or-patterns: disallow in `let` bindings
~~Blocked on https://github.com/rust-lang/rust/pull/81869~~
Disallows top-level or-patterns before type ascription. We want to reserve this syntactic space for possible future generalized type ascription.
r? ``@petrochenkov``
Suggest character encoding is incorrect when encountering random null bytes
This adds a note whenever null bytes are seen at the start of a token unexpectedly, since those tend to come from UTF-16 encoded files without a [BOM](https://en.wikipedia.org/wiki/Byte_order_mark) (if a UTF-16 BOM appears it won't be valid UTF-8, but if there is no BOM it be both valid UTF-16 and valid but garbled UTF-8). This approach was suggested in https://github.com/rust-lang/rust/issues/73979#issuecomment-653976451.
Closes#73979.
This adds recovery when in array type syntax user writes
[X; Y<Z, ...>]
instead of
[X; Y::<Z, ...>]
Fixes#82566
Note that whenever we parse an expression and know that the next token
cannot be `,`, we should be calling
check_mistyped_turbofish_with_multiple_type_params for this recovery.
Previously we only did this for statement parsing (e.g. `let x = f<a,
b>;`). We now also do it when parsing the length field in array type
syntax.
check_mistyped_turbofish_with_multiple_type_params was previously
expecting type arguments between angle brackets, which is not right, as
we can also see const expressions. We now use generic argument parser
instead of type parser.
Test with one, two, and three generic arguments added to check
consistentcy between
1. check_no_chained_comparison: Called after parsing a nested binop
application like `x < A > ...` where angle brackets are interpreted as
binary operators and `A` is an expression.
2. check_mistyped_turbofish_with_multiple_type_params: called by
`parse_full_stmt` when we expect to see a semicolon after parsing an
expression but don't see it.
(In `T2<1, 2>::C;`, the expression is `T2 < 1`)
When token-based attribute handling is implemeneted in #80689,
we will need to access tokens from `HasAttrs` (to perform
cfg-stripping), and we will to access attributes from `HasTokens` (to
construct a `PreexpTokenStream`).
This PR merges the `HasAttrs` and `HasTokens` traits into a new
`AstLike` trait. The previous `HasAttrs` impls from `Vec<Attribute>` and `AttrVec`
are removed - they aren't attribute targets, so the impls never really
made sense.
Improve suggestion for tuple struct pattern matching errors.
Closes#80174
This change allows numbers to be parsed as field names when pattern matching on structs, which allows us to provide better error messages when tuple structs are matched using a struct pattern.
r? ``@estebank``
ast: Keep expansion status for out-of-line module items
I.e. whether a module `mod foo;` is already loaded from a file or not.
This is a pre-requisite to correctly treating inner attributes on such modules (https://github.com/rust-lang/rust/issues/81661).
With this change AST structures for `mod` items diverge even more for AST structure for the crate root, which previously used `ast::Mod`.
Therefore this PR removes `ast::Mod` from `ast::Crate` in the first commit, these two things are sufficiently different from each other, at least at syntactic level.
Customization points for visiting a "`mod` item or crate root" were also removed from AST visitors (`fn visit_mod`).
`ast::Mod` itself was refactored away in the second commit in favor of `ItemKind::Mod(Unsafe, ModKind)`.
Crate root is sufficiently different from `mod` items, at least at syntactic level.
Also remove customization point for "`mod` item or crate root" from AST visitors.
Along the way, we also implement a handful of diagnostics improvements
and fixes, particularly with respect to the special handling of `||` in
place of `|` and when there are leading verts in function params, which
don't allow top-level or-patterns anyway.
Rollup of 11 pull requests
Successful merges:
- #80523 (#[doc(inline)] sym_generated)
- #80920 (Visit more targets when validating attributes)
- #81720 (Updated smallvec version due to RUSTSEC-2021-0003)
- #81891 ([rustdoc-json] Make `header` a vec of modifiers, and FunctionPointer consistent)
- #81912 (Implement the precise analysis pass for lint `disjoint_capture_drop_reorder`)
- #81914 (Fixing bad suggestion for `_` in `const` type when a function #81885)
- #81919 (BTreeMap: fix internal comments)
- #81927 (Add a regression test for #32498)
- #81965 (Fix MIR pretty printer for non-local DefIds)
- #82029 (Use debug log level for developer oriented logs)
- #82056 (fix ice (#82032))
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
This is a pure refactoring split out from #80689.
It represents the most invasive part of that PR, requiring changes in
every caller of `parse_outer_attributes`
In order to eagerly expand `#[cfg]` attributes while preserving the
original `TokenStream`, we need to know the range of tokens that
corresponds to every attribute target. This is accomplished by making
`parse_outer_attributes` return an opaque `AttrWrapper` struct. An
`AttrWrapper` must be converted to a plain `AttrVec` by passing it to
`collect_tokens_trailing_token`. This makes it difficult to accidentally
construct an AST node with attributes without calling `collect_tokens_trailing_token`,
since AST nodes store an `AttrVec`, not an `AttrWrapper`.
As a result, we now call `collect_tokens_trailing_token` for attribute
targets which only support inert attributes, such as generic arguments
and struct fields. Currently, the constructed `LazyTokenStream` is
simply discarded. Future PRs will record the token range corresponding
to the attribute target, allowing those tokens to be removed from an
enclosing `collect_tokens_trailing_token` call if necessary.
The panic happens when in recovery parsing a full `impl`
(`parse_item_impl`) fails and we drop the `DiagnosticBuilder` for the
recovery suggestion and return the `parse_item_impl` error.
We now raise the original error "expected identifier found `impl`" when
parsing the `impl` fails.
Note that the regression test is slightly simplified version of the
original repro in #81806, to make the error output smaller and more
resilient to unrelated changes in parser error messages.
Fixes#81806
Box the biggest ast::ItemKind variants
This PR is a different approach on https://github.com/rust-lang/rust/pull/81400, aiming to save memory in humongous ASTs.
The three affected item kind enums are:
- `ast::ItemKind` (208 -> 112 bytes)
- `ast::AssocItemKind` (176 -> 72 bytes)
- `ast::ForeignItemKind` (176 -> 72 bytes)
Improve handling of spans around macro result parse errors
Fixes#81543
After we expand a macro, we try to parse the resulting tokens as a AST
node. This commit makes several improvements to how we handle spans when
an error occurs:
* Only ovewrite the original `Span` if it's a dummy span. This preserves
a more-specific span if one is available.
* Use `self.prev_token` instead of `self.token` when emitting an error
message after encountering EOF, since an EOF token always has a dummy
span
* Make `SourceMap::next_point` leave dummy spans unused. A dummy span
does not have a logical 'next point', since it's a zero-length span.
Re-using the span span preserves its 'dummy-ness' for other checks
Fixes#81543
After we expand a macro, we try to parse the resulting tokens as a AST
node. This commit makes several improvements to how we handle spans when
an error occurs:
* Only ovewrite the original `Span` if it's a dummy span. This preserves
a more-specific span if one is available.
* Use `self.prev_token` instead of `self.token` when emitting an error
message after encountering EOF, since an EOF token always has a dummy
span
* Make `SourceMap::next_point` leave dummy spans unused. A dummy span
does not have a logical 'next point', since it's a zero-length span.
Re-using the span span preserves its 'dummy-ness' for other checks
Clone entire `TokenCursor` when collecting tokens
Reverts PR #80830Fixestaiki-e/pin-project#312
We can have an arbitrary number of `None`-delimited group frames pushed
on the stack due to proc-macro invocations, which can legally be exited.
Attempting to account for this would add a lot of complexity for a tiny
performance gain, so let's just use the original strategy.
Reverts PR #80830Fixestaiki-e/pin-project#312
We can have an arbitrary number of `None`-delimited group frames pushed
on the stack due to proc-macro invocations, which can legally be exited.
Attempting to account for this would add a lot of complexity for a tiny
performance gain, so let's just use the original strategy.
Improve diagnostics when parsing angle args
https://github.com/rust-lang/rust/pull/79266 introduced parsing of generic arguments in associated type constraints, this however resulted in possibly very confusing error messages in cases in which closing angle brackets were missing such as in `Vec<(u32, _, _) = vec![]`, which outputs an incorrectly parsed equality constraint error, as noted by `@cynecx.`
This PR tries to provide better error messages in such cases.
r? `@petrochenkov`
Refactor token collection to capture trailing token immediately
Split out from https://github.com/rust-lang/rust/pull/80689 - when we start capturing more information about attribute targets, we'll need to know in advance if we're capturing a trailing token or not.
r? `@ghost`
Currently, when a user uses a struct pattern to pattern match on
a tuple struct, the errors we emit generally suggest adding fields
using their field names, which are numbers. However, numbers are
not valid identifiers, so the suggestions, which use the shorthand
notation, are not valid syntax. This commit changes those errors
to suggest using the actual tuple struct pattern syntax instead,
which is a more actionable suggestion.
Fixes#81007
Previously, we would fail to collect tokens in the proper place when
only builtin attributes were present. As a result, we would end up with
attribute tokens in the collected `TokenStream`, leading to duplication
when we attempted to prepend the attributes from the AST node.
We now explicitly track when token collection must be performed due to
nomterminal parsing.
Set tokens on AST node in `collect_tokens`
A new `HasTokens` trait is introduced, which is used to move logic from
the callers of `collect_tokens` into the body of `collect_tokens`.
In addition to reducing duplication, this paves the way for PR #80689,
which needs to perform additional logic during token collection.
A new `HasTokens` trait is introduced, which is used to move logic from
the callers of `collect_tokens` into the body of `collect_tokens`.
In addition to reducing duplication, this paves the way for PR #80689,
which needs to perform additional logic during token collection.
Rework diagnostics for wrong number of generic args (fixes#66228 and #71924)
This PR reworks the `wrong number of {} arguments` message, so that it provides more details and contextual hints.
Suggest async {} for async || {}
Fixes#76011
This adds support for adding help diagnostics to the feature gating checks and
then uses it for the async_closure gate to add the extra bit of help
information as described in the issue.
We will never need to pop past our starting frame during token
capturing. Using an empty stack allows us to avoid pointless heap
allocations/deallocations.
- Adds optional default values to const generic parameters in the AST
and HIR
- Parses these optional default values
- Adds a `const_generics_defaults` feature gate
Implemented a compiler diagnostic for move async mistake
Fixes#79694
First time contributing, so I hope I'm doing everything right.
(If not, please correct me!)
This code performs a check when a move capture clause is parsed. The check is to detect if the user has reversed the async move keywords and to provide a diagnostic with a suggestion to fix it.
Checked code:
```rust
fn main() {
move async { };
}
```
Previous output:
```txt
PS C:\Repos\move_async_test> cargo build
Compiling move_async_test v0.1.0 (C:\Repos\move_async_test)
error: expected one of `|` or `||`, found keyword `async`
--> src\main.rs:2:10
|
2 | move async { };
| ^^^^^ expected one of `|` or `||`
error: aborting due to previous error
error: could not compile `move_async_test`
```
New output:
```txt
PS C:\Repos\move_async_test> cargo +dev build
Compiling move_async_test v0.1.0 (C:\Repos\move_async_test)
error: the order of `move` and `async` is incorrect
--> src\main.rs:2:13
|
2 | let _ = move async { };
| ^^^^^^^^^^
|
help: try switching the order
|
2 | let _ = async move { };
| ^^^^^^^^^^
error: aborting due to previous error
error: could not compile `move_async_test`
```
Is there a file/module where these kind of things are tested?
Would love some feedback 😄
Ran the tidy check
Following the diagnostic guide better
Diagnostic generation is now relegated to its own function in the diagnostics module.
Added tests
Fixed the ui test
Properly capture trailing 'unglued' token
If we try to capture the `Vec<u8>` in `Option<Vec<u8>>`, we'll
need to capture a `>` token which was 'unglued' from a `>>` token.
The processing of unglueing a token for parsing purposes bypasses the
usual capturing infrastructure, so we currently lose the trailing `>`.
As a result, we fall back to the reparsed `TokenStream`, causing us to
lose spans.
This commit makes token capturing keep track of a trailing 'unglued'
token. Note that we don't need to care about unglueing except at the end
of the captured tokens - if we capture both the first and second unglued
tokens, then we'll end up capturing the full 'glued' token, which
already works correctly.
Recover on `const impl<> X for Y`
`@leonardo-m` mentioned that `const impl Foo for Bar` could be recovered from in #79287.
I'm not sure about the error strings as they are, I think it should probably be something like the error that `expected_one_of_not_found` makes + the suggestion to flip the keywords, but I'm not sure how exactly to do that. Also, I decided not to try to handle `const unsafe impl` or `unsafe const impl` cause I figured that `unsafe impl const` would be pretty rare anyway (if it's even valid?), and it wouldn't be worth making the code more messy.
If we try to capture the `Vec<u8>` in `Option<Vec<u8>>`, we'll
need to capture a `>` token which was 'unglued' from a `>>` token.
The processing of unglueing a token for parsing purposes bypasses the
usual capturing infrastructure, so we currently lose the trailing `>`.
As a result, we fall back to the reparsed `TokenStream`, causing us to
lose spans.
This commit makes token capturing keep track of a trailing 'unglued'
token. Note that we don't need to care about unglueing except at the end
of the captured tokens - if we capture both the first and second unglued
tokens, then we'll end up capturing the full 'glued' token, which
already works correctly.
Update error to reflect that integer literals can have float suffixes
For example, `1` is parsed as an integer literal, but it can be turned
into a float with the suffix `f32`. Now the error calls them "numeric
literals" and notes that you can add a float suffix since they can be
either integers or floats.
rustc_parse: fix ConstBlock expr span
The span for a ConstBlock expression should presumably run through the end of the block it contains and not stop at the keyword, just like is done with similar block-containing expression kinds, such as a TryBlock
Properly handle attributes on statements
We now collect tokens for the underlying node wrapped by `StmtKind`
nstead of storing tokens directly in `Stmt`.
`LazyTokenStream` now supports capturing a trailing semicolon after it
is initially constructed. This allows us to avoid refactoring statement
parsing to wrap the parsing of the semicolon in `parse_tokens`.
Attributes on item statements
(e.g. `fn foo() { #[bar] struct MyStruct; }`) are now treated as
item attributes, not statement attributes, which is consistent with how
we handle attributes on other kinds of statements. The feature-gating
code is adjusted so that proc-macro attributes are still allowed on item
statements on stable.
Two built-in macros (`#[global_allocator]` and `#[test]`) needed to be
adjusted to support being passed `Annotatable::Stmt`.
For example, `1` is parsed as an integer literal, but it can be turned
into a float with the suffix `f32`. Now the error calls them "numeric
literals" and notes that you can add a float suffix since they can be
either integers or floats.
When parsing a statement (e.g. inside a function body),
we now consider `struct Foo {};` and `$stmt;` to each consist
of two statements: `struct Foo {}` and `;`, and `$stmt` and `;`.
As a result, an attribute macro invoke as
`fn foo() { #[attr] struct Bar{}; }` will see `struct Bar{}` as its
input. Additionally, the 'unused semicolon' lint now fires in more
places.
We now collect tokens for the underlying node wrapped by `StmtKind`
instead of storing tokens directly in `Stmt`.
`LazyTokenStream` now supports capturing a trailing semicolon after it
is initially constructed. This allows us to avoid refactoring statement
parsing to wrap the parsing of the semicolon in `parse_tokens`.
Attributes on item statements
(e.g. `fn foo() { #[bar] struct MyStruct; }`) are now treated as
item attributes, not statement attributes, which is consistent with how
we handle attributes on other kinds of statements. The feature-gating
code is adjusted so that proc-macro attributes are still allowed on item
statements on stable.
Two built-in macros (`#[global_allocator]` and `#[test]`) needed to be
adjusted to support being passed `Annotatable::Stmt`.
Cache pretty-print/retokenize result to avoid compile time blowup
Fixes#79242
If a `macro_rules!` recursively builds up a nested nonterminal
(passing it to a proc-macro at each step), we will end up repeatedly
pretty-printing/retokenizing the same nonterminals. Unfortunately, the
'probable equality' check we do has a non-trivial cost, which leads to a
blowup in compilation time.
As a workaround, we cache the result of the 'probable equality' check,
which eliminates the compilation time blowup for the linked issue. This
commit only touches a single file (other than adding tests), so it
should be easy to backport.
The proper solution is to remove the pretty-print/retokenize hack
entirely. However, this will almost certainly break a large number of
crates that were relying on hygiene bugs created by using the reparsed
`TokenStream`. As a result, we will definitely not want to backport
such a change.
Fixes#79242
If a `macro_rules!` recursively builds up a nested nonterminal
(passing it to a proc-macro at each step), we will end up repeatedly
pretty-printing/retokenizing the same nonterminals. Unfortunately, the
'probable equality' check we do has a non-trivial cost, which leads to a
blowup in compilation time.
As a workaround, we cache the result of the 'probable equality' check,
which eliminates the compilation time blowup for the linked issue. This
commit only touches a single file (other than adding tests), so it
should be easy to backport.
The proper solution is to remove the pretty-print/retokenize hack
entirely. However, this will almost certainly break a large number of
crates that were relying on hygiene bugs created by using the reparsed
`TokenStream`. As a result, we will definitely not want to backport
such a change.
Make `_` an expression, to discard values in destructuring assignments
This is the third and final step towards implementing destructuring assignment (RFC: rust-lang/rfcs#2909, tracking issue: #71126). This PR is the third and final part of #71156, which was split up to allow for easier review.
With this PR, an underscore `_` is parsed as an expression but is allowed *only* on the left-hand side of a destructuring assignment. There it simply discards a value, similarly to the wildcard `_` in patterns. For instance,
```rust
(a, _) = (1, 2)
```
will simply assign 1 to `a` and discard the 2. Note that for consistency,
```
_ = foo
```
is also allowed and equivalent to just `foo`.
Thanks to ````@varkor```` who helped with the implementation, particularly around pre-expansion gating.
r? ````@petrochenkov````
rustc_parse: Remove optimization for 0-length streams in `collect_tokens`
The optimization conflates empty token streams with unknown token stream, which is at least suspicious, and doesn't affect performance because 0-length token streams are very rare.
r? `@Aaron1011`
The optimization conflates empty token streams with unknown token stream, which is at least suspicious, and doesn't affect performance because 0-length token streams are very rare.
Implement destructuring assignment for structs and slices
This is the second step towards implementing destructuring assignment (RFC: rust-lang/rfcs#2909, tracking issue: #71126). This PR is the second part of #71156, which was split up to allow for easier review.
Note that the first PR (#78748) is not merged yet, so it is included as the first commit in this one. I thought this would allow the review to start earlier because I have some time this weekend to respond to reviews. If ``@petrochenkov`` prefers to wait until the first PR is merged, I totally understand, of course.
This PR implements destructuring assignment for (tuple) structs and slices. In order to do this, the following *parser change* was necessary: struct expressions are not required to have a base expression, i.e. `Struct { a: 1, .. }` becomes legal (in order to act like a struct pattern).
Unfortunately, this PR slightly regresses the diagnostics implemented in #77283. However, it is only a missing help message in `src/test/ui/issues/issue-77218.rs`. Other instances of this diagnostic are not affected. Since I don't exactly understand how this help message works and how to fix it yet, I was hoping it's OK to regress this temporarily and fix it in a follow-up PR.
Thanks to ``@varkor`` who helped with the implementation, particularly around the struct rest changes.
r? ``@petrochenkov``
Do not collect tokens for doc comments
Doc comment is a single token and AST has all the information to re-create it precisely.
Doc comments are also responsible for majority of calls to `collect_tokens` (with `num_calls == 1` and `num_calls == 0`, cc https://github.com/rust-lang/rust/pull/78736).
(I also moved token collection into `fn parse_attribute` to deduplicate code a bit.)
r? `@Aaron1011`
rustc_ast: Do not panic by default when visiting macro calls
Panicking by default made sense when we didn't have HIR or MIR and everything worked on AST, but now all AST visitors run early and majority of them have to deal with macro calls, often by ignoring them.
The second commit renames `visit_mac` to `visit_mac_call`, the corresponding structures were renamed earlier in https://github.com/rust-lang/rust/pull/69589.
Fixes#78675
We now bail out of `prepend_attrs` if we ended up capturing any inner
attributes (which can happen in several places, due to token capturing
for `macro_rules!` arguments.
Adjust turbofish help message for const generics
Types are no longer special. (This message arguably only makes sense with `min_const_generics` or more, but we'll be there soon.)
r? @lcnr
Tweak invalid `fn` header and body parsing
* Rely on regular "expected"/"found" parser error for `fn`, fix#77115
* Recover empty `fn` bodies when encountering `}`
* Recover trailing `>` in return types
* Recover from non-type in array type `[<BAD TOKEN>; LEN]`
Suggest that expressions that look like const generic arguments should be enclosed in brackets
I pulled out the changes for const expressions from https://github.com/rust-lang/rust/pull/71592 (without the trait object diagnostic changes) and made some small changes; the implementation is `@estebank's.`
We're also going to want to make some changes separately to account for trait objects (they result in poor diagnostics, as is evident from one of the test cases here), such as an adaption of https://github.com/rust-lang/rust/pull/72273.
Fixes https://github.com/rust-lang/rust/issues/70753.
r? `@petrochenkov`
Tweak match arm semicolon removal suggestion to account for futures
* Tweak and extend "use `.await`" suggestions
* Suggest removal of semicolon on prior match arm
* Account for `impl Future` when suggesting semicolon removal
* Silence some errors when encountering `await foo()?` as can't be certain what the intent was
*Thanks to https://twitter.com/a_hoverbear/status/1318960787105353728 for pointing this out!*
Unconditionally capture tokens for attributes.
This allows us to avoid synthesizing tokens in `prepend_attr`, since we
have the original tokens available.
We still need to synthesize tokens when expanding `cfg_attr`,
but this is an unavoidable consequence of the syntax of `cfg_attr` -
the user does not supply the `#` and `[]` tokens that a `cfg_attr`
expands to.
This is based on PR https://github.com/rust-lang/rust/pull/77250 - this PR exposes a bug in the current `collect_tokens` implementation, which is fixed by the rewrite.
This allows us to avoid synthesizing tokens in `prepend_attr`, since we
have the original tokens available.
We still need to synthesize tokens when expanding `cfg_attr`,
but this is an unavoidable consequence of the syntax of `cfg_attr` -
the user does not supply the `#` and `[]` tokens that a `cfg_attr`
expands to.
Rewrite `collect_tokens` implementations to use a flattened buffer
Instead of trying to collect tokens at each depth, we 'flatten' the
stream as we go allong, pushing open/close delimiters to our buffer
just like regular tokens. One capturing is complete, we reconstruct a
nested `TokenTree::Delimited` structure, producing a normal
`TokenStream`.
The reconstructed `TokenStream` is not created immediately - instead, it is
produced on-demand by a closure (wrapped in a new `LazyTokenStream` type). This
closure stores a clone of the original `TokenCursor`, plus a record of the
number of calls to `next()/next_desugared()`. This is sufficient to reconstruct
the tokenstream seen by the callback without storing any additional state. If
the tokenstream is never used (e.g. when a captured `macro_rules!` argument is
never passed to a proc macro), we never actually create a `TokenStream`.
This implementation has a number of advantages over the previous one:
* It is significantly simpler, with no edge cases around capturing the
start/end of a delimited group.
* It can be easily extended to allow replacing tokens an an arbitrary
'depth' by just using `Vec::splice` at the proper position. This is
important for PR #76130, which requires us to track information about
attributes along with tokens.
* The lazy approach to `TokenStream` construction allows us to easily
parse an AST struct, and then decide after the fact whether we need a
`TokenStream`. This will be useful when we start collecting tokens for
`Attribute` - we can discard the `LazyTokenStream` if the parsed
attribute doesn't need tokens (e.g. is a builtin attribute).
The performance impact seems to be neglibile (see
https://github.com/rust-lang/rust/pull/77250#issuecomment-703960604). There is a
small slowdown on a few benchmarks, but it only rises above 1% for incremental
builds, where it represents a larger fraction of the much smaller instruction
count. There a ~1% speedup on a few other incremental benchmarks - my guess is
that the speedups and slowdowns will usually cancel out in practice.
Instead of trying to collect tokens at each depth, we 'flatten' the
stream as we go allong, pushing open/close delimiters to our buffer
just like regular tokens. One capturing is complete, we reconstruct a
nested `TokenTree::Delimited` structure, producing a normal
`TokenStream`.
The reconstructed `TokenStream` is not created immediately - instead, it is
produced on-demand by a closure (wrapped in a new `LazyTokenStream` type). This
closure stores a clone of the original `TokenCursor`, plus a record of the
number of calls to `next()/next_desugared()`. This is sufficient to reconstruct
the tokenstream seen by the callback without storing any additional state. If
the tokenstream is never used (e.g. when a captured `macro_rules!` argument is
never passed to a proc macro), we never actually create a `TokenStream`.
This implementation has a number of advantages over the previous one:
* It is significantly simpler, with no edge cases around capturing the
start/end of a delimited group.
* It can be easily extended to allow replacing tokens an an arbitrary
'depth' by just using `Vec::splice` at the proper position. This is
important for PR #76130, which requires us to track information about
attributes along with tokens.
* The lazy approach to `TokenStream` construction allows us to easily
parse an AST struct, and then decide after the fact whether we need a
`TokenStream`. This will be useful when we start collecting tokens for
`Attribute` - we can discard the `LazyTokenStream` if the parsed
attribute doesn't need tokens (e.g. is a builtin attribute).
The performance impact seems to be neglibile (see
https://github.com/rust-lang/rust/pull/77250#issuecomment-703960604). There is a
small slowdown on a few benchmarks, but it only rises above 1% for incremental
builds, where it represents a larger fraction of the much smaller instruction
count. There a ~1% speedup on a few other incremental benchmarks - my guess is
that the speedups and slowdowns will usually cancel out in practice.
rustc_parse: fix spans on cast and range exprs with attrs
Currently the span for cast and range expressions does not include the span of attributes associated to the lhs which is causing some issues for us in rustfmt.
```rust
fn foo() -> i64 {
#[attr]
1u64 as i64
}
fn bar() -> Range<i32> {
#[attr]
1..2
}
```
This corrects the span for cast and range expressions to fully include the span of child nodes
Remove unused code
Rustc has a builtin lint for detecting unused code inside a crate, but when an item is marked `pub`, the code, even if unused inside the entire workspace, is never marked as such. Therefore, I've built [warnalyzer](https://github.com/est31/warnalyzer) to detect unused items in a cross-crate setting.
Closes https://github.com/est31/warnalyzer/issues/2
Fixes#74616
Makes progress towards #43081
Unblocks PR #76130
When pretty-printing an AST node, we may insert additional parenthesis
to ensure that precedence is properly preserved in code we output.
However, the proc macro implementation relies on comparing a
pretty-printed AST node to the captured `TokenStream`. Inserting extra
parenthesis changes the structure of the reparsed `TokenStream`, making
the comparison fail.
This PR refactors the AST pretty-printing code to allow skipping the
insertion of additional parenthesis. Several freestanding methods are
moved to trait methods on `PrintState`, which keep track of an internal
`insert_extra_parens` flag. This flag is normally `true`, but we expose
a public method which allows pretty-printing a nonterminal with
`insert_extra_parens = false`.
To avoid changing the public interface of `rustc_ast_pretty`, the
freestanding `_to_string` methods are changed to delegate to a
newly-crated `State`. The main pretty-printing code is moved to a new
`state` module to ensure that it does not accidentally call any of these
public helper functions (instead, the internal functions with the same
name should be used).
This approach lives exclusively in the parser, so struct expr bodies
that are syntactically correct on their own but are otherwise incorrect
will still emit confusing errors, like in the following case:
```rust
fn foo() -> Foo {
bar: Vec::new()
}
```
```
error[E0425]: cannot find value `bar` in this scope
--> src/file.rs:5:5
|
5 | bar: Vec::new()
| ^^^ expecting a type here because of type ascription
error[E0214]: parenthesized type parameters may only be used with a `Fn` trait
--> src/file.rs:5:15
|
5 | bar: Vec::new()
| ^^^^^ only `Fn` traits may use parentheses
error[E0107]: wrong number of type arguments: expected 1, found 0
--> src/file.rs:5:10
|
5 | bar: Vec::new()
| ^^^^^^^^^^ expected 1 type argument
```
If that field had a trailing comma, that would be a parse error and it
would trigger the new, more targetted, error:
```
error: struct literal body without path
--> file.rs:4:17
|
4 | fn foo() -> Foo {
| _________________^
5 | | bar: Vec::new(),
6 | | }
| |_^
|
help: you might have forgotten to add the struct literal inside the block
|
4 | fn foo() -> Foo { Path {
5 | bar: Vec::new(),
6 | } }
|
```
Partially address last part of #34255.
Makes progress towards #43081
In PR #73084, we started recursively expanded nonterminals during the
pretty-print/reparse check, allowing them to be properly compared
against the reparsed tokenstream.
Unfortunately, the recursive logic in that PR only handles the case
where a nonterminal appears inside a `TokenTree::Delimited`. If a
nonterminal appears directly in the expanded tokens of another
nonterminal, the inner nonterminal will not be expanded.
This PR fixes the recursive expansion of nonterminals, ensuring that
they are expanded wherever they occur.
Fixes#76011
This adds support for adding help diagnostics to the feature gating checks and
then uses it for the async_closure gate to add the extra bit of help
information as described in the issue.
use if let instead of single match arm expressions
use if let instead of single match arm expressions to compact code and reduce nesting (clippy::single_match)
If the right-hand iterator has exactly one more element than the
left-hand iterator, then both iterators will be fully consumed, but
the extra element will never be compared.
Fixing memory exhaustion when formatting short code suggestion
Details can be found in issue #76597. This PR replaces substractions with `saturating_sub`'s to avoid usize wrapping leading to memory exhaustion when formatting short suggestion messages.
Ignore `|` and `+` tokens during proc-macro pretty-print check
Fixes#76182
This is an alternative to PR #76188
These tokens are not preserved in the AST in certain cases
(e.g. a leading `|` in a pattern or a trailing `+` in a trait bound).
This PR ignores them entirely during the pretty-print/reparse check
to avoid spuriously using the re-parsed tokenstream.
We currently only attach tokens when parsing a `:stmt` matcher for a
`macro_rules!` macro. Proc-macro attributes on statements are still
unstable, and need additional work.
Fixes#76182
This is an alternative to PR #76188
These tokens are not preserved in the AST in certain cases
(e.g. a leading `|` in a pattern or a trailing `+` in a trait bound).
This PR ignores them entirely during the pretty-print/reparse check
to avoid spuriously using the re-parsed tokenstream.
Proc-macro API currently exposes jointness in `Punct` tokens. That is,
`+` in `+one` is **non** joint.
Our lexer produces jointness info for all tokens, so we need to censor
it *somewhere*
Previously we did this in a lexer, but it makes more sense to do this
in a proc-macro server.
Improve recovery on malformed format call
The token following a format expression should be a comma. However, when it is replaced with a similar token (such as a dot), then the corresponding error is emitted, but the token is treated as a comma, and the parsing step continues.
r? @petrochenkov
Restore public visibility on some parsing functions for rustfmt
In #74826 the visibility of several parsing functions was reduced. However, rustfmt is an external consumer of some of these functions as well and needs the visibility to be public, similar to other elements in rustc_parse such as `parse_ident`
db534b3ac2/src/librustc_parse/parser/mod.rs (L433-L436)
Previous implementation used the `Parser::parse_expr` function in order
to extract the format expression. If the first comma following the
format expression was mistakenly replaced with a dot, then the next
format expression was eaten by the function, because it looked as a
syntactically valid expression, which resulted in incorrectly spanned
error messages.
The way the format expression is exctracted is changed: we first look at
the first available token in the first argument supplied to the
`format!` macro call. If it is a string literal, then it is promoted as
a format expression immediatly, otherwise we fall back to the original
`parse_expr`-related method.
This allows us to ensure that the parser won't consume too much tokens
when a typo is made.
A test has been created so that it is ensured that the issue is properly
fixed.