This commit adds a new target called `wasm32-wasip1` to rustc.
This new target is explained in these two MCPs:
* https://github.com/rust-lang/compiler-team/issues/607
* https://github.com/rust-lang/compiler-team/issues/695
In short, the previous `wasm32-wasi` target is going to be renamed to
`wasm32-wasip1` to better live alongside the [new
`wasm32-wasip2` target](https://github.com/rust-lang/rust/pull/119616).
This new target is added alongside the `wasm32-wasi` target and has the
exact same definition as the previous target. This PR is effectively a
rename of `wasm32-wasi` to `wasm32-wasip1`. Note, however, that
as explained in rust-lang/compiler-team#695 the previous `wasm32-wasi`
target is not being removed at this time. This change will reach stable
Rust before even a warning about the rename will be printed. At this
time this change is just the start where a new target is introduced and
users can start migrating if they support only Nightly for example.
This allows building the compiler itself with one backend while using
another backend at runtime. For example this allows compiling rustc to
wasm using LLVM, while using Cranelift at runtime to produce actual
code. Cranelift can't compile to wasm, but is perfectly capable of
running on wasm. LLVM can compile to wasm, but can't run on wasm. [^1]
[^1]: The prototype of this still requires a couple of other patches.
in particular, this makes the `c` feature for compiler-builtins an explicit opt-in, rather than silently detected by whether `llvm-project` is checked out on disk.
exposing this is necessary because the `cc` crate doesn't support cross-compiling to MSVC, and we want people to be able to run `x check --target foo` regardless of whether they have a c toolchain available.
this also uses the new option in CI, where we *do* want to optimize compiler_builtins.
the new option is off by default for the `dev` channel and on otherwise.
This field was not functioning as described in its comment in `config.example.toml`.
Also, updated the default value to `true` to keep the bootstrapping behavior as it was before.
Signed-off-by: onur-ozkan <work@onurozkan.dev>
This way, we only update CONFIG_CHANGE_HISTORY for major changes, which is
much simpler (and updating example.toml doesn't make much sense)
Signed-off-by: onur-ozkan <work@onurozkan.dev>
Add two options when building rust: strip and stack protector.
If set `strip = true`, symbols will be stripped using `-Cstrip=symbols`.
Also can set `stack-protector` and stack protectors will be used.
In the future Windows will enable Control-flow Enforcement Technology
(CET aka Shadow Stacks). To protect the path where the context is
updated during exception handling, the binary is required to enumerate
valid unwind entrypoints in a dedicated section which is validated when
the context is being set during exception handling.
The required support for EHCONT has already been merged into LLVM,
long ago. This change adds the Rust codegen option to enable it.
Reference:
* https://reviews.llvm.org/D40223
This also adds a new `ehcont-guard` option to the bootstrap config which
enables EHCont Guard when building std.
Three tasks have been implemented here.
Add a new `download-ci-llvm = if-unchange` option and enable if by
default for `profile = codegen`.
Include all build artifacts by traversing the llvm-project build output,
Keep the downloadable llvm the same state as if you have just run a full
source build.
After selecting the codegen profile during ./x.py setup, the submodule
will be automatically downloaded.
PR #105716 added support for NDK r25b, and removed support for r15. Since
the switch to r25b would have broken existing r15 users anyway, let's
take the opportunity to make the interface more user friendly.
Firstly move the android-ndk property to [build] instead of the
targets. This is possible now that the NDK has obsoleted the concept of
target-specific toolchains.
Also make the property take the NDK root directory instead of the
"toolchains/llvm/prebuilt/<host tag>" subdirectory.
bootstrap major change detection implementation
The use of `changelog-seen` and `bootstrap/CHANGELOG.md` has not been functional in any way for many years. We often do major/breaking changes but never update the changelog file or the `changelog-seen`. This is an alternative method for tracking major or breaking changes and informing developers when such changes occur.
Example output when bootstrap detects a major change:
![image](https://github.com/rust-lang/rust/assets/39852038/ee802dfa-a02b-488b-a433-f853ce079b8a)
Allow using external builds of the compiler-rt profile lib
This changes the bootstrap config `target.*.profiler` from a plain bool
to also allow a string, which will be used as a path to the pre-built
profiling runtime for that target. Then `profiler_builtins/build.rs`
reads that in a `LLVM_PROFILER_RT_LIB` environment variable.
This changes the bootstrap config `target.*.profiler` from a plain bool
to also allow a string, which will be used as a path to the pre-built
profiling runtime for that target. Then `profiler_builtins/build.rs`
reads that in a `LLVM_PROFILER_RT_LIB` environment variable.
Initial support for loongarch64-unknown-linux-gnu
Hi, We hope to add a new port in rust for LoongArch.
LoongArch intro
LoongArch is a RISC style ISA which is independently designed by Loongson
Technology in China. It is divided into two versions, the 32-bit version (LA32)
and the 64-bit version (LA64). LA64 applications have application-level
backward binary compatibility with LA32 applications. LoongArch is composed of
a basic part (Loongson Base) and an expanded part. The expansion part includes
Loongson Binary Translation (LBT), Loongson VirtualiZation (LVZ), Loongson SIMD
EXtension (LSX) and Loongson Advanced SIMD EXtension(LASX).
Currently the LA464 processor core supports LoongArch ISA and the Loongson
3A5000 processor integrates 4 64-bit LA464 cores. LA464 is a four-issue 64-bit
high-performance processor core. It can be used as a single core for high-end
embedded and desktop applications, or as a basic processor core to form an
on-chip multi-core system for server and high-performance machine applications.
Documentations:
ISA:
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html
ABI:
https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html
More docs can be found at:
https://loongson.github.io/LoongArch-Documentation/README-EN.html
Since last year, we have locally adapted two versions of rust, rust1.41 and rust1.57, and completed the test locally.
I'm not sure if I'm submitting all the patches at once, so I split up the patches and here's one of the commits
- Link to more documentation
- Move `changelog-seen` into the "Global Settings" section
- Update incorrect comments on `llvm.link-shared` and
`rust.debug-assertions`
- Use the correct default in the commented-out example more often
- Clarify that `docs` and `compiler-docs` only control the default,
they're not a hard-off switch.
- Document `-vvv` and `local-rebuild`
- Minor improvements to doc-comments in config.toml.example
This also sets `download-rustc = false`; that was already the default,
but it will be helpful in case the default changes
(https://jyn.dev/2023/01/12/Bootstrapping-Rust-in-2023.html).
Add `dist.compression-profile` option to control compression speed
PR #108534 reduced the size of compressed archives, but (as expected) it also resulted in way longer compression times and memory usage during compression.
It's desirable to keep status quo (smaller archives but more CI usage), but it should also be configurable so that downstream users don't have to waste that much time on CI. As a data point, this resulted in doubling the time of Ferrocene's dist jobs, and required us to increase the RAM allocation for one of such jobs.
This PR adds a new `config.toml` setting, `dist.compression-profile`. The values can be:
* `fast`: equivalent to the gzip and xz preset of "1"
* `balanced`: equivalent to the gzip and xz preset of "6" (the CLI defaults as far as I'm aware)
* `best`: equivalent to the gzip present of "9", and our custom xz profile
The default has also been moved back to `balanced`, to try and avoid the compression time regression for downstream users. I don't feel too strongly on the default, and I'm open to changing it.
Also, for the `best` profile the XZ settings do not match the "9" preset used by the CLI, and it might be confusing. Should we create a `custom-rustc-ci`/`ultra` profile for that?
r? ``@Mark-Simulacrum``