Support async trait bounds in macros
r? fmease
This is similar to your work on const trait bounds. This theoretically regresses `impl async $ident:ident` in macros, but I doubt this is occurring in practice.
When encountering a tail expression in the then arm of an `if` expression
without an `else` arm, account for `async fn` and `async` blocks to
suggest `return`ing the value and pointing at the return type of the
`async fn`.
We now also account for AFIT when looking for the return type to point at.
Fix#115405.
Encode `coroutine_for_closure` for foreign crates
Async closures (and "coroutine closures" in general) need to have their child coroutine encoded. This PR does that.
r? oli-obk
Harmonize `AsyncFn` implementations, make async closures conditionally impl `Fn*` traits
This PR implements several changes to the built-in and libcore-provided implementations of `Fn*` and `AsyncFn*` to address two problems:
1. async closures do not implement the `Fn*` family traits, leading to breakage: https://crater-reports.s3.amazonaws.com/pr-120361/index.html
2. *references* to async closures do not implement `AsyncFn*`, as a consequence of the existing blanket impls of the shape `AsyncFn for F where F: Fn, F::Output: Future`.
In order to fix (1.), we implement `Fn` traits appropriately for async closures. It turns out that async closures can:
* always implement `FnOnce`, meaning that they're drop-in compatible with `FnOnce`-bound combinators like `Option::map`.
* conditionally implement `Fn`/`FnMut` if they have no captures, which means that existing usages of async closures should *probably* work without breakage (crater checking this: https://github.com/rust-lang/rust/pull/120712#issuecomment-1930587805).
In order to fix (2.), we make all of the built-in callables implement `AsyncFn*` via built-in impls, and instead adjust the blanket impls for `AsyncFn*` provided by libcore to match the blanket impls for `Fn*`.
For a rigid projection, recursively look at the self type's item bounds to fix the `associated_type_bounds` feature
Given a deeply nested rigid projection like `<<<T as Trait1>::Assoc1 as Trait2>::Assoc2 as Trait3>::Assoc3`, this PR adjusts both trait solvers to look at the item bounds for all of `Assoc3`, `Assoc2`, and `Assoc1` in order to satisfy a goal. We do this because the item bounds for projections may contain relevant bounds for *other* nested projections when the `associated_type_bounds` (ATB) feature is enabled. For example:
```rust
#![feature(associated_type_bounds)]
trait Trait1 {
type Assoc1: Trait2<Assoc2: Foo>;
// Item bounds for `Assoc1` are:
// `<Self as Trait1>::Assoc1: Trait2`
// `<<Self as Trait1>::Assoc1 as Trait2>::Assoc2: Foo`
}
trait Trait2 {
type Assoc2;
}
trait Foo {}
fn hello<T: Trait1>(x: <<T as Trait1>::Assoc1 as Trait2>::Assoc2) {
fn is_foo(_: impl Foo) {}
is_foo(x);
// Currently fails with:
// ERROR the trait bound `<<Self as Trait1>::Assoc1 as Trait2>::Assoc2: Foo` is not satisfied
}
```
This has been a long-standing place of brokenness for ATBs, and is also part of the reason why ATBs currently desugar so differently in various positions (i.e. sometimes desugaring to param-env bounds, sometimes desugaring to RPITs, etc). For example, in RPIT and TAIT position, `impl Foo<Bar: Baz>` currently desugars to `impl Foo<Bar = impl Baz>` because we do not currently take advantage of these nested item bounds if we desugared them into a single set of item bounds on the opaque. This is obviously both strange and unnecessary if we just take advantage of these bounds as we should.
## Approach
This PR repeatedly peels off each projection of a given goal's self type and tries to match its item bounds against a goal, repeating with the self type of the projection. This is pretty straightforward to implement in the new solver, only requiring us to loop on the self type of a rigid projection to discover inner rigid projections, and we also need to introduce an extra probe so we can normalize them.
In the old solver, we can do essentially the same thing, however we rely on the fact that projections *should* be normalized already. This is obviously not always the case -- however, in the case that they are not fully normalized, such as a projection which has both infer vars and, we bail out with ambiguity if we hit an infer var for the self type.
## Caveats
⚠️ In the old solver, this has the side-effect of actually stalling some higher-ranked trait goals of the form `for<'a> <?0 as Tr<'a>>: Tr2`. Because we stall them, they no longer are eagerly treated as error -- this cause some existing `known-bug` tests to go from fail -> pass.
I'm pretty unconvinced that this is a problem since we make code that we expect to pass in the *new* solver also pass in the *old* solver, though this obviously doesn't solve the *full* problem.
## And then also...
We also adjust the desugaring of ATB to always desugar to a regular associated bound, rather than sometimes to an impl Trait **except** for when the ATB is present in a `dyn Trait`. We need to lower `dyn Trait<Assoc: Bar>` to `dyn Trait<Assoc = impl Bar>` because object types need all of their associated types specified.
I would also be in favor of splitting out the ATB feature and/or removing support for object types in order to stabilize just the set of positions for which the ATB feature is consistent (i.e. always elaborates to a bound).
Build DebugInfo for async closures
The test is pretty bare, because I don't really know how to write debuginfo tests. I'd like to land this first, and then flesh it out correctly one it's no longer ICEing on master (which breaks people's ability to test using async closures).
r? oli-obk cc `@rust-lang/wg-debugging` (if any of y'all want to help me write a more fleshed out async closures test)
Rollup of 9 pull requests
Successful merges:
- #119592 (resolve: Unload speculatively resolved crates before freezing cstore)
- #120103 (Make it so that async-fn-in-trait is compatible with a concrete future in implementation)
- #120206 (hir: Make sure all `HirId`s have corresponding HIR `Node`s)
- #120214 (match lowering: consistently lower bindings deepest-first)
- #120688 (GVN: also turn moves into copies with projections)
- #120702 (docs: also check the inline stmt during redundant link check)
- #120727 (exhaustiveness: Prefer "`0..MAX` not covered" to "`_` not covered")
- #120734 (Add `SubdiagnosticMessageOp` as a trait alias.)
- #120739 (improve pretty printing for associated items in trait objects)
r? `@ghost`
`@rustbot` modify labels: rollup
Make it so that async-fn-in-trait is compatible with a concrete future in implementation
There's no technical reason why an AFIT like `async fn foo()` cannot be satisfied with an implementation signature like `fn foo() -> Pin<Box<dyn Future<Output = ()> + 'static>>`.
We rejected this previously because we were uncertain about how AFITs worked with refinement, but I don't believe this needs to be a restriction any longer.
r? oli-obk
Stop bailing out from compilation just because there were incoherent traits
fixes#120343
but also has a lot of "type annotations needed" fallout. Some are fixed in the second commit.
Don't expect early-bound region to be local when reporting errors in RPITIT well-formedness
The implicit lifetime in the example code gets replaced with `ReError`, which fails a `sub_regions` check in the lexical region solver. Error reporting ends up calling `is_suitable_region` on an early bound region in the *trait* definition. This causes an ICE because we `expect_local()`.
This is kind of a bad explanation, but this code just makes diagnostics reporting a bit more gracefully fallible. If the reviewer wants a thorough investigation of exactly where we get this region outlives obligation, I can write one up. Doesn't really seem worth it, though, imo.
Fixes#120638Fixes#120648
Rework support for async closures; allow them to return futures that borrow from the closure's captures
This PR implements a new lowering for async closures via `TyKind::CoroutineClosure` which handles the curious relationship between the closure and the coroutine that it returns.
I wrote up a bunch in [this hackmd](https://hackmd.io/`@compiler-errors/S1HvqQxca)` which will be copied to the dev guide after this PR lands, and hopefully left sufficient comments in the source code explaining why this change is as large as it is.
This also necessitates that they begin implementing the `AsyncFn`-family of traits, rather than the `Fn`-family of traits -- if you need `Fn` implementations, you should probably use the non-sugar `|| async {}` syntax instead.
Notably this PR does not yet implement `async Fn()` syntax sugar for bounds, but I expect to add those soon (**edit:** #120392). For now, users must use `AsyncFn()` traits directly, which necessitates adding the `async_fn_traits` feature gate as well. I will add this as a follow-up very soon.
r? oli-obk
This is based on top of #120322, but that PR is minimal.
Introduce support for `async` bound modifier on `Fn*` traits
Adds `async` to the list of `TraitBoundModifiers`, which instructs AST lowering to map the trait to an async flavor of the trait. For now, this is only supported for `Fn*` to `AsyncFn*`, and I expect that this manual mapping via lang items will be replaced with a better system in the future.
The motivation for adding these bounds is to separate the users of async closures from the exact trait desugaring of their callable bounds. Instead of users needing to be concerned with the `AsyncFn` trait, they should be able to write `async Fn()` and it will desugar to whatever underlying trait we decide is best for the lowering of async closures.
Note: rustfmt support can be done in the rustfmt repo after a subtree sync.