Rollup of 5 pull requests
Successful merges:
- #115653 (Guarantee that Layout::align returns a non-zero power of two)
- #116577 (add `SAFETY` block on the usage of unsafe `getuid`)
- #116618 (Add the V (vector) extension to the riscv64-linux-android target spec)
- #116679 (Remove some unnecessary `unwrap`s)
- #116689 (explicitly handle auto trait leakage in coherence)
r? `@ghost`
`@rustbot` modify labels: rollup
Fix AFIT lint message to mention pitfall
Addresses https://github.com/rust-lang/rust/pull/116184#issuecomment-1745194387 by adding a short note. Not sure exactly of the wording -- I don't think this should be a blocker for the stabilization PR since we can iterate on this lint's messaging in the next few weeks in the worst case.
r? `@tmandry` cc `@traviscross` `@jonhoo`
Add ability to get lines/filename for Span in smir
Wasn't sure about how to structure lines, so went with safest option, also I'm not sure why `span_to_lines` returns `vec`.
Addresses https://github.com/rust-lang/project-stable-mir/issues/44
r? ``@oli-obk``
linker: also pass debuginfo compression flags
We support compressing debuginfo during codegen, but until this patch we didn't pass the flag to the linker. Doing so means we'll respect the requested compression even when building binaries or dylibs. This produces much smaller binaries: in my testing a debug build of ripgrep goes from 85M to 32M, and the target/ directory (after a clean build in both cases) goes from 508M to 329M just by enabling zlib compression of debuginfo.
const_eval: allow function pointer signatures containing &mut T in const contexts
potentially fixes#114994
We utilize a `TypeVisitor` here in order to more easily handle control flow.
- In the event the typekind the Visitor sees is a function pointer, we skip over it
- However, otherwise we do one of two things:
- If we find a mutable reference, check it, then continue visiting types
- If we find any other type, continue visiting types
This means we will check if the function pointer _itself_ is mutable, but not if any of the types _within_ are.
Stabilize `async fn` and return-position `impl Trait` in trait
# Stabilization report
This report proposes the stabilization of `#![feature(return_position_impl_trait_in_trait)]` ([RPITIT][RFC 3425]) and `#![feature(async_fn_in_trait)]` ([AFIT][RFC 3185]). These are both long awaited features that increase the expressiveness of the Rust language and trait system.
Closes#91611
[RFC 3185]: https://rust-lang.github.io/rfcs/3185-static-async-fn-in-trait.html
[RFC 3425]: https://rust-lang.github.io/rfcs/3425-return-position-impl-trait-in-traits.html
## Updates from thread
The thread has covered two major concerns:
* [Given that we don't have RTN, what should we stabilize?](https://github.com/rust-lang/rust/pull/115822#issuecomment-1731149475) -- proposed resolution is [adding a lint](https://github.com/rust-lang/rust/pull/115822#issuecomment-1728354622) and [careful messaging](https://github.com/rust-lang/rust/pull/115822#issuecomment-1731136169)
* [Interaction between outlives bounds and capture semantics](https://github.com/rust-lang/rust/pull/115822#issuecomment-1731153952) -- This is fixable in a forwards-compatible way via #116040, and also eventually via ATPIT.
## Stabilization Summary
This stabilization allows the following examples to work.
### Example of return-position `impl Trait` in trait definition
```rust
trait Bar {
fn bar(self) -> impl Send;
}
```
This declares a trait method that returns *some* type that implements `Send`. It's similar to writing the following using an associated type, except that the associated type is anonymous.
```rust
trait Bar {
type _0: Send;
fn bar(self) -> Self::_0;
}
```
### Example of return-position `impl Trait` in trait implementation
```rust
impl Bar for () {
fn bar(self) -> impl Send {}
}
```
This defines a method implementation that returns an opaque type, just like [RPIT][RFC 1522] does, except that all in-scope lifetimes are captured in the opaque type (as is already true for `async fn` and as is expected to be true for RPIT in Rust Edition 2024), as described below.
[RFC 1522]: https://rust-lang.github.io/rfcs/1522-conservative-impl-trait.html
### Example of `async fn` in trait
```rust
trait Bar {
async fn bar(self);
}
impl Bar for () {
async fn bar(self) {}
}
```
This declares a trait method that returns *some* [`Future`](https://doc.rust-lang.org/core/future/trait.Future.html) and a corresponding method implementation. This is equivalent to writing the following using RPITIT.
```rust
use core::future::Future;
trait Bar {
fn bar(self) -> impl Future<Output = ()>;
}
impl Bar for () {
fn bar(self) -> impl Future<Output = ()> { async {} }
}
```
The desirability of this desugaring being available is part of why RPITIT and AFIT are being proposed for stabilization at the same time.
## Motivation
Long ago, Rust added [RPIT][RFC 1522] and [`async`/`await`][RFC 2394]. These are major features that are widely used in the ecosystem. However, until now, these feature could not be used in *traits* and trait implementations. This left traits as a kind of second-class citizen of the language. This stabilization fixes that.
[RFC 2394]: https://rust-lang.github.io/rfcs/2394-async_await.html
### `async fn` in trait
Async/await allows users to write asynchronous code much easier than they could before. However, it doesn't play nice with other core language features that make Rust the great language it is, like traits. Support for `async fn` in traits has been long anticipated and was not added before due to limitations in the compiler that have now been lifted.
`async fn` in traits will unblock a lot of work in the ecosystem and the standard library. It is not currently possible to write a trait that is implemented using `async fn`. The workarounds that exist are undesirable because they require allocation and dynamic dispatch, and any trait that uses them will become obsolete once native `async fn` in trait is stabilized.
We also have ample evidence that there is demand for this feature from the [`async-trait` crate][async-trait], which emulates the feature using dynamic dispatch. The async-trait crate is currently the #5 async crate on crates.io ranked by recent downloads, receiving over 78M all-time downloads. According to a [recent analysis][async-trait-analysis], 4% of all crates use the `#[async_trait]` macro it provides, representing 7% of all function and method signatures in trait definitions on crates.io. We think this is a *lower bound* on demand for the feature, because users are unlikely to use `#[async_trait]` on public traits on crates.io for the reasons already given.
[async-trait]: https://crates.io/crates/async-trait
[async-trait-analysis]: https://rust-lang.zulipchat.com/#narrow/stream/315482-t-compiler.2Fetc.2Fopaque-types/topic/RPIT.20capture.20rules.20.28capturing.20everything.29/near/389496292
### Return-position `impl Trait` in trait
`async fn` always desugars to a function that returns `impl Future`.
```rust!
async fn foo() -> i32 { 100 }
// Equivalent to:
fn foo() -> impl Future<Output = i32> { async { 100 } }
```
All `async fn`s today can be rewritten this way. This is useful because it allows adding behavior that runs at the time of the function call, before the first `.await` on the returned future.
In the spirit of supporting the same set of features on `async fn` in traits that we do outside of traits, it makes sense to stabilize this as well. As described by the [RPITIT RFC][rpitit-rfc], this includes the ability to mix and match the equivalent forms in traits and their corresponding impls:
```rust!
trait Foo {
async fn foo(self) -> i32;
}
// Can be implemented as:
impl Foo for MyType {
fn foo(self) -> impl Future<Output = i32> {
async { 100 }
}
}
```
Return-position `impl Trait` in trait is useful for cases beyond async, just as regular RPIT is. As a simple example, the RFC showed an alternative way of writing the `IntoIterator` trait with one fewer associated type.
```rust!
trait NewIntoIterator {
type Item;
fn new_into_iter(self) -> impl Iterator<Item = Self::Item>;
}
impl<T> NewIntoIterator for Vec<T> {
type Item = T;
fn new_into_iter(self) -> impl Iterator<Item = T> {
self.into_iter()
}
}
```
[rpitit-rfc]: https://rust-lang.github.io/rfcs/3425-return-position-impl-trait-in-traits.html
## Major design decisions
This section describes the major design decisions that were reached after the RFC was accepted:
- EDIT: Lint against async fn in trait definitions
- Until the [send bound problem](https://smallcultfollowing.com/babysteps/blog/2023/02/01/async-trait-send-bounds-part-1-intro/) is resolved, the use of `async fn` in trait definitions could lead to a bad experience for people using work-stealing executors (by far the most popular choice). However, there are significant use cases for which the current support is all that is needed (single-threaded executors, such as those used in embedded use cases, as well as thread-per-core setups). We are prioritizing serving users well over protecting people from misuse, and therefore, we opt to stabilize the full range of functionality; however, to help steer people correctly, we are will issue a warning on the use of `async fn` in trait definitions that advises users about the limitations. (See [this summary comment](https://github.com/rust-lang/rust/pull/115822#issuecomment-1731149475) for the details of the concern, and [this comment](https://github.com/rust-lang/rust/pull/115822#issuecomment-1728354622) for more details about the reasoning that led to this conclusion.)
- Capture rules:
- The RFC's initial capture rules for lifetimes in impls/traits were found to be imprecisely precise and to introduce various inconsistencies. After much discussion, the decision was reached to make `-> impl Trait` in traits/impls capture *all* in-scope parameters, including both lifetimes and types. This is a departure from the behavior of RPITs in other contexts; an RFC is currently being authored to change the behavior of RPITs in other contexts in a future edition.
- Major discussion links:
- [Lang team design meeting from 2023-07-26](https://hackmd.io/sFaSIMJOQcuwCdnUvCxtuQ?view)
- Refinement:
- The [refinement RFC] initially proposed that impl signatures that are more specific than their trait are not allowed unless the `#[refine]` attribute was included, but left it as an open question how to implement this. The stabilized proposal is that it is not a hard error to omit `#[refine]`, but there is a lint which fires if the impl's return type is more precise than the trait. This greatly simplified the desugaring and implementation while still achieving the original goal of ensuring that users do not accidentally commit to a more specific return type than they intended.
- Major discussion links:
- [Zulip thread](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/.60.23.5Brefine.5D.60.20as.20a.20lint)
[refinement RFC]: https://rust-lang.github.io/rfcs/3245-refined-impls.html
## What is stabilized
### Async functions in traits and trait implementations
* `async fn` are now supported in traits and trait implementations.
* Associated functions in traits that are `async` may have default bodies.
### Return-position impl trait in traits and trait implementations
* Return-position `impl Trait`s are now supported in traits and trait implementations.
* Return-position `impl Trait` in implementations are treated like regular return-position `impl Trait`s, and therefore behave according to the same inference rules for hidden type inference and well-formedness.
* Associated functions in traits that name return-position `impl Trait`s may have default bodies.
* Implementations may provide either concrete types or `impl Trait` for each corresponding `impl Trait` in the trait method signature.
For a detailed exploration of the technical implementation of return-position `impl Trait` in traits, see [the dev guide](https://rustc-dev-guide.rust-lang.org/return-position-impl-trait-in-trait.html).
### Mixing `async fn` in trait and return-position `impl Trait` in trait
A trait function declaration that is `async fn ..() -> T` may be satisfied by an implementation function that returns `impl Future<Output = T>`, or vice versa.
```rust
trait Async {
async fn hello();
}
impl Async for () {
fn hello() -> impl Future<Output = ()> {
async {}
}
}
trait RPIT {
fn hello() -> impl Future<Output = String>;
}
impl RPIT for () {
async fn hello() -> String {
"hello".to_string()
}
}
```
### Return-position `impl Trait` in traits and trait implementations capture all in-scope lifetimes
Described above in "major design decisions".
### Return-position `impl Trait` in traits are "always revealing"
When a trait uses `-> impl Trait` in return position, it logically desugars to an associated type that represents the return (the actual implementation in the compiler is different, as described below). The value of this associated type is determined by the actual return type written in the impl; if the impl also uses `-> impl Trait` as the return type, then the value of the associated type is an opaque type scoped to the impl method (similar to what you would get when calling an inherent function returning `-> impl Trait`). As with any associated type, the value of this special associated type can be revealed by the compiler if the compiler can figure out what impl is being used.
For example, given this trait:
```rust
trait AsDebug {
fn as_debug(&self) -> impl Debug;
}
```
A function working with the trait generically is only able to see that the return value is `Debug`:
```rust
fn foo<T: AsDebug>(t: &T) {
let u = t.as_debug();
println!("{}", u); // ERROR: `u` is not known to implement `Display`
}
```
But if a function calls `as_debug` on a known type (say, `u32`), it may be able to resolve the return type more specifically, if that implementation specifies a concrete type as well:
```rust
impl AsDebug for u32 {
fn as_debug(&self) -> u32 {
*self
}
}
fn foo(t: &u32) {
let u: u32 = t.as_debug(); // OK!
println!("{}", t.as_debug()); // ALSO OK (since `u32: Display`).
}
```
The return type used in the impl therefore represents a **semver binding** promise from the impl author that the return type of `<u32 as AsDebug>::as_debug` will not change. This could come as a surprise to users, who might expect that they are free to change the return type to any other type that implements `Debug`. To address this, we include a [`refining_impl_trait` lint](https://github.com/rust-lang/rust/pull/115582) that warns if the impl uses a specific type -- the `impl AsDebug for u32` above, for example, would toggle the lint.
The lint message explains what is going on and encourages users to `allow` the lint to indicate that they meant to refine the return type:
```rust
impl AsDebug for u32 {
#[allow(refining_impl_trait)]
fn as_debug(&self) -> u32 {
*self
}
}
```
[RFC #3245](https://github.com/rust-lang/rfcs/pull/3245) proposed a new attribute, `#[refine]`, that could also be used to "opt-in" to refinements like this (and which would then silence the lint). That RFC is not currently implemented -- the `#[refine]` attribute is also expected to reveal other details from the signature and has not yet been fully implemented.
### Return-position `impl Trait` and `async fn` in traits are opted-out of object safety checks when the parent function has `Self: Sized`
```rust
trait IsObjectSafe {
fn rpit() -> impl Sized where Self: Sized;
async fn afit() where Self: Sized;
}
```
Traits that mention return-position `impl Trait` or `async fn` in trait when the associated function includes a `Self: Sized` bound will remain object safe. That is because the associated function that defines them will be opted-out of the vtable of the trait, and the associated types will be unnameable from any trait object.
This can alternatively be seen as a consequence of https://github.com/rust-lang/rust/pull/112319#issue-1742251747 and the desugaring of return-position `impl Trait` in traits to associated types which inherit the where-clauses of the associated function that defines them.
## What isn't stabilized (aka, potential future work)
### Dynamic dispatch
As stabilized, traits containing RPITIT and AFIT are **not dyn compatible**. This means that you cannot create `dyn Trait` objects from them and can only use static dispatch. The reason for this limitation is that dynamic dispatch support for RPITIT and AFIT is more complex than static dispatch, as described on the [async fundamentals page](https://rust-lang.github.io/async-fundamentals-initiative/evaluation/challenges/dyn_traits.html). The primary challenge to using `dyn Trait` in today's Rust is that **`dyn Trait` today must list the values of all associated types**. This means you would have to write `dyn for<'s> Trait<Foo<'s> = XXX>` where `XXX` is the future type defined by the impl, such as `F_A`. This is not only verbose (or impossible), it also uniquely ties the `dyn Trait` to a particular impl, defeating the whole point of `dyn Trait`.
The precise design for handling dynamic dispatch is not yet determined. Top candidates include:
- [callee site selection][], in which we permit unsized return values so that the return type for an `-> impl Foo` method be can be `dyn Foo`, but then users must specify the type of wide pointer at the call-site in some fashion.
- [`dyn*`][], where we create a built-in encapsulation of a "wide pointer" and map the associated type corresponding to an RPITIT to the corresponding `dyn*` type (`dyn*` itself is not exposed to users as a type in this proposal, though that could be a future extension).
[callee site selection]: https://smallcultfollowing.com/babysteps/blog/2022/09/21/dyn-async-traits-part-9-callee-site-selection/
[`dyn*`]: https://smallcultfollowing.com/babysteps/blog/2022/03/29/dyn-can-we-make-dyn-sized/
### Where-clause bounds on return-position `impl Trait` in traits or async futures (RTN/ART)
One limitation of async fn in traits and RPITIT as stabilized is that there is no way for users to write code that adds additional bounds beyond those listed in the `-> impl Trait`. The most common example is wanting to write a generic function that requires that the future returned from an `async fn` be `Send`:
```rust
trait Greet {
async fn greet(&self);
}
fn greet_in_parallel<G: Greet>(g: &G) {
runtime::spawn(async move {
g.greet().await; //~ ERROR: future returned by `greet` may not be `Send`
})
}
```
Currently, since the associated types added for the return type are anonymous, there is no where-clause that could be added to make this code compile.
There have been various proposals for how to address this problem (e.g., [return type notation][rtn] or having an annotation to give a name to the associated type), but we leave the selection of one of those mechanisms to future work.
[rtn]: https://smallcultfollowing.com/babysteps/blog/2023/02/13/return-type-notation-send-bounds-part-2/
In the meantime, there are workarounds that one can use to address this problem, listed below.
#### Require all futures to be `Send`
For many users, the trait may only ever be used with `Send` futures, in which case one can write an explicit `impl Future + Send`:
```rust
trait Greet {
fn greet(&self) -> impl Future<Output = ()> + Send;
}
```
The nice thing about this is that it is still compatible with using `async fn` in the trait impl. In the async working group case studies, we found that this could work for the [builder provider API](https://rust-lang.github.io/async-fundamentals-initiative/evaluation/case-studies/builder-provider-api.html). This is also the default approach used by the `#[async_trait]` crate which, as we have noted, has seen widespread adoption.
#### Avoid generics
This problem only applies when the `Self` type is generic. If the `Self` type is known, then the precise return type from an `async fn` is revealed, and the `Send` bound can be inferred thanks to auto-trait leakage. Even in cases where generics may appear to be required, it is sometimes possible to rewrite the code to avoid them. The [socket handler refactor](https://rust-lang.github.io/async-fundamentals-initiative/evaluation/case-studies/socket-handler.html) case study provides one such example.
### Unify capture behavior for `-> impl Trait` in inherent methods and traits
As stabilized, the capture behavior for `-> impl Trait` in a trait (whether as part of an async fn or a RPITIT) captures all types and lifetimes, whereas the existing behavior for inherent methods only captures types and lifetimes that are explicitly referenced. Capturing all lifetimes in traits was necessary to avoid various surprising inconsistencies; the expressed intent of the lang team is to extend that behavior so that we also capture all lifetimes in inherent methods, which would create more consistency and also address a common source of user confusion, but that will have to happen over the 2024 edition. The RFC is in progress. Should we opt not to accept that RFC, we can bring the capture behavior for `-> impl Trait` into alignment in other ways as part of the 2024 edition.
### `impl_trait_projections`
Orthgonal to `async_fn_in_trait` and `return_position_impl_trait_in_trait`, since it can be triggered on stable code. This will be stabilized separately in [#115659](https://github.com/rust-lang/rust/pull/115659).
<details>
If we try to write this code without `impl_trait_projections`, we will get an error:
```rust
#![feature(async_fn_in_trait)]
trait Foo {
type Error;
async fn foo(&mut self) -> Result<(), Self::Error>;
}
impl<T: Foo> Foo for &mut T {
type Error = T::Error;
async fn foo(&mut self) -> Result<(), Self::Error> {
T::foo(self).await
}
}
```
The error relates to the use of `Self` in a trait impl when the self type has a lifetime. It can be worked around by rewriting the impl not to use `Self`:
```rust
#![feature(async_fn_in_trait)]
trait Foo {
type Error;
async fn foo(&mut self) -> Result<(), Self::Error>;
}
impl<T: Foo> Foo for &mut T {
type Error = T::Error;
async fn foo(&mut self) -> Result<(), <&mut T as Foo>::Error> {
T::foo(self).await
}
}
```
</details>
## Tests
Tests are generally organized between return-position `impl Trait` and `async fn` in trait, when the distinction matters.
* RPITIT: https://github.com/rust-lang/rust/tree/master/tests/ui/impl-trait/in-trait
* AFIT: https://github.com/rust-lang/rust/tree/master/tests/ui/async-await/in-trait
## Remaining bugs and open issues
* #112047: Indirection introduced by `async fn` and return-position `impl Trait` in traits may hide cycles in opaque types, causing overflow errors that can only be discovered by monomorphization.
* #111105 - `async fn` in trait is susceptible to issues with checking auto traits on futures' generators, like regular `async`. This is a manifestation of #110338.
* This was deemed not blocking because fixing it is forwards-compatible, and regular `async` is subject to the same issues.
* #104689: `async fn` and return-position `impl Trait` in trait requires the late-bound lifetimes in a trait and impl function signature to be equal.
* This can be relaxed in the future with a smarter lexical region resolution algorithm.
* #102527: Nesting return-position `impl Trait` in trait deeply may result in slow compile times.
* This has only been reported once, and can be fixed in the future.
* #108362: Inference between return types and generics of a function may have difficulties when there's an `.await`.
* This isn't related to AFIT (https://github.com/rust-lang/rust/issues/108362#issuecomment-1717927918) -- using traits does mean that there's possibly easier ways to hit it.
* #112626: Because `async fn` and return-position `impl Trait` in traits lower to associated types, users may encounter strange behaviors when implementing circularly dependent traits.
* This is not specific to RPITIT, and is a limitation of associated types: https://github.com/rust-lang/rust/issues/112626#issuecomment-1603405105
* **(Nightly)** #108309: `async fn` and return-position `impl Trait` in trait do not support specialization. This was deemed not blocking, since it can be fixed in the future (e.g. #108321) and specialization is a nightly feature.
#### (Nightly) Return type notation bugs
RTN is not being stabilized here, but there are some interesting outstanding bugs. None of them are blockers for AFIT/RPITIT, but I'm noting them for completeness.
<details>
* #109924 is a bug that occurs when a higher-ranked trait bound has both inference variables and associated types. This is pre-existing -- RTN just gives you a more convenient way of producing them. This should be fixed by the new trait solver.
* #109924 is a manifestation of a more general issue with `async` and auto-trait bounds: #110338. RTN does not cause this issue, just allows us to put `Send` bounds on the anonymous futures that we have in traits.
* #112569 is a bug similar to associated type bounds, where nested bounds are not implied correctly.
</details>
## Alternatives
### Do nothing
We could choose not to stabilize these features. Users that can use the `#[async_trait]` macro would continue to do so. Library maintainers would continue to avoid async functions in traits, potentially blocking the stable release of many useful crates.
### Stabilize `impl Trait` in associated type instead
AFIT and RPITIT solve the problem of returning unnameable types from trait methods. It is also possible to solve this by using another unstable feature, `impl Trait` in an associated type. Users would need to define an associated type in both the trait and trait impl:
```rust!
trait Foo {
type Fut<'a>: Future<Output = i32> where Self: 'a;
fn foo(&self) -> Self::Fut<'_>;
}
impl Foo for MyType {
type Fut<'a> where Self: 'a = impl Future<Output = i32>;
fn foo(&self) -> Self::Fut<'_> {
async { 42 }
}
}
```
This also has the advantage of allowing generic code to bound the associated type. However, it is substantially less ergonomic than either `async fn` or `-> impl Future`, and users still expect to be able to use those features in traits. **Even if this feature were stable, we would still want to stabilize AFIT and RPITIT.**
That said, we can have both. `impl Trait` in associated types is desireable because it can be used in existing traits with explicit associated types, among other reasons. We *should* stabilize this feature once it is ready, but that's outside the scope of this proposal.
### Use the old capture semantics for RPITIT
We could choose to make the capture rules for RPITIT consistent with the existing rules for RPIT. However, there was strong consensus in a recent [lang team meeting](https://hackmd.io/sFaSIMJOQcuwCdnUvCxtuQ?view) that we should *change* these rules, and furthermore that new features should adopt the new rules.
This is consistent with the tenet in RFC 3085 of favoring ["Uniform behavior across editions"](https://rust-lang.github.io/rfcs/3085-edition-2021.html#uniform-behavior-across-editions) when possible. It greatly reduces the complexity of the feature by not requiring us to answer, or implement, the design questions that arise out of the interaction between the current capture rules and traits. This reduction in complexity – and eventual technical debt – is exactly in line with the motivation listed in the aforementioned RFC.
### Make refinement a hard error
Refinement (`refining_impl_trait`) is only a concern for library authors, and therefore doesn't really warrant making into a deny-by-default warning or an error.
Additionally, refinement is currently checked via a lint that compares bounds in the `impl Trait`s in the trait and impl syntactically. This is good enough for a warning that can be opted-out, but not if this were a hard error, which would ideally be implemented using fully semantic, implicational logic. This was implemented (#111931), but also is an unnecessary burden on the type system for little pay-off.
## History
- Dec 7, 2021: [RFC #3185: Static async fn in traits](https://rust-lang.github.io/rfcs/3185-static-async-fn-in-trait.html) merged
- Sep 9, 2022: [Initial implementation](https://github.com/rust-lang/rust/pull/101224) of AFIT and RPITIT landed
- Jun 13, 2023: [RFC #3425: Return position `impl Trait` in traits](https://rust-lang.github.io/rfcs/3425-return-position-impl-trait-in-traits.html) merged
<!--These will render pretty when pasted into github-->
Non-exhaustive list of PRs that are particularly relevant to the implementation:
- #101224
- #103491
- #104592
- #108141
- #108319
- #108672
- #112988
- #113182 (later made redundant by #114489)
- #113215
- #114489
- #115467
- #115582
Doc co-authored by `@nikomatsakis,` `@tmandry,` `@traviscross.` Thanks also to `@spastorino,` `@cjgillot` (for changes to opaque captures!), `@oli-obk` for many reviews, and many other contributors and issue-filers. Apologies if I left your name off 😺
When encountering method call chains of `Iterator`, check for trailing
`;` in the body of closures passed into `Iterator::map`, as well as
calls to `<T as Clone>::clone` when `T` is a type param and `T: !Clone`.
Fix#9082.
const-eval: make misalignment a hard error
It's been a future-incompat error (showing up in cargo's reports) since https://github.com/rust-lang/rust/pull/104616, Rust 1.68, released in March. That should be long enough.
The question for the lang team is simply -- should we move ahead with this, making const-eval alignment failures a hard error? (It turns out some of them accidentally already were hard errors since #104616. But not all so this is still a breaking change. Crater found no regression.)
Detect ruby-style closure in parser
When parsing a closure without a body that is surrounded by a block, suggest moving the opening brace after the closure head.
Fix#116608.
Fix#101351.
When an associated type on a type parameter is used, and the type
parameter isn't constrained by the correct trait, suggest the
appropriate trait bound:
```
error[E0220]: associated type `Associated` not found for `T`
--> file.rs:6:15
|
6 | field: T::Associated,
| ^^^^^^^^^^ there is a similarly named associated type `Associated` in the trait `Foo`
|
help: consider restricting type parameter `T`
|
5 | struct Generic<T: Foo> {
| +++++
```
When an associated type on a type parameter has a typo, suggest fixing
it:
```
error[E0220]: associated type `Baa` not found for `T`
--> $DIR/issue-55673.rs:9:8
|
LL | T::Baa: std::fmt::Debug,
| ^^^ there is a similarly named associated type `Bar` in the trait `Foo`
|
help: change the associated type name to use `Bar` from `Foo`
|
LL | T::Bar: std::fmt::Debug,
| ~~~
```
We support compressing debuginfo during codegen, but until this patch we
didn't pass the flag to the linker. Doing so means we'll respect the
requested compression even when building binaries or dylibs. This
produces much smaller binaries: in my testing a debug build of ripgrep
goes from 85M to 32M, and the target/ directory (after a clean build in
both cases) goes from 508M to 329M just by enabling zlib compression of
debuginfo.
This add a new form and deprecated the other ones:
- cfg(name1, ..., nameN, values("value1", "value2", ... "valueN"))
- cfg(name1, ..., nameN) or cfg(name1, ..., nameN, values())
- cfg(any())
It also changes the default exhaustiveness to be enable-by-default in
the presence of any --check-cfg arguments.
On type error involving closure, avoid ICE
When we encounter a type error involving a closure, we try to typeck prior closure invocations to see if they influenced the current expected type. When trying to do so, ensure that the closure was defined in our current scope.
Fix#116658.
Improve check-cfg diagnostics
This PR tries to improve some of the diagnostics of check-cfg.
The main changes is the unexpected name or value being added to the main diagnostic:
```diff
- warning: unexpected `cfg` condition name
+ warning: unexpected `cfg` condition name: `widnows`
```
It also cherry-pick the better sensible logic for when we print the list of expected values when we have a matching value for a very similar name.
Address https://github.com/rust-lang/rust/pull/111072#discussion_r1356818100
r? `@petrochenkov`
Streamline `rustc_driver_impl` pretty-printing.
This PR simplifies a lot of unnecessary structure in
`rustc_driver_impl/src/pretty.rs`. It removes some traits and functions,
simplifies some structs, renames some things for increased consistency, and
eliminates some boilerplate code. Overall it cuts more than 150 lines of code.
r? `@compiler-errors`
Remove cgu_reuse_tracker from Session
This removes a bit of global mutable state.
It will now miss post-lto cgu reuse when ThinLTO determines that a cgu doesn't get changed, but there weren't any tests for this anyway and a test for it would be fragile to the exact implementation of ThinLTO in LLVM.
When we encounter a type error involving a closure, we try to typeck
prior closure invocations to see if they influenced the current expected
type. When trying to do so, ensure that the closure was defined in our
current scope.
Fix#116658.
exhaustiveness: Rework constructor splitting
`SplitWildcard` was pretty opaque. I replaced it with a more legible abstraction: `ConstructorSet` represents the set of constructors for patterns of a given type. This clarifies responsibilities: `ConstructorSet` handles one clear task, and diagnostic-related shenanigans can be done separately.
I'm quite excited, I had has this in mind for years but could never quite introduce it. This opens up possibilities, including type-specific optimisations (like using a `FxHashSet` to collect enum variants, which had been [hackily attempted some years ago](https://github.com/rust-lang/rust/pull/76918)), my one-pass rewrite (https://github.com/rust-lang/rust/pull/116042), and future librarification.
`NoAnn` and `IdentifiedAnnotation` impl both `pprust_ast::PpAnn` and
`pprust_hir::PpAnn`, which is a bit confusing, because the optional
`tcx` is only needed for the HIR cases. (Currently the `tcx` is
unnecessarily provided in the `expanded` AST cases.)
This commit splits each one into `Ast` and `Hir` versions, which makes
things clear about where the `tcx` is needed. The commit also renames
all the traits so they consistently end with `Ann`.
`call_with_pp_support_ast` and `call_with_pp_support_hir` how each have
a single call site. This commit inlines and removes them, which also
removes the need for all the supporting traits: `Sess`,
`AstPrinterSupport`, and `HirPrinterSupport`. The `sess` member is also
removed from several structs.
The handling of the `PpMode` variants is currently spread across three
functions: `print_after_parsing`, `print_after_hir_lowering`, and
`print_with_analysis`. Each one handles some of the variants. This split
is primarily because `print_after_parsing` has slightly different
arguments to the other two.
This commit changes the structure. It merges the three functions into a
single `print` function, and encapsulates the different arguments in a
new enum `PrintExtra`.
Benefits:
- The code is a little shorter.
- All the `PpMode` variants are handled in a single `match`, with no
need for `unreachable!` arms.
- It enables the trait removal in the subsequent commit by reducing
the number of `call_with_pp_support_ast` call sites from two to one.
First, both `AstPrinterSupport` and `HirPrinterSupport` have a `sess`
method. This commit introduces a `Sess` trait and makes the support
traits be subtraits of `Sess`, to avoid some duplication.
Second, both support traits have a `pp_ann` method that isn't needed if
we enable `trait_upcasting`. This commit removes those methods.
(Both of these traits will be removed in a subsequent commit, as will
the `trait_upcasting` use.)
`phase_3_run_analysis_passes` no longer exists, and AFAICT this code has
been refactored so much since this comment was written that it no longer
has any useful meaning.
Copy 1-element arrays as scalars, not vectors
For `[T; 1]` it's silly to copy as `<1 x T>` when we can just copy as `T`.
Inspired by https://github.com/rust-lang/rust/issues/101210#issuecomment-1732470941, which pointed out that `Option<[u8; 1]>` was codegenning worse than `Option<u8>`.
(I'm not sure *why* LLVM doesn't optimize out `<1 x u8>`, but might as well just not emit it in the first place in this codepath.)
---
I think I bit off too much in #116479; let me try just the scalar case first.
r? `@ghost`
coverage: Clarify loop-edge detection and graph traversal
This is a collection of improvements to two semi-related pieces of code:
- The code in `counters` that detects which graph edges don't exit a loop, and would therefore be good candidates to have their coverage computed as an expression rather than having a physical counter.
- The code in `graph` that traverses the coverage BCB graph in a particular order, and tracks loops and loop edges along the way (which is relevant to the above).
I was originally only planning to make the `graph` changes, but there was going to be a lot of indentation churn in `counters` anyway, and once I started looking I noticed a lot of opportunities for simplification.
---
`@rustbot` label +A-code-coverage
Handle several `#[diagnostic::on_unimplemented]` attributes correctly
This PR fixes an issues where rustc would ignore subsequent `#[diagnostic::on_unimplemented]` attributes. The [corresponding RFC](https://rust-lang.github.io/rfcs/3368-diagnostic-attribute-namespace.html) specifies that the first matching instance of each option is used. Invalid attributes are linted and otherwise ignored.
Having to keep passing in a graph reference was a holdover from when the graph
was partly mutated during traversal. As of #114354 that is no longer necessary,
so we can simplify the traversal code by storing a graph reference as a field
in `TraverseCoverageGraphWithLoops`.
The previous code was storing the worklist in a vector, and then selectively
adding items to the start or end of the vector. That's a perfect use-case for a
double-ended queue.
This change also reveals that the existing code was a bit confused about which
end of the worklist is the front or back. For now, items are always removed
from the front of the queue (instead of the back), and code that adds items to
the queue has been flipped, to preserve the existing behaviour.
Fix duplicate note on internal feature gates with associated issues
Fixes#116293
Note sure if I should add tests because the issue occurs only for feature gates having associated issues and that set of feature gates will change unpredictably leading to an unnecessary churn in tests.
Use structured suggestion for #113174
When encountering a for loop that is rejected by the borrow checker because it is being advanced within its body, provide a structured suggestion for `while let Some(pat) = iter.next()`.
The BuiltinInternalFeatures gate already has a struct level #[note]
attribute. The additional note field in it caused a duplicate to be
displayed when it was set to Some(...) which happened when the
feature had an associated issue
This PR fixes an issues where rustc would ignore subsequent
`#[diagnostic::on_unimplemented]` attributes. The [corresponding
RFC](https://rust-lang.github.io/rfcs/3368-diagnostic-attribute-namespace.html)
specifies that the first matching instance of each option is used.
Invalid attributes are linted and otherwise ignored.
Rollup of 5 pull requests
Successful merges:
- #116219 (Relate alias ty with variance)
- #116315 (Do not check for impossible predicates in const-prop lint.)
- #116436 (Structurally normalize for closure)
- #116597 (Prevent showing methods from blanket impls of not available foreign traits to show up in the search results)
- #116627 (small cleanup)
r? `@ghost`
`@rustbot` modify labels: rollup
When encountering a for loop that is rejected by the borrow checker
because it is being advanced within its body, provide a structured
suggestion for `while let Some(pat) = iter.next()`.
Do not check for impossible predicates in const-prop lint.
The enclosing query already checks for them, and replaces the body with a single `unreachable` if they are indeed impossible.
Relate alias ty with variance
In the new solver, turns out that the subst-relate branch of the alias-relate predicate was relating args invariantly even for opaques, which have variance 💀.
This change is a bit more invasive, but I'd rather not special-case it [here](aeaa5c30e5/compiler/rustc_trait_selection/src/solve/alias_relate.rs (L171-L190)) and then have it break elsewhere. I'm doing a perf run to see if the extra call to `def_kind` is that expensive, if it is, I'll reconsider.
r? ``@lcnr``
Compute NLL loan scopes using the polonius model
For a *location-insensitive* analysis (that is, without expressiveness improvements for users yet), this PR implements loans going out of scope using reachability and liveness, rather than checking if the issuing region's values contain a given CFG point. This is equivalent to NLL scopes and computes the same data.
r? `@matthewjasper`
A couple of notes:
- there are some assumptions about SCC representatives, placeholders, free regions, and member constraints that I believe hold, and they're documented in the code
- this passes all the UI tests with `-Zpolonius=next` -- the perf is [not terrible](https://github.com/rust-lang/rust/pull/112432#issuecomment-1749685862) and there are a bunch of ways to improve it in the future.
- there's a fixme left, hopefully Matthew you know a clean way to get the information it mentions.
Implement `-Clink-self-contained=-linker` opt out
This implements the `-Clink-self-contained` opt out necessary to switch to lld by changing rustc's defaults instead of cargo's.
Components that are enabled and disabled on the CLI are recorded, for the purpose of being merged with the ones which the target spec will declare (I'll open another PR for that tomorrow, for easier review).
For MCP510, we now check whether using the self-contained linker is disabled on the CLI. Right now it would only be sensible to with `-Zgcc-ld=lld` (and I'll add some checks that we don't both enable and disable a component on the CLI in a future PR), but the goal is to simplify adding the check of the target's enabled components here in the follow-up PRs.
r? `@petrochenkov`
Fix overflow checking in range patterns
When a range pattern contains an overflowing literal, if we're not careful we might not notice the overflow and use the wrapped value. This makes for confusing error messages because linting against overflowing literals is only done in a later pass. So when a range is invalid we check for overflows to provide a better error.
This check didn't use to handle negative types; this PR fixes that. First commit adds tests, second cleans up without changing behavior, third does the fix.
EDIT: while I was at it, I fixed a small annoyance about the span of the overflow lint on negated literals.
Fixes https://github.com/rust-lang/rust/issues/94239
Also consider call and yield as MIR SSA.
The SSA analysis on MIR only considered `Assign` statements as defining a SSA local.
This PR adds assignments as part of a `Call` or `Yield` terminator in that category.
This mainly allows to perform CopyProp on a call return place.
The only subtlety is in the dominance property: the assignment is only complete at the beginning of the target block.
In smir use `FxIndexMap` to store indexed ids
Previously we used `vec` for storing indexed types, which is fine for small cases but will lead to huge performance issues when we use `smir` for real world cases.
Addresses https://github.com/rust-lang/project-stable-mir/issues/35
r? ``@oli-obk``
On type error of closure call argument, point at earlier calls that affected inference
Mitigate part of https://github.com/rust-lang/rust/issues/71209.
When we encounter a type error on a specific argument of a closure call argument, where the closure's definition doesn't have a type specified, look for other calls of the closure to try and find the specific call that cased that argument to be inferred of the expected type.
```
error[E0308]: mismatched types
--> $DIR/unboxed-closures-type-mismatch.rs:30:18
|
LL | identity(1u16);
| -------- ^^^^ expected `u8`, found `u16`
| |
| arguments to this function are incorrect
|
note: expected because the closure was earlier called with an argument of type `u8`
--> $DIR/unboxed-closures-type-mismatch.rs:29:18
|
LL | identity(1u8);
| -------- ^^^ expected because this argument is of type `u8`
| |
| in this closure call
note: closure parameter defined here
--> $DIR/unboxed-closures-type-mismatch.rs:28:25
|
LL | let identity = |x| x;
| ^
help: change the type of the numeric literal from `u16` to `u8`
|
LL | identity(1u8);
| ~~
```
coverage: Unbox and simplify `bcb_filtered_successors`
This is a small cleanup in the coverage instrumentor's graph-building code.
---
This function already has access to the MIR body, so instead of taking a reference to a terminator, it's simpler and easier to pass in a basic block index.
There is no need to box the returned iterator if we instead add appropriate lifetime captures, and make `short_circuit_preorder` generic over the type of iterator it expects.
We can also greatly simplify the function's implementation by observing that the only difference between its two cases is whether we take all of a BB's successors, or just the first one.
---
`@rustbot` label +A-code-coverage
use env variable to control thread ids in rustc_log
Currently, when parallel rustc is enabled, even if the number of threads is 1, the thread ID will be included before all the logs.
E.g.
`WARN rustc_mir_build::thir::pattern::const_to_pat ...`
=>
`2:rustcWARN rustc_mir_build::thir::pattern::const_to_pat ...`
This makes the logs confusing and results in inconsistent UI test results for serial and parallel rustc. Therefore I think we should let users decide whether thread id information is needed through explicit control.
miri: make NaN generation non-deterministic
This implements the [LLVM semantics for NaN generation](https://llvm.org/docs/LangRef.html#behavior-of-floating-point-nan-values). I will soon submit an RFC to make this also officially the Rust semantics, but it has been our de-facto semantics for a long time so there's no reason Miri has to wait for that RFC. This PR just better aligns Miri with codegen.
This PR does that just for the operations that have MIR primitives; a future PR will adjust the intrinsics.
coverage: Separate initial span extraction from span processing
One of the main subtasks of coverage instrumentation is looking through MIR to determine a list of source code spans that require coverage counters.
That task is in turn subdivided into a few main steps:
- Getting the initial spans from MIR statements/terminators
- Processing the list of spans to merge or truncate nearby spans as necessary
- Grouping the processed spans by their corresponding coverage graph node
---
This PR enforces a firmer separation between the first two steps (span extraction and span processing), which ends up slightly simplifying both steps, since they don't need to deal with state that is only meaningful for the other step.
---
`@rustbot` label +A-code-coverage
Improve handling of assertion failures with very long conditions
It's not perfectly clear what the best behaviour is here, but I think this is an improvement.
r? `@matthewjasper`
cc `@m-ou-se`
This function already has access to the MIR body, so instead of taking a
reference to a terminator, it's simpler and easier to pass in a basic block
index.
There is no need to box the returned iterator if we instead add appropriate
lifetime captures, since `short_circuit_preorder` is now generic over the type
of iterator it expects.
We can also greatly simplify the function's implementation by observing that
the only difference between its two cases is whether we take all of a BB's
successors, or just the first one.
There are several that are unused and can be removed.
And there are some calls to `to_string`, which can be expressed more
nicely as a `foo_to_string` call, and then `to_string` need not be
`pub`. (This requires adding `pat_to_string`).
This enum was mainly needed to track the precise origin of a span in MIR, for
debug printing purposes. Since the old debug code was removed in #115962, we
can replace it with just the span itself.
The assertion in `assert-long-condition.rs` used to be fail like this, all on
one line:
```
thread 'main' panicked at 'assertion failed: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18\n + 19 + 20 + 21 + 22 + 23 + 24 + 25 == 0', tests/ui/macros/assert-long-condition.rs:7:5
```
The `\n` and subsequent indent is because the condition is pretty-printed, and
the pretty-printer inserts a newline. Printing the newline in this way is
arguably reasonable given that the message appears within single quotes, which
is very similar to a string literal.
However, after the assertion printing improvements that were released in 1.73,
the assertion now fails like this:
```
thread 'main' panicked at tests/ui/macros/assert-long-condition.rs:7:5:
assertion failed: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18\n + 19 + 20 + 21 + 22 + 23 + 24 + 25 == 0
```
Now that there are no single quotes around the pretty-printed condition, the
`\n` is quite strange.
This commit gets rid of the `\n`, by removing the `escape_debug` done on the
pretty-printed message. This results in the following:
```
thread 'main' panicked at tests/ui/macros/assert-long-condition.rs:7:5:
assertion failed: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18
+ 19 + 20 + 21 + 22 + 23 + 24 + 25 == 0
```
The overly-large indent is still strange, but that's a separate pretty-printing issue.
This change helps with #108341.
Extend `impl`'s `def_span` to include its where clauses
Typically, we highlight the def-span of an impl in a diagnostic due to either:
1. coherence error
2. trait evaluation cycle
3. invalid implementation of built-in trait
I find that an impl's where clauses are very often required to understanding why these errors come about, which is unfortunate since where clauses may be located on different lines and don't show up in the error. This PR expands the def-span of impls to include these where clauses.
r? cjgillot since you've touched this code a while back to make some spans shorter, but you can also reassign to wg-diagnostics or compiler if you're busy or have no strong opinions.
Sync rustc_codegen_cranelift
The highlights this time are improved simd and inline asm support, `is_x86_feature_detected!()` returning the actual cpu features when inline asm support is enabled and a couple of bug fixes.
r? ```@ghost```
```@rustbot``` label +A-codegen +A-cranelift +T-compiler +subtree-sync
Fix suggestion span involving wrongly placed generic arg on variant
Fixes#116473
The span computation was wrong. It went from the end of the variant to the end of the (wrongly placed) args. However, the variant lived in a different expansion and this resulted in a nonsensical span that overlaps with another and thereby leads to the ICE.
In the fix I've changed span computation to not be based on the location of the variant, but purely on the location of the args. I simply extend the start of the args span 2 positions to the left and that includes the `::` and that's all we need apparently.
This approach produces a correct span regardless of which macro/expansion the args reside in and where the variant is.
improve the suggestion of `generic_bound_failure`
- Fixes#115375
- suggest the bound in the correct scope: trait or impl header vs assoc item. See `tests/ui/suggestions/lifetimes/type-param-bound-scope.rs`
- don't suggest a lifetime name that conflicts with the other late-bound regions of the function:
```rust
type Inv<'a> = *mut &'a ();
fn check_bound<'a, T: 'a>(_: T, _: Inv<'a>) {}
fn test<'a, T>(_: &'a str, t: T, lt: Inv<'_>) { // suggests a new name `'a`
check_bound(t, lt); //~ ERROR
}
```
When the variant and the (wrongly placed) args are at separate
source locations such as being in different macos or one in a macro and
the other somwhere outside of it, the arg spans we computed spanned
the entire distance between such locations and were hence invalid.
.
Generalize small dominators optimization
* Use small dominators optimization from 640ede7b0a more generally.
* Merge `DefLocation` and `LocationExtended` since they serve the same purpose.
Always preserve DebugInfo in DeadStoreElimination.
This is a version of #106852 that does not check the current crate's debuginfo flag, and always attempts to preserve debuginfo.
I haven't figured out how to handle mixing debuginfo levels for std, the one for the test, and the one for the CI target just right to merge #106852, so this can at least fix the debuginfo issue.
Fixes https://github.com/rust-lang/rust/issues/103655
Fix to register analysis passes with -Zllvm-plugins at link-time
This PR fixes an unexpected behavior of the `-Zllvm-plugins` flag. It allows to run an out-of-tree pass as part of LTO.
However, analysis passes are registered before the plugin is loaded. As a result an analysis pass, which is passed as a plugin, is not registered. This causes the LLVM PassManager to fail when the analysis pass is queried from a transformation pass [(here)](https://github.com/llvm/llvm-project/blob/main/llvm/include/llvm/IR/PassManager.h#L776).
This fix mimics the bahavior in [LLVM LTOBackend.cpp](https://github.com/llvm/llvm-project/blob/main/llvm/lib/LTO/LTOBackend.cpp#L273) by loading the plugin before the analysis passes are registered.
Tested with rustc 1.60 and 1.65 and LLVM-13.0.1.
remove Key impls for types that involve an AllocId
I don't understand how but somehow that leads to issues like https://github.com/rust-lang/rust/issues/83085? Anyway removing unused impls doesn't seem like a bad idea. The concerning part is that of course nothing will stop us from having such impls again in the future, alongside re-introducing bugs like #83085.
r? `@oli-obk`
Detect missing `=>` after match guard during parsing
```
error: expected one of `,`, `:`, or `}`, found `.`
--> $DIR/missing-fat-arrow.rs:25:14
|
LL | Some(a) if a.value == b {
| - while parsing this struct
LL | a.value = 1;
| -^ expected one of `,`, `:`, or `}`
| |
| while parsing this struct field
|
help: try naming a field
|
LL | a: a.value = 1;
| ++
help: you might have meant to start a match arm after the match guard
|
LL | Some(a) if a.value == b => {
| ++
```
Fix#78585.
Show more information when multiple `impl`s apply
- When there are `impl`s without type params, show only those (to avoid showing overly generic `impl`s).
```
error[E0283]: type annotations needed
--> $DIR/multiple-impl-apply.rs:34:9
|
LL | let y = x.into();
| ^ ---- type must be known at this point
|
note: multiple `impl`s satisfying `_: From<Baz>` found
--> $DIR/multiple-impl-apply.rs:14:1
|
LL | impl From<Baz> for Bar {
| ^^^^^^^^^^^^^^^^^^^^^^
...
LL | impl From<Baz> for Foo {
| ^^^^^^^^^^^^^^^^^^^^^^
= note: required for `Baz` to implement `Into<_>`
help: consider giving `y` an explicit type
|
LL | let y: /* Type */ = x.into();
| ++++++++++++
```
- Lower the importance of `T: Sized`, `T: WellFormed` and coercion errors, to prioritize more relevant errors. The pre-existing deduplication logic deals with hiding redundant errors better that way, and we show errors with more metadata that is useful to the user.
- Show `<SelfTy as Trait>::assoc_fn` suggestion in more cases.
```
error[E0790]: cannot call associated function on trait without specifying the corresponding `impl` type
--> $DIR/cross-return-site-inference.rs:38:16
|
LL | return Err(From::from("foo"));
| ^^^^^^^^^^ cannot call associated function of trait
|
help: use a fully-qualified path to a specific available implementation
|
LL | return Err(</* self type */ as From>::from("foo"));
| +++++++++++++++++++ +
```
Fix#88284.