Make `TyCtxt::coroutine_layout` take coroutine's kind parameter
For coroutines that come from coroutine-closures (i.e. async closures), we may have two kinds of bodies stored in the coroutine; one that takes the closure's captures by reference, and one that takes the captures by move.
These currently have identical layouts, but if we do any optimization for these layouts that are related to the upvars, then they will diverge -- e.g. https://github.com/rust-lang/rust/pull/120168#discussion_r1536943728.
This PR relaxes the assertion I added in #121122, and instead make the `TyCtxt::coroutine_layout` method take the `coroutine_kind_ty` argument from the coroutine, which will allow us to differentiate these by-move and by-ref bodies.
coverage: Re-enable `UnreachablePropagation` for coverage builds
This is a sequence of 3 related changes:
- Clean up the existing code that scans for unused functions
- Detect functions that were instrumented for coverage, but have had all their coverage statements removed by later MIR transforms (e.g. `UnreachablePropagation`)
- Re-enable `UnreachablePropagation` in coverage builds
Because we now detect functions that have lost their coverage statements, and treat them as unused, we don't need to worry about `UnreachablePropagation` removing all of those statements. This is demonstrated by `tests/coverage/unreachable.rs`.
Fixes#116171.
If a function was instrumented for coverage, but all of its coverage statements
have been removed by later MIR transforms, it should be treated as "unused"
even if the compiler generates an unreachable stub for it.
Unbox and unwrap the contents of `StatementKind::Coverage`
The payload of coverage statements was historically a structure with several fields, so it was boxed to avoid bloating `StatementKind`.
Now that the payload is a single relatively-small enum, we can replace `Box<Coverage>` with just `CoverageKind`.
This patch also adds a size assertion for `StatementKind`, to avoid accidentally bloating it in the future.
``@rustbot`` label +A-code-coverage
We already use `Instance` at declaration sites when available to glean
additional information about possible abstractions of the type in use.
This does the same when possible at callsites as well.
The primary purpose of this change is to allow CFI to alter how it
generates type information for indirect calls through `Virtual`
instances.
The payload of coverage statements was historically a structure with several
fields, so it was boxed to avoid bloating `StatementKind`.
Now that the payload is a single relatively-small enum, we can replace
`Box<Coverage>` with just `CoverageKind`.
This patch also adds a size assertion for `StatementKind`, to avoid
accidentally bloating it in the future.
Some of the marker statements used by coverage are added during MIR building
for use by the InstrumentCoverage pass (during analysis), and are not needed
afterwards.
various clippy fixes
We need to keep the order of the given clippy lint rules before passing them.
Since clap doesn't offer any useful interface for this purpose out of the box,
we have to handle it manually.
Additionally, this PR makes `-D` rules work as expected. Previously, lint rules were limited to `-W`. By enabling `-D`, clippy began to complain numerous lines in the tree, all of which have been resolved in this PR as well.
Fixes#121481
cc `@matthiaskrgr`
Update the minimum external LLVM to 17
With this change, we'll have stable support for LLVM 17 and 18.
For reference, the previous increase to LLVM 16 was #117947.
LLVM's default bad-alloc handler may throw if exceptions are enabled,
and `operator new` isn't hooked at all by default. Now we register our
own handler that prints a message similar to fatal errors, then aborts.
We also call the function that registers the C++ `std::new_handler`.
coverage: Initial support for branch coverage instrumentation
(This is a review-ready version of the changes that were drafted in #118305.)
This PR adds support for branch coverage instrumentation, gated behind the unstable flag value `-Zcoverage-options=branch`. (Coverage instrumentation must also be enabled with `-Cinstrument-coverage`.)
During THIR-to-MIR lowering (MIR building), if branch coverage is enabled, we collect additional information about branch conditions and their corresponding then/else blocks. We inject special marker statements into those blocks, so that the `InstrumentCoverage` MIR pass can reliably identify them even after the initially-built MIR has been simplified and renumbered.
The rest of the changes are mostly just plumbing needed to gather up the information that was collected during MIR building, and include it in the coverage metadata that we embed in the final binary.
Note that `llvm-cov show` doesn't print branch coverage information in its source views by default; that needs to be explicitly enabled with `--show-branches=count` or similar.
---
The current implementation doesn't have any support for instrumenting `if let` or let-chains. I think it's still useful without that, and adding it would be non-trivial, so I'm happy to leave that for future work.
coverage: Remove or migrate all unstable values of `-Cinstrument-coverage`
(This PR was substantially overhauled from its original version, which migrated all of the existing unstable values intact.)
This PR takes the three nightly-only values that are currently accepted by `-Cinstrument-coverage`, completely removes two of them (`except-unused-functions` and `except-unused-generics`), and migrates the third (`branch`) over to a newly-introduced unstable flag `-Zcoverage-options`.
I have a few motivations for wanting to do this:
- It's unclear whether anyone actually uses the `except-unused-*` values, so this serves as an opportunity to either remove them, or prompt existing users to object to their removal.
- After #117199, the stable values of `-Cinstrument-coverage` treat it as a boolean-valued flag, so having nightly-only extra values feels out-of-place.
- Nightly-only values also require extra ad-hoc code to make sure they aren't accidentally exposed to stable users.
- The new system allows multiple different settings to be toggled independently, which isn't possible in the current single-value system.
- The new system makes it easier to introduce new behaviour behind an unstable toggle, and then gather nightly-user feedback before possibly making it the default behaviour for all users.
- The new system also gives us a convenient place to put relatively-narrow options that won't ever be the default, but that nightly users might still want access to.
- It's likely that we will eventually want to give stable users more fine-grained control over coverage instrumentation. The new flag serves as a prototype of what that stable UI might eventually look like.
The `branch` option is a placeholder that currently does nothing. It will be used by #122322 to opt into branch coverage instrumentation.
---
I see `-Zcoverage-options` as something that will exist more-or-less indefinitely, though individual sub-options might come and go as appropriate. I think there will always be some demand for nightly-only toggles, so I don't see `-Zcoverage-options` itself ever being stable, though we might eventually stabilize something similar to it.
Only generate a ptrtoint in AtomicPtr codegen when absolutely necessary
This special case was added in this PR: https://github.com/rust-lang/rust/pull/77611 in response to this error message:
```
Intrinsic has incorrect argument type!
void ({}*)* `@llvm.ppc.cfence.p0sl_s`
in function rust_oom
LLVM ERROR: Broken function found, compilation aborted!
[RUSTC-TIMING] std test:false 20.161
error: could not compile `std`
```
But when I tried searching for more information about that intrinsic I found this: https://github.com/llvm/llvm-project/issues/55983 which is a report of someone hitting this same error and a fix was landed in LLVM, 2 years after the above Rust PR.
Ensure nested allocations in statics neither get deduplicated nor duplicated
This PR generates new `DefId`s for nested allocations in static items and feeds all the right queries to make the compiler believe these are regular `static` items. I chose this design, because all other designs are fragile and make the compiler horribly complex for such a niche use case.
At present this wrecks incremental compilation performance *in case nested allocations exist* (because any query creating a `DefId` will be recomputed and never loaded from the cache). This will be resolved later in https://github.com/rust-lang/rust/pull/115613 . All other statics are unaffected by this change and will not have performance regressions (heh, famous last words)
This PR contains various smaller refactorings that can be pulled out into separate PRs. It is best reviewed commit-by-commit. The last commit is where the actual magic happens.
r? `@RalfJung` on the const interner and engine changes
fixes https://github.com/rust-lang/rust/issues/79738
Fix 32-bit overflows in LLVM composite constants
Inspired by #121868. Fixes unsoundness created when constructing constant arrays, strings, and structs with 2^32 or more elements on x86_64. This introduces copies of a few LLVM functions that have their signatures updated to use size_t in place of unsigned int. Alternatively we could just add overflow checks and just disallow huge composite constants. That introduces less code, but maybe a huge static block of memory is useful in embedded/no-os situations?
Remove the unused `field_remapping` field from `TypeLowering`
The `field_remapping` field of `TypeLowering` has been unused since #121665. This PR removes it, then replaces the `TypeLowering` struct with its only remaining member `&'ll Type`.
std support for wasm32 panic=unwind
Tracking issue: #118168
This adds std support for `-Cpanic=unwind` on wasm, and with it slightly more fleshed out rustc support. Now, the stable default is still panic=abort without exception-handling, but if you `-Zbuild-std` with `RUSTFLAGS=-Cpanic=unwind`, you get wasm exception-handling try/catch blocks in the binary:
```rust
#[no_mangle]
pub fn foo_bar(x: bool) -> *mut u8 {
let s = Box::<str>::from("hello");
maybe_panic(x);
Box::into_raw(s).cast()
}
#[inline(never)]
#[no_mangle]
fn maybe_panic(x: bool) {
if x {
panic!("AAAAA");
}
}
```
```wat
;; snip...
(try $label$5
(do
(call $maybe_panic
(local.get $0)
)
(br $label$1)
)
(catch_all
(global.set $__stack_pointer
(local.get $1)
)
(call $__rust_dealloc
(local.get $2)
(i32.const 5)
(i32.const 1)
)
(rethrow $label$5)
)
)
;; snip...
```