println!("{}", unsafe { *b.pointer });
}
```
```rust
error[E0658]: use of unstable library feature 'unsafe_pin_internals'
--> <source>:19:30
|
19 | println!("{}", unsafe { *b.pointer });
| ^^^^^^^^^
error[E0277]: `Pinned` doesn't implement `std::fmt::Display`
--> <source>:19:20
|
19 | println!("{}", unsafe { *b.pointer });
| ^^^^^^^^^^^^^^^^^^^^^ `Pinned` cannot be formatted with the default formatter
|
= help: the trait `std::fmt::Display` is not implemented for `Pinned`
= note: in format strings you may be able to use `{:?}` (or {:#?} for pretty-print) instead
= note: this error originates in the macro `$crate::format_args_nl` which comes from the expansion of the macro `println` (in Nightly builds, run with -Z macro-backtrace for more info)
```
Since the user named their field `pointer`, it conflicts with the `pointer` field on `Pin`, which is public but unstable since Rust 1.60.0 with #93176. On versions from 1.33.0 to 1.59.0, where the field on `Pin` is private, this program compiles and prints `42` as expected.
To avoid this confusing behavior, this PR renames `pointer` to `__pointer`, so that it's less likely to conflict with a `pointer` field on the underlying type, as accessed through the `Deref` impl. This is technically a breaking change for anyone who names their field `__pointer` on the inner type; if this is undesirable, it could be renamed to something more longwinded. It's also a nightly breaking change for any external users of `unsafe_pin_internals`.
Don't fire `OPAQUE_HIDDEN_INFERRED_BOUND` on sized return of AFIT
Conceptually, we should probably not fire `OPAQUE_HIDDEN_INFERRED_BOUND` for methods like:
```
trait Foo { async fn bar() -> Self; }
```
Even though we technically cannot prove that `Self: Sized`, which is one of the item bounds of the `Output` type in the `-> impl Future<Output = Sized>` from the async desugaring.
This is somewhat justifiable along the same lines as how we allow regular methods to return `-> Self` even though `Self` isn't sized.
Fixes#113538
(side-note: some days i wonder if we should just remove the `OPAQUE_HIDDEN_INFERRED_BOUND` lint... it does make me sad that we have non-well-formed types in signatures, though.)
privacy: Refactor top-level visiting in `NamePrivacyVisitor`
Full hierarchical visiting (`nested_filter::All`) is not necessary, visiting all item-likes in isolation is enough.
Tracking current item is not necessary, passing any `HirId` with the same parent module to `adjust_ident_and_get_scope` is enough.
Follow up to https://github.com/rust-lang/rust/pull/120284.
interpret: project_downcast: do not ICE for uninhabited variants
Fixes https://github.com/rust-lang/rust/issues/120337
This assertion was already under discussion for a bit; I think the [example](https://github.com/rust-lang/rust/issues/120337#issuecomment-1911076292) `@tmiasko` found is the final nail in the coffin. One could argue maybe MIR building should read the discriminant before projecting, but even then MIR optimizations should be allowed to remove that read, so the downcast should still not ICE. Maybe the downcast should be UB, but in this example UB already arises earlier when a value of type `E` is constructed.
r? `@oli-obk`
Don't manually resolve async closures in `rustc_resolve`
There's a comment here that talks about doing this "[so] closure [args] are detected as upvars rather than normal closure arg usages", but we do upvar analysis on the HIR now:
cd6d8f2a04/compiler/rustc_passes/src/upvars.rs (L21-L29)
Removing this ad-hoc logic makes it so that `async |x: &str|` now introduces an implicit binder, like regular closures.
r? ```@oli-obk```
Builtin macros effectively have implicit #[collapse_debuginfo(yes)]
If collapse_debuginfo attribute for builtin macro is not specified explicitly, it will be effectively set to `#[collapse_debuginfo(yes)]`.
Add the `min_exhaustive_patterns` feature gate
## Motivation
Pattern-matching on empty types is tricky around unsafe code. For that reason, current stable rust conservatively requires arms for empty types in all but the simplest case. It has long been the intention to allow omitting empty arms when it's safe to do so. The [`exhaustive_patterns`](https://github.com/rust-lang/rust/issues/51085) feature allows the omission of all empty arms, but hasn't been stabilized because that was deemed dangerous around unsafe code.
## Proposal
This feature aims to stabilize an uncontroversial subset of exhaustive_patterns. Namely: when `min_exhaustive_patterns` is enabled and the data we're matching on is guaranteed to be valid by rust's operational semantics, then we allow empty arms to be omitted. E.g.:
```rust
let x: Result<T, !> = foo();
match x { // ok
Ok(y) => ...,
}
let Ok(y) = x; // ok
```
If the place is not guaranteed to hold valid data (namely ptr dereferences, ref dereferences (conservatively) and union field accesses), then we keep stable behavior i.e. we (usually) require arms for the empty cases.
```rust
unsafe {
let ptr: *const Result<u32, !> = ...;
match *ptr {
Ok(x) => { ... }
Err(_) => { ... } // still required
}
}
let foo: Result<u32, &!> = ...;
match foo {
Ok(x) => { ... }
Err(&_) => { ... } // still required because of the dereference
}
unsafe {
let ptr: *const ! = ...;
match *ptr {} // already allowed on stable
}
```
Note that we conservatively consider that a valid reference can point to invalid data, hence we don't allow arms of type `&!` and similar cases to be omitted. This could eventually change depending on [opsem decisions](https://github.com/rust-lang/unsafe-code-guidelines/issues/413). Whenever opsem is undecided on a case, we conservatively keep today's stable behavior.
I proposed this behavior in the [`never_patterns`](https://github.com/rust-lang/rust/issues/118155) feature gate but it makes sense on its own and could be stabilized more quickly. The two proposals nicely complement each other.
## Unresolved Questions
Part of the question is whether this requires an RFC. I'd argue this doesn't need one since there is no design question beyond the intent to omit unreachable patterns, but I'm aware the problem can be framed in ways that require design (I'm thinking of the [original never patterns proposal](https://smallcultfollowing.com/babysteps/blog/2018/08/13/never-patterns-exhaustive-matching-and-uninhabited-types-oh-my/), which would frame this behavior as "auto-nevering" happening).
EDIT: I initially proposed a future-compatibility lint as part of this feature, I don't anymore.
Remove unused/unnecessary features
~~The bulk of the actual code changes here is replacing try blocks with equivalent closures. I'm not entirely sure that's a good idea since it may have perf impact, happy to revert if that's the case/the change is unwanted.~~
I also removed a lot of `recursion_limit = "256"` since everything seems to build fine without that and most don't have any comment justifying it.
remove StructuralEq trait
The documentation given for the trait is outdated: *all* function pointers implement `PartialEq` and `Eq` these days. So the `StructuralEq` trait doesn't really seem to have any reason to exist any more.
One side-effect of this PR is that we allow matching on some consts that do not implement `Eq`. However, we already allowed matching on floats and consts containing floats, so this is not new, it is just allowed in more cases now. IMO it makes no sense at all to allow float matching but also sometimes require an `Eq` instance. If we want to require `Eq` we should adjust https://github.com/rust-lang/rust/pull/115893 to check for `Eq`, and rule out float matching for good.
Fixes https://github.com/rust-lang/rust/issues/115881
Remove coroutine info when building coroutine drop body
Coroutine drop shims are not themselves coroutines, so erase the "`coroutine`" field from the body so that helper fns like `yield_ty` and `coroutine_kind` properly return `None` for the drop shim.
Don't call `walk_` functions directly if there is an equivalent `visit_` method
I was working on https://github.com/rust-lang/rust/issues/77773 and realized in one of my experiments that the `visit_path` method was not always called whereas it should have. This fixes it.
r? ``@davidtwco``
linker: Refactor library linking methods in `trait Linker`
Linkers are not aware of Rust libraries, they look like regular static or dynamic libraries to them, so Rust-specific methods in `trait Linker` do not make much sense.
They can be either removed or renamed to something more suitable.
Commits after the second one are cleanups.
Rollup of 10 pull requests
Successful merges:
- #119305 (Add `AsyncFn` family of traits)
- #119389 (Provide more context on recursive `impl` evaluation overflow)
- #119895 (Remove `track_errors` entirely)
- #120230 (Assert that a single scope is passed to `for_scope`)
- #120278 (Remove --fatal-warnings on wasm targets)
- #120292 (coverage: Dismantle `Instrumentor` and flatten span refinement)
- #120315 (On E0308 involving `dyn Trait`, mention trait objects)
- #120317 (pattern_analysis: Let `ctor_sub_tys` return any Iterator they want)
- #120318 (pattern_analysis: Reuse most of the `DeconstructedPat` `Debug` impl)
- #120325 (rustc_data_structures: use either instead of itertools)
r? `@ghost`
`@rustbot` modify labels: rollup
rustc_data_structures: use either instead of itertools
`itertools::Either` is a re-export from `either`, so we might as well use the source.
This flattens the compiler build tree a little, but I don't really expect it to make much difference overall.
pattern_analysis: Reuse most of the `DeconstructedPat` `Debug` impl
The `DeconstructedPat: Debug` is best-effort because we'd need `tcx` to get things like field names etc. Since rust-analyzer has a similar constraint, this PR moves most the impl to be shared between the two. While I was at it I also fixed a nit in the `IntRange: Debug` impl.
r? `@compiler-errors`
pattern_analysis: Let `ctor_sub_tys` return any Iterator they want
I noticed that we always `.cloned()` and allocate the output of `TypeCx::ctor_sub_tys` now, so there was no need to force it to return a slice. `ExactSizeIterator` is not super important but saves some manual counting.
r? `@compiler-errors`
On E0308 involving `dyn Trait`, mention trait objects
When encountering a type mismatch error involving `dyn Trait`, mention the existence of boxed trait objects if the other type involved implements `Trait`.
Fix#102629.
coverage: Dismantle `Instrumentor` and flatten span refinement
This is a combination of two refactorings that are unrelated, but would otherwise have a merge conflict.
No functional changes, other than a small tweak to debug logging as part of rearranging some functions.
Ignoring whitespace is highly recommended, since most of the modified lines have just been reindented.
---
The first change is to dismantle `Instrumentor` into ordinary functions.
This is one of those cases where encapsulating several values into a struct ultimately hurts more than it helps. With everything stored as local variables in one main function, and passed explicitly into helper functions, it's easier to see what is used where, and make changes as necessary.
---
The second change is to flatten the functions for extracting/refining coverage spans.
Consolidating this code into flatter functions reduces the amount of pointer-chasing required to read and modify it.
Remove --fatal-warnings on wasm targets
These were added with good intentions, but a recent change in LLVM 18 emits a warning while examining .rmeta sections in .rlib files. Since this flag is a nice-to-have and users can update their LLVM linker independently of rustc's LLVM version, we can just omit the flag.
See [this comment on wasm targets' uses of `--fatal-warnings`](https://github.com/llvm/llvm-project/pull/78658#issuecomment-1906651390).
Remove `track_errors` entirely
follow up to https://github.com/rust-lang/rust/pull/119869
r? `@matthewjasper`
There are some diagnostic changes adding new diagnostics or not emitting some anymore. We can improve upon that in follow-up work imo.
Provide more context on recursive `impl` evaluation overflow
When an associated type `Self::Assoc` is part of a `where` clause, we end up unable to evaluate the requirement and emit a E0275.
We now point at the associated type if specified in the `impl`. If so, we also suggest using that type instead of `Self::Assoc`. Otherwise, we explain that these are not allowed.
```
error[E0275]: overflow evaluating the requirement `<(T,) as Grault>::A == _`
--> $DIR/impl-wf-cycle-1.rs:15:1
|
LL | / impl<T: Grault> Grault for (T,)
LL | |
LL | | where
LL | | Self::A: Baz,
LL | | Self::B: Fiz,
| |_________________^
LL | {
LL | type A = ();
| ------ associated type `<(T,) as Grault>::A` is specified here
|
note: required for `(T,)` to implement `Grault`
--> $DIR/impl-wf-cycle-1.rs:15:17
|
LL | impl<T: Grault> Grault for (T,)
| ^^^^^^ ^^^^
...
LL | Self::A: Baz,
| --- unsatisfied trait bound introduced here
= note: 1 redundant requirement hidden
= note: required for `(T,)` to implement `Grault`
help: associated type for the current `impl` cannot be restricted in `where` clauses, remove this bound
|
LL - Self::A: Baz,
|
```
```
error[E0275]: overflow evaluating the requirement `<T as B>::Type == <T as B>::Type`
--> $DIR/impl-wf-cycle-3.rs:7:1
|
LL | / impl<T> B for T
LL | | where
LL | | T: A<Self::Type>,
| |_____________________^
LL | {
LL | type Type = bool;
| --------- associated type `<T as B>::Type` is specified here
|
note: required for `T` to implement `B`
--> $DIR/impl-wf-cycle-3.rs:7:9
|
LL | impl<T> B for T
| ^ ^
LL | where
LL | T: A<Self::Type>,
| ------------- unsatisfied trait bound introduced here
help: replace the associated type with the type specified in this `impl`
|
LL | T: A<bool>,
| ~~~~
```
```
error[E0275]: overflow evaluating the requirement `<T as Filter>::ToMatch == <T as Filter>::ToMatch`
--> $DIR/impl-wf-cycle-4.rs:5:1
|
LL | / impl<T> Filter for T
LL | | where
LL | | T: Fn(Self::ToMatch),
| |_________________________^
|
note: required for `T` to implement `Filter`
--> $DIR/impl-wf-cycle-4.rs:5:9
|
LL | impl<T> Filter for T
| ^^^^^^ ^
LL | where
LL | T: Fn(Self::ToMatch),
| ----------------- unsatisfied trait bound introduced here
note: associated types for the current `impl` cannot be restricted in `where` clauses
--> $DIR/impl-wf-cycle-4.rs:7:11
|
LL | T: Fn(Self::ToMatch),
| ^^^^^^^^^^^^^
```
Fix#116925
Add `AsyncFn` family of traits
I'm proposing to add a new family of `async`hronous `Fn`-like traits to the standard library for experimentation purposes.
## Why do we need new traits?
On the user side, it is useful to be able to express `AsyncFn` trait bounds natively via the parenthesized sugar syntax, i.e. `x: impl AsyncFn(&str) -> String` when experimenting with async-closure code.
This also does not preclude `AsyncFn` becoming something else like a trait alias if a more fundamental desugaring (which can take many[^1] different[^2] forms) comes around. I think we should be able to play around with `AsyncFn` well before that, though.
I'm also not proposing stabilization of these trait names any time soon (we may even want to instead express them via new syntax, like `async Fn() -> ..`), but I also don't think we need to introduce an obtuse bikeshedding name, since `AsyncFn` just makes sense.
## The lending problem: why not add a more fundamental primitive of `LendingFn`/`LendingFnMut`?
Firstly, for `async` closures to be as flexible as possible, they must be allowed to return futures which borrow from the async closure's captures. This can be done by introducing `LendingFn`/`LendingFnMut` traits, or (equivalently) by adding a new generic associated type to `FnMut` which allows the return type to capture lifetimes from the `&mut self` argument of the trait. This was proposed in one of [Niko's blog posts](https://smallcultfollowing.com/babysteps/blog/2023/05/09/giving-lending-and-async-closures/).
Upon further experimentation, for the purposes of closure type- and borrow-checking, I've come to the conclusion that it's significantly harder to teach the compiler how to handle *general* lending closures which may borrow from their captures. This is, because unlike `Fn`/`FnMut`, the `LendingFn`/`LendingFnMut` traits don't form a simple "inheritance" hierarchy whose top trait is `FnOnce`.
```mermaid
flowchart LR
Fn
FnMut
FnOnce
LendingFn
LendingFnMut
Fn -- isa --> FnMut
FnMut -- isa --> FnOnce
LendingFn -- isa --> LendingFnMut
Fn -- isa --> LendingFn
FnMut -- isa --> LendingFnMut
```
For example:
```
fn main() {
let s = String::from("hello, world");
let f = move || &s;
let x = f(); // This borrows `f` for some lifetime `'1` and returns `&'1 String`.
```
That trait hierarchy means that in general for "lending" closures, like `f` above, there's not really a meaningful return type for `<typeof(f) as FnOnce>::Output` -- it can't return `&'static str`, for example.
### Special-casing this problem:
By splitting out these traits manually, and making sure that each trait has its own associated future type, we side-step the issue of having to answer the questions of a general `LendingFn`/`LendingFnMut` implementation, since the compiler knows how to generate built-in implementations for first-class constructs like async closures, including the required future types for the (by-move) `AsyncFnOnce` and (by-ref) `AsyncFnMut`/`AsyncFn` trait implementations.
[^1]: For example, with trait transformers, we may eventually be able to write: `trait AsyncFn = async Fn;`
[^2]: For example, via the introduction of a more fundamental "`LendingFn`" trait, plus a [special desugaring with augmented trait aliases](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Lending.20closures.20and.20Fn*.28.29.20-.3E.20impl.20Trait/near/408471480).
Modify GenericArg and Term structs to use strict provenance rules
This is the first PR to solve issue #119217 . In this PR, I have modified the GenericArg struct to use the `NonNull` struct as the pointer instead of `NonZeroUsize`. The change were tested by running `./x test compiler/rustc_middle`.
Resolves https://github.com/rust-lang/rust/issues/119217
r? `@WaffleLapkin`
Replacement of #114390: Add new intrinsic `is_var_statically_known` and optimize pow for powers of two
This adds a new intrinsic `is_val_statically_known` that lowers to [``@llvm.is.constant.*`](https://llvm.org/docs/LangRef.html#llvm-is-constant-intrinsic).` It also applies the intrinsic in the int_pow methods to recognize and optimize the idiom `2isize.pow(x)`. See #114390 for more discussion.
While I have extended the scope of the power of two optimization from #114390, I haven't added any new uses for the intrinsic. That can be done in later pull requests.
Note: When testing or using the library, be sure to use `--stage 1` or higher. Otherwise, the intrinsic will be a noop and the doctests will be skipped. If you are trying out edits, you may be interested in [`--keep-stage 0`](https://rustc-dev-guide.rust-lang.org/building/suggested.html#faster-builds-with---keep-stage).
Fixes#47234Resolves#114390
`@Centri3`
Remove all ConstPropNonsense
We track all locals and projections on them ourselves within the const propagator and only use the InterpCx to actually do some low level operations or read from constants (via `OpTy` we get for said constants).
This helps moving the const prop lint out from the normal pipeline and running it just based on borrowck information. This in turn allows us to make progress on https://github.com/rust-lang/rust/pull/108730#issuecomment-1875557745
there are various follow up cleanups that can be done after this PR (e.g. not matching on Rvalue twice and doing binop checks twice), but lets try landing this one first.
r? `@RalfJung`
They can't contain `\x` escapes, which means they can't contain high
bytes, which means we can used `unescape_unicode` instead of
`unescape_mixed` to unescape them. This avoids unnecessary used of
`MixedUnit`.