The payload of coverage statements was historically a structure with several
fields, so it was boxed to avoid bloating `StatementKind`.
Now that the payload is a single relatively-small enum, we can replace
`Box<Coverage>` with just `CoverageKind`.
This patch also adds a size assertion for `StatementKind`, to avoid
accidentally bloating it in the future.
Experimental feature postfix match
This has a basic experimental implementation for the RFC postfix match (rust-lang/rfcs#3295, #121618). [Liaison is](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Postfix.20Match.20Liaison/near/423301844) ```@scottmcm``` with the lang team's [experimental feature gate process](https://github.com/rust-lang/lang-team/blob/master/src/how_to/experiment.md).
This feature has had an RFC for a while, and there has been discussion on it for a while. It would probably be valuable to see it out in the field rather than continue discussing it. This feature also allows to see how popular postfix expressions like this are for the postfix macros RFC, as those will take more time to implement.
It is entirely implemented in the parser, so it should be relatively easy to remove if needed.
This PR is split in to 5 commits to ease review.
1. The implementation of the feature & gating.
2. Add a MatchKind field, fix uses, fix pretty.
3. Basic rustfmt impl, as rustfmt crashes upon seeing this syntax without a fix.
4. Add new MatchSource to HIR for Clippy & other HIR consumers
deref patterns: bare-bones feature gate and typechecking
I am restarting the deref patterns experimentation. This introduces a feature gate under the lang-team [experimental feature](https://github.com/rust-lang/lang-team/blob/master/src/how_to/experiment.md) process, with [````@cramertj```` as lang-team liaison](https://github.com/rust-lang/lang-team/issues/88) (it's been a while though, you still ok with this ````@cramertj?).```` Tracking issue: https://github.com/rust-lang/rust/issues/87121.
This is the barest-bones implementation I could think of:
- explicit syntax, reusing `box <pat>` because that saves me a ton of work;
- use `Deref` as a marker trait (instead of a yet-to-design `DerefPure`);
- no support for mutable patterns with `DerefMut` for now;
- MIR lowering will come in the next PR. It's the trickiest part.
My goal is to let us figure out the MIR lowering part, which might take some work. And hopefully get something working for std types soon.
This is in large part salvaged from ````@fee1-dead's```` https://github.com/rust-lang/rust/pull/119467.
r? ````@compiler-errors````
recursively evaluate the constants in everything that is 'mentioned'
This is another attempt at fixing https://github.com/rust-lang/rust/issues/107503. The previous attempt at https://github.com/rust-lang/rust/pull/112879 seems stuck in figuring out where the [perf regression](https://perf.rust-lang.org/compare.html?start=c55d1ee8d4e3162187214692229a63c2cc5e0f31&end=ec8de1ebe0d698b109beeaaac83e60f4ef8bb7d1&stat=instructions:u) comes from. In https://github.com/rust-lang/rust/pull/122258 I learned some things, which informed the approach this PR is taking.
Quoting from the new collector docs, which explain the high-level idea:
```rust
//! One important role of collection is to evaluate all constants that are used by all the items
//! which are being collected. Codegen can then rely on only encountering constants that evaluate
//! successfully, and if a constant fails to evaluate, the collector has much better context to be
//! able to show where this constant comes up.
//!
//! However, the exact set of "used" items (collected as described above), and therefore the exact
//! set of used constants, can depend on optimizations. Optimizing away dead code may optimize away
//! a function call that uses a failing constant, so an unoptimized build may fail where an
//! optimized build succeeds. This is undesirable.
//!
//! To fix this, the collector has the concept of "mentioned" items. Some time during the MIR
//! pipeline, before any optimization-level-dependent optimizations, we compute a list of all items
//! that syntactically appear in the code. These are considered "mentioned", and even if they are in
//! dead code and get optimized away (which makes them no longer "used"), they are still
//! "mentioned". For every used item, the collector ensures that all mentioned items, recursively,
//! do not use a failing constant. This is reflected via the [`CollectionMode`], which determines
//! whether we are visiting a used item or merely a mentioned item.
//!
//! The collector and "mentioned items" gathering (which lives in `rustc_mir_transform::mentioned_items`)
//! need to stay in sync in the following sense:
//!
//! - For every item that the collector gather that could eventually lead to build failure (most
//! likely due to containing a constant that fails to evaluate), a corresponding mentioned item
//! must be added. This should use the exact same strategy as the ecollector to make sure they are
//! in sync. However, while the collector works on monomorphized types, mentioned items are
//! collected on generic MIR -- so any time the collector checks for a particular type (such as
//! `ty::FnDef`), we have to just onconditionally add this as a mentioned item.
//! - In `visit_mentioned_item`, we then do with that mentioned item exactly what the collector
//! would have done during regular MIR visiting. Basically you can think of the collector having
//! two stages, a pre-monomorphization stage and a post-monomorphization stage (usually quite
//! literally separated by a call to `self.monomorphize`); the pre-monomorphizationn stage is
//! duplicated in mentioned items gathering and the post-monomorphization stage is duplicated in
//! `visit_mentioned_item`.
//! - Finally, as a performance optimization, the collector should fill `used_mentioned_item` during
//! its MIR traversal with exactly what mentioned item gathering would have added in the same
//! situation. This detects mentioned items that have *not* been optimized away and hence don't
//! need a dedicated traversal.
enum CollectionMode {
/// Collect items that are used, i.e., actually needed for codegen.
///
/// Which items are used can depend on optimization levels, as MIR optimizations can remove
/// uses.
UsedItems,
/// Collect items that are mentioned. The goal of this mode is that it is independent of
/// optimizations: the set of "mentioned" items is computed before optimizations are run.
///
/// The exact contents of this set are *not* a stable guarantee. (For instance, it is currently
/// computed after drop-elaboration. If we ever do some optimizations even in debug builds, we
/// might decide to run them before computing mentioned items.) The key property of this set is
/// that it is optimization-independent.
MentionedItems,
}
```
And the `mentioned_items` MIR body field docs:
```rust
/// Further items that were mentioned in this function and hence *may* become monomorphized,
/// depending on optimizations. We use this to avoid optimization-dependent compile errors: the
/// collector recursively traverses all "mentioned" items and evaluates all their
/// `required_consts`.
///
/// This is *not* soundness-critical and the contents of this list are *not* a stable guarantee.
/// All that's relevant is that this set is optimization-level-independent, and that it includes
/// everything that the collector would consider "used". (For example, we currently compute this
/// set after drop elaboration, so some drop calls that can never be reached are not considered
/// "mentioned".) See the documentation of `CollectionMode` in
/// `compiler/rustc_monomorphize/src/collector.rs` for more context.
pub mentioned_items: Vec<Spanned<MentionedItem<'tcx>>>,
```
Fixes#107503
various clippy fixes
We need to keep the order of the given clippy lint rules before passing them.
Since clap doesn't offer any useful interface for this purpose out of the box,
we have to handle it manually.
Additionally, this PR makes `-D` rules work as expected. Previously, lint rules were limited to `-W`. By enabling `-D`, clippy began to complain numerous lines in the tree, all of which have been resolved in this PR as well.
Fixes#121481
cc `@matthiaskrgr`
Stabilize associated type bounds (RFC 2289)
This PR stabilizes associated type bounds, which were laid out in [RFC 2289]. This gives us a shorthand to express nested type bounds that would otherwise need to be expressed with nested `impl Trait` or broken into several `where` clauses.
### What are we stabilizing?
We're stabilizing the associated item bounds syntax, which allows us to put bounds in associated type position within other bounds, i.e. `T: Trait<Assoc: Bounds...>`. See [RFC 2289] for motivation.
In all position, the associated type bound syntax expands into a set of two (or more) bounds, and never anything else (see "How does this differ[...]" section for more info).
Associated type bounds are stabilized in four positions:
* **`where` clauses (and APIT)** - This is equivalent to breaking up the bound into two (or more) `where` clauses. For example, `where T: Trait<Assoc: Bound>` is equivalent to `where T: Trait, <T as Trait>::Assoc: Bound`.
* **Supertraits** - Similar to above, `trait CopyIterator: Iterator<Item: Copy> {}`. This is almost equivalent to breaking up the bound into two (or more) `where` clauses; however, the bound on the associated item is implied whenever the trait is used. See #112573/#112629.
* **Associated type item bounds** - This allows constraining the *nested* rigid projections that are associated with a trait's associated types. e.g. `trait Trait { type Assoc: Trait2<Assoc2: Copy>; }`.
* **opaque item bounds (RPIT, TAIT)** - This allows constraining associated types that are associated with the opaque without having to *name* the opaque. For example, `impl Iterator<Item: Copy>` defines an iterator whose item is `Copy` without having to actually name that item bound.
The latter three are not expressible in surface Rust (though for associated type item bounds, this will change in #120752, which I don't believe should block this PR), so this does represent a slight expansion of what can be expressed in trait bounds.
### How does this differ from the RFC?
Compared to the RFC, the current implementation *always* desugars associated type bounds to sets of `ty::Clause`s internally. Specifically, it does *not* introduce a position-dependent desugaring as laid out in [RFC 2289], and in particular:
* It does *not* desugar to anonymous associated items in associated type item bounds.
* It does *not* desugar to nested RPITs in RPIT bounds, nor nested TAITs in TAIT bounds.
This position-dependent desugaring laid out in the RFC existed simply to side-step limitations of the trait solver, which have mostly been fixed in #120584. The desugaring laid out in the RFC also added unnecessary complication to the design of the feature, and introduces its own limitations to, for example:
* Conditionally lowering to nested `impl Trait` in certain positions such as RPIT and TAIT means that we inherit the limitations of RPIT/TAIT, namely lack of support for higher-ranked opaque inference. See this code example: https://github.com/rust-lang/rust/pull/120752#issuecomment-1979412531.
* Introducing anonymous associated types makes traits no longer object safe, since anonymous associated types are not nameable, and all associated types must be named in `dyn` types.
This last point motivates why this PR is *not* stabilizing support for associated type bounds in `dyn` types, e.g, `dyn Assoc<Item: Bound>`. Why? Because `dyn` types need to have *concrete* types for all associated items, this would necessitate a distinct lowering for associated type bounds, which seems both complicated and unnecessary compared to just requiring the user to write `impl Trait` themselves. See #120719.
### Implementation history:
Limited to the significant behavioral changes and fixes and relevant PRs, ping me if I left something out--
* #57428
* #108063
* #110512
* #112629
* #120719
* #120584Closes#52662
[RFC 2289]: https://rust-lang.github.io/rfcs/2289-associated-type-bounds.html
never patterns: suggest `!` patterns on non-exhaustive matches
When a match is non-exhaustive we now suggest never patterns whenever it makes sense.
r? ``@compiler-errors``
`f16` and `f128` step 3: compiler support & feature gate
Continuation of https://github.com/rust-lang/rust/pull/121841, another portion of https://github.com/rust-lang/rust/pull/114607
This PR exposes the new types to the world and adds a feature gate. Marking this as a draft because I need some feedback on where I did the feature gate check. It also does not yet catch type via suffixed literals (so the feature gate test will fail, probably some others too because I haven't belssed).
If there is a better place to check all types after resolution, I can do that. If not, I figure maybe I can add a second gate location in AST when it checks numeric suffixes.
Unfortunately I still don't think there is much testing to be done for correctness (codegen tests or parsed value checks) until we have basic library support. I think that will be the next step.
Tracking issue: https://github.com/rust-lang/rust/issues/116909
r? `@compiler-errors`
cc `@Nilstrieb`
`@rustbot` label +F-f16_and_f128
Detect calls to .clone() on T: !Clone types on borrowck errors
When encountering a lifetime error on a type that *holds* a type that doesn't implement `Clone`, explore the item's body for potential calls to `.clone()` that are only cloning the reference `&T` instead of `T` because `T: !Clone`. If we find this, suggest `T: Clone`.
```
error[E0502]: cannot borrow `*list` as mutable because it is also borrowed as immutable
--> $DIR/clone-on-ref.rs:7:5
|
LL | for v in list.iter() {
| ---- immutable borrow occurs here
LL | cloned_items.push(v.clone())
| ------- this call doesn't do anything, the result is still `&T` because `T` doesn't implement `Clone`
LL | }
LL | list.push(T::default());
| ^^^^^^^^^^^^^^^^^^^^^^^ mutable borrow occurs here
LL |
LL | drop(cloned_items);
| ------------ immutable borrow later used here
|
help: consider further restricting this bound
|
LL | fn foo<T: Default + Clone>(list: &mut Vec<T>) {
| +++++++
```
```
error[E0505]: cannot move out of `x` because it is borrowed
--> $DIR/clone-on-ref.rs:23:10
|
LL | fn qux(x: A) {
| - binding `x` declared here
LL | let a = &x;
| -- borrow of `x` occurs here
LL | let b = a.clone();
| ------- this call doesn't do anything, the result is still `&A` because `A` doesn't implement `Clone`
LL | drop(x);
| ^ move out of `x` occurs here
LL |
LL | println!("{b:?}");
| ----- borrow later used here
|
help: consider annotating `A` with `#[derive(Clone)]`
|
LL + #[derive(Clone)]
LL | struct A;
|
```
Fix#48677.
coverage: Initial support for branch coverage instrumentation
(This is a review-ready version of the changes that were drafted in #118305.)
This PR adds support for branch coverage instrumentation, gated behind the unstable flag value `-Zcoverage-options=branch`. (Coverage instrumentation must also be enabled with `-Cinstrument-coverage`.)
During THIR-to-MIR lowering (MIR building), if branch coverage is enabled, we collect additional information about branch conditions and their corresponding then/else blocks. We inject special marker statements into those blocks, so that the `InstrumentCoverage` MIR pass can reliably identify them even after the initially-built MIR has been simplified and renumbered.
The rest of the changes are mostly just plumbing needed to gather up the information that was collected during MIR building, and include it in the coverage metadata that we embed in the final binary.
Note that `llvm-cov show` doesn't print branch coverage information in its source views by default; that needs to be explicitly enabled with `--show-branches=count` or similar.
---
The current implementation doesn't have any support for instrumenting `if let` or let-chains. I think it's still useful without that, and adding it would be non-trivial, so I'm happy to leave that for future work.
match lowering: don't collect test alternatives ahead of time
I'm very happy with this one. Before this, when sorting candidates into the possible test branches, we manually computed `usize` indices to determine in which branch each candidate goes. To make this work we had a first pass that collected the possible alternatives we'd have to deal with, and a second pass that actually sorts the candidates.
In this PR, I replace `usize` indices with a dedicated enum. This makes `sort_candidates` easier to follow, and we don't need the first pass anymore.
r? ``@matthewjasper``
pattern analysis: Store field indices in `DeconstructedPat` to avoid virtual wildcards
For a pattern like `Struct { field3: true, .. }`, in pattern analysis we represent it as `Struct { field1: _, field2: _, field3: true, field4: _ }`. This PR makes it so we store `Struct { field3: true, .. }` instead. This means we never have to create fake `_` patterns during lowering.
r? ``@compiler-errors``
Clarity improvements to `DropTree`
These changes are based on some points of confusion I had when initially trying to understand this code.
The only “functional” change is an additional assertion in `<ExitScopes as DropTreeBuilder>::link_entry_point`, checking that the dummy terminator is `TerminatorKind::UnwindResume` as expected.
match lowering: define a convenient struct
Small refactor PR: `bindings` and `ascriptions` always come together so I made a struct for them. I'll have one or two fields to add to it in a later PR as well.
Add asm goto support to `asm!`
Tracking issue: #119364
This PR implements asm-goto support, using the syntax described in "future possibilities" section of [RFC2873](https://rust-lang.github.io/rfcs/2873-inline-asm.html#asm-goto).
Currently I have only implemented the `label` part, not the `fallthrough` part (i.e. fallthrough is implicit). This doesn't reduce the expressive though, since you can use label-break to get arbitrary control flow or simply set a value and rely on jump threading optimisation to get the desired control flow. I can add that later if deemed necessary.
r? ``@Amanieu``
cc ``@ojeda``
This method would previously take a target scope, and then verify that it
was equal to the scope on top of the if-then scope stack.
In practice, this means that callers have to go out of their way to pass around
redundant scope information that's already on the if-then stack.
So it's easier to just retrieve the correct scope directly from the if-then
stack, and simplify the other code that was passing it around.
This allows us to use real field names instead of tuple element numbers.
Renaming `previous_drops` to `existing_drops_map` clarifies that "previous" was
unrelated to drop order.