Suggest field typo through derefs
Take into account implicit dereferences when suggesting fields.
```
error[E0609]: no field `longname` on type `Arc<S>`
--> $DIR/suggest-field-through-deref.rs:10:15
|
LL | let _ = x.longname;
| ^^^^^^^^ help: a field with a similar name exists: `long_name`
```
CC https://github.com/rust-lang/rust/issues/78374#issuecomment-719564114
Remove asmjs
Fulfills [MCP 668](https://github.com/rust-lang/compiler-team/issues/668).
`asmjs-unknown-emscripten` does not work as-specified, and lacks essential upstream support for generating asm.js, so it should not exist at all.
Take into account implicit dereferences when suggesting fields.
```
error[E0609]: no field `longname` on type `Arc<S>`
--> $DIR/suggest-field-through-deref.rs:10:15
|
LL | let _ = x.longname;
| ^^^^^^^^ help: a field with a similar name exists: `long_name`
```
CC https://github.com/rust-lang/rust/issues/78374#issuecomment-719564114
Rename AsyncCoroutineKind to CoroutineSource
pulled out of https://github.com/rust-lang/rust/pull/116447
Also refactors the printing infra of `CoroutineSource` to be ready for easily extending it with a `Gen` variant for `gen` blocks
Merge `impl_wf_inference` (`check_mod_impl_wf`) check into coherence checking
Problem here is that we call `collect_impl_trait_in_trait_types` when checking `check_mod_impl_wf` which is performed before coherence. Due to the `tcx.sess.track_errors`, since we end up reporting an error, we never actually proceed to coherence checking, where we would be emitting a more useful impl overlap error.
This change means that we may report more errors in some cases, but can at least proceed far enough to leave a useful message for overlapping traits with RPITITs in them.
Fixes#116982
r? types
Avoid a `track_errors` by bubbling up most errors from `check_well_formed`
I believe `track_errors` is mostly papering over issues that a sufficiently convoluted query graph can hit. I made this change, while the actual change I want to do is to stop bailing out early on errors, and instead use this new `ErrorGuaranteed` to invoke `check_well_formed` for individual items before doing all the `typeck` logic on them.
This works towards resolving https://github.com/rust-lang/rust/issues/97477 and various other ICEs, as well as allowing us to use parallel rustc more (which is currently rather limited/bottlenecked due to the very sequential nature in which we do `rustc_hir_analysis::check_crate`)
cc `@SparrowLii` `@Zoxc` for the new `try_par_for_each_in` function
THIR unsafety checking was getting a cycle of
function unsafety checking
-> building THIR for the function
-> evaluating pattern inline constants in the function
-> building MIR for the inline constant
-> checking unsafety of functions (so that THIR can be stolen)
This is fixed by not stealing THIR when generating MIR but instead when
unsafety checking.
This leaves an issue with pattern inline constants not being unsafety
checked because they are evaluated away when generating THIR.
To fix that we now represent inline constants in THIR patterns and
visit them in THIR unsafety checking.
Fix AFIT lint message to mention pitfall
Addresses https://github.com/rust-lang/rust/pull/116184#issuecomment-1745194387 by adding a short note. Not sure exactly of the wording -- I don't think this should be a blocker for the stabilization PR since we can iterate on this lint's messaging in the next few weeks in the worst case.
r? `@tmandry` cc `@traviscross` `@jonhoo`
Add a note to duplicate diagnostics
Helps explain why there may be a difference between manual testing and the test suite output and highlights them as something to potentially look into
For existing duplicate diagnostics I just blessed them other than a few files that had other `NOTE` annotations in
Suggest `pin!()` instead of `Pin::new()` when appropriate
When encountering a type that needs to be pinned but that is `!Unpin`, suggest using the `pin!()` macro.
Fix#57994.
We're stabilizing `async fn` in trait (AFIT), but we have some
reservations about how people might use this in the definitions of
publicly-visible traits, so we're going to lint about that.
This is a bit of an odd lint for `rustc`. We normally don't lint just
to have people confirm that they understand how Rust works. But in
this one exceptional case, this seems like the right thing to do as
compared to the other plausible alternatives.
In this commit, we describe the nature of this odd lint.
Reveal opaque types before drop elaboration
fixes https://github.com/rust-lang/rust/issues/113594
r? `@cjgillot`
cc `@JakobDegen`
This pass was introduced in https://github.com/rust-lang/rust/pull/110714
I moved it before drop elaboration (which only cares about the hidden types of things, not the opaque TAIT or RPIT type) and set it to run unconditionally (instead of depending on the optimization level and whether the inliner is active)
Stabilize `impl_trait_projections`
Closes#115659
## TL;DR:
This allows us to mention `Self` and `T::Assoc` in async fn and return-position `impl Trait`, as you would expect you'd be able to.
Some examples:
```rust
#![feature(return_position_impl_trait_in_trait, async_fn_in_trait)]
// (just needed for final tests below)
// ---------------------------------------- //
struct Wrapper<'a, T>(&'a T);
impl Wrapper<'_, ()> {
async fn async_fn() -> Self {
//^ Previously rejected because it returns `-> Self`, not `-> Wrapper<'_, ()>`.
Wrapper(&())
}
fn impl_trait() -> impl Iterator<Item = Self> {
//^ Previously rejected because it mentions `Self`, not `Wrapper<'_, ()>`.
std::iter::once(Wrapper(&()))
}
}
// ---------------------------------------- //
trait Trait<'a> {
type Assoc;
fn new() -> Self::Assoc;
}
impl Trait<'_> for () {
type Assoc = ();
fn new() {}
}
impl<'a, T: Trait<'a>> Wrapper<'a, T> {
async fn mk_assoc() -> T::Assoc {
//^ Previously rejected because `T::Assoc` doesn't mention `'a` in the HIR,
// but ends up resolving to `<T as Trait<'a>>::Assoc`, which does rely on `'a`.
// That's the important part -- the elided trait.
T::new()
}
fn a_few_assocs() -> impl Iterator<Item = T::Assoc> {
//^ Previously rejected for the same reason
[T::new(), T::new(), T::new()].into_iter()
}
}
// ---------------------------------------- //
trait InTrait {
async fn async_fn() -> Self;
fn impl_trait() -> impl Iterator<Item = Self>;
}
impl InTrait for &() {
async fn async_fn() -> Self { &() }
//^ Previously rejected just like inherent impls
fn impl_trait() -> impl Iterator<Item = Self> {
//^ Previously rejected just like inherent impls
[&()].into_iter()
}
}
```
## Technical:
Lifetimes in return-position `impl Trait` (and `async fn`) are duplicated as early-bound generics local to the opaque in order to make sure we are able to substitute any late-bound lifetimes from the function in the opaque's hidden type. (The [dev guide](https://rustc-dev-guide.rust-lang.org/return-position-impl-trait-in-trait.html#aside-opaque-lifetime-duplication) has a small section about why this is necessary -- this was written for RPITITs, but it applies to all RPITs)
Prior to #103491, all of the early-bound lifetimes not local to the opaque were replaced with `'static` to avoid issues where relating opaques caused their *non-captured* lifetimes to be related. This `'static` replacement led to strange and possibly unsound behaviors (https://github.com/rust-lang/rust/issues/61949#issuecomment-508836314) (https://github.com/rust-lang/rust/issues/53613) when referencing the `Self` type alias in an impl or indirectly referencing a lifetime parameter via a projection type (via a `T::Assoc` projection without an explicit trait), since lifetime resolution is performed on the HIR, when neither `T::Assoc`-style projections or `Self` in impls are expanded.
Therefore an error was implemented in #62849 to deny this subtle behavior as a known limitation of the compiler. It was attempted by `@cjgillot` to fix this in #91403, which was subsequently unlanded. Then it was re-attempted to much success (🎉) in #103491, which is where we currently are in the compiler.
The PR above (#103491) fixed this issue technically by *not* replacing the opaque's parent lifetimes with `'static`, but instead using variance to properly track which lifetimes are captured and are not. The PR gated any of the "side-effects" of the PR behind a feature gate (`impl_trait_projections`) presumably to avoid having to involve T-lang or T-types in the PR as well. `@cjgillot` can clarify this if I'm misunderstanding what their intention was with the feature gate.
Since we're not replacing (possibly *invariant*!) lifetimes with `'static` anymore, there are no more soundness concerns here. Therefore, this PR removes the feature gate.
Tests:
* `tests/ui/async-await/feature-self-return-type.rs`
* `tests/ui/impl-trait/feature-self-return-type.rs`
* `tests/ui/async-await/issues/issue-78600.rs`
* `tests/ui/impl-trait/capture-lifetime-not-in-hir.rs`
---
r? cjgillot on the impl (not much, just removing the feature gate)
I'm gonna mark this as FCP for T-lang and T-types.
adjust how closure/generator types are printed
I saw `&[closure@$DIR/issue-20862.rs:2:5]` and I thought it is a slice type, because that's usually what `&[_]` is... it took me a while to realize that this is just a confusing printer and actually there's no slice. Let's use something that cannot be mistaken for a regular type.
tests/ui: Split large_moves.rs and move to lint/large_assignments
To make failing tests easier to debug with `--emit=mir`, etc.
Don't bother with `revisions: attribute option` for both tests though. Seems sufficient to just have that on one of the tests.
`git show -M --find-renames=40%` makes the diff easier to review. Or note that before this change we had one test with 4 errors, now we have 2 tests with 2 errors each.
r? `@oli-obk`
Part of https://github.com/rust-lang/rust/issues/83518
Detect cycle errors hidden by opaques during monomorphization
Opaque types may reveal to projections, which themselves normalize to opaques. We don't currently normalize when checking that opaques are cyclical, and we may also not know that the opaque is cyclical until monomorphization (see `tests/ui/type-alias-impl-trait/mututally-recursive-overflow.rs`).
Detect cycle errors in `normalize_projection_ty` and report a fatal overflow (in the old solver). Luckily, this is already detected as a fatal overflow in the new solver.
Fixes#112047
The `Debug` impl for `Ty` just calls the `Display` impl for `Ty`. This
is surprising and annoying. In particular, it means `Debug` doesn't show
as much information as `Debug` for `TyKind` does. And `Debug` is used in
some user-facing error messages, which seems bad.
This commit changes the `Debug` impl for `Ty` to call the `Debug` impl
for `TyKind`. It also does a number of follow-up changes to preserve
existing output, many of which involve inserting
`with_no_trimmed_paths!` calls. It also adds `Display` impls for
`UserType` and `Canonical`.
Some tests have changes to expected output:
- Those that use the `rustc_abi(debug)` attribute.
- Those that use the `EMIT_MIR` annotation.
In each case the output is slightly uglier than before. This isn't
ideal, but it's pretty weird (particularly for the attribute) that the
output is using `Debug` in the first place. They're fairly obscure
attributes (I hadn't heard of them) so I'm not worried by this.
For `async-is-unwindsafe.stderr`, there is one line that now lacks a
full path. This is a consistency improvement, because all the other
mentions of `Context` in this test lack a path.
Print the path of a return-position impl trait in trait when `return_type_notation` is enabled
When we're printing a return-position impl trait in trait, we usually just print it like an opaque. This is *usually* fine, but can be confusing when using `return_type_notation`. Print the path of the method from where the RPITIT originates when this feature gate is enabled.
More precisely detect cycle errors from type_of on opaque
Not sure if this still needs work. Just putting it up for initial impressions, since it seems that a few people are frustrated with the increased error verbosity due to #113320.
Essentially we introduce a new sub-query for `type_of` specifically for opaques which returns a value that is able to distinguish "has errors" from "due to cycle recovery".
Fixes#115188
r? `@oli-obk`
Avoid duplicate `large_assignments` lints
By checking for overlapping spans.
This PR does the "reduce noisiness" task in #83518.
r? `@oli-obk` who added E-mentor and E-help-wanted and wrote the initial code.
(The fix itself is in dc82736677. The two commits before that are just small refactorings.)
Normalize return type of `deduce_future_output_from_obligations`
Fixes#114909
Also confirmed to fix#114727 manually
Now that we have weak/lazy type aliases, we need to normalize those in future signatures to ensure that `replace_opaque_types_with_inference_vars` actually sees TAITs behind them. This isn't needed in the new solver, but added a test to make sure it doesn't regress there either.
r? types cc `@oli-obk` (who's gone, worst case can delay this PR until he's back)
This patch adds a feature gate `async_fn_track_caller` that is separate from `closure_track_caller`. This is to allow enabling `async_fn_track_caller` separately.
Fixes#110009
Change default panic handler message format.
This changes the default panic hook's message format from:
```
thread '{thread}' panicked at '{message}', {location}
```
to
```
thread '{thread}' panicked at {location}:
{message}
```
This puts the message on its own line without surrounding quotes, making it easiser to read. For example:
Before:
```
thread 'main' panicked at 'env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`', src/main.rs:4:6
```
After:
```
thread 'main' panicked at src/main.rs:4:6:
env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`
```
---
See this PR by `@nyurik,` which does that for only multi-line messages (specifically because of `assert_eq`): https://github.com/rust-lang/rust/pull/111071
This is the change that does that for *all* panic messages.
(re-)tighten sourceinfo span of adjustments in MIR
Diagnostics rely on the spans of MIR statements being (approximately) correct in order to give suggestions relative to that span (i.e. `shrink_to_hi` and `shrink_to_lo`).
I discovered that we're *intentionally* lowering THIR exprs with their parent expr's span if they come from adjustments that are due to a parent expression. While I understand why that may be desirable to demonstrate the relationship of an adjustment and the expression that requires it, it leads to
1. very verbose borrowck output
2. incorrect spans for suggestions
Some diagnostics get around that by giving suggestions relative to other spans we've collected during MIR lowering, such as the span of the method's identifier (e.g. `name` in `.name()`), but this doesn't work too well when things come from desugaring.
I assume it also has lead to numerous tweaks and complications to diagnostics code down the road, which this PR doesn't necessarily aim to fix but may open the gates to fixing later... The last three commits are simplifications due to the fact that we can assume that the move span actually points to what is being moved (and a test).
This regressed in #89110, which was debated somewhat in #90286. cc `@Aaron1011` who originally made this change.
r? diagnostics
Fixes#113547Fixes#111016
Reveal opaques in new solver
We were testing against the wrong reveal mode 😨
Also a couple of misc commits that I don't want to really put in separate prs
r? ``@lcnr``
Do not assert >1 RPITITs on collect_return_position_impl_trait_in_trait_tys
Fixes#113403
Assert on collect_return_position_impl_trait_in_trait_tys is not correct when we call it from type_of(GAT). The included test is an example of a situation that collector collects 0 types.
r? `@compiler-errors`
Normalize opaques with late-bound vars again
We have a hack in the compiler where if an opaque has escaping late-bound vars, we skip revealing it even though we *could* reveal it from a technical perspective. First of all, this is weird, since we really should be revealing all opaques in `Reveal::All` mode. Second of all, it causes subtle bugs (linked below).
I attempted to fix this in #100980, which was unfortunately reverted due to perf regressions on codebases that used really deeply nested futures in some interesting ways. The worst of which was #103423, which caused the project to hang on build. Another one was #104842, which was just a slow-down, but not a hang. I took some time afterwards to investigate how to rework `normalize_erasing_regions` to take advantage of better caching, but that effort kinda fizzled out (#104133).
However, recently, I was made aware of more bugs whose root cause is not revealing opaques during codegen. That made me want to fix this again -- in the process, interestingly, I took the the minimized example from https://github.com/rust-lang/rust/issues/103423#issuecomment-1292947043, and it doesn't seem to hang any more...
Thinking about this harder, there have been some changes to the way we lower and typecheck async futures that may have reduced the pathologically large number of outlives obligations (see description of #103423) that we were encountering when normalizing opaques with bound vars the last time around:
* #104321 (lower `async { .. }` directly as a generator that implements `Future`, removing the `from_generator` shim)
* #104833 (removing an `identity_future` fn that was wrapping desugared future generators)
... so given that I can see:
* No significant regression on rust perf bot (https://github.com/rust-lang/rust/pull/107620#issuecomment-1600070317)
* No timeouts in crater run I did (https://github.com/rust-lang/rust/pull/107620#issuecomment-1605428952, rechecked failing crates in https://github.com/rust-lang/rust/pull/107620#issuecomment-1605973434)
... and given that this PR:
* Fixes#104601
* Fixes#107557
* Fixes#109464
* Allows us to remove a `DefiningAnchor::Bubble` from codegen (75a8f68183)
I'm inclined to give this another shot at landing this. Best case, it just works -- worst case, we get more examples to study how we need to improve the compiler to make this work.
r? types
Fix return type notation errors with -Zlower-impl-trait-in-trait-to-assoc-ty
This just adjust the way we check for RPITITs and uses the new helper method to do the "old" and "new" check at once.
r? `@compiler-errors`
Implement `Sync` for `mpsc::Sender`
`mpsc::Sender` is currently `!Sync` because the previous implementation contained an optimization where the channel started out as single-producer and was dynamically upgraded on the first clone, which relied on a unique reference to the sender. This optimization is one of the main reasons the old implementation was so complex and was removed in #93563. `mpsc::Sender` can now soundly implement `Sync`.
Note for any potential confusion, this chance does *not* add MPMC behavior. This only affects the already `Send + Clone` *sender*, not *receiver*.
It's technically possible to rely on the `!Sync` behavior in the same way as a `PhantomData<*mut T>`, but that seems very unlikely in practice. Either way, this change is insta-stable and needs an FCP.
`@rustbot` label +T-libs-api -T-libs
- Either explicitly annotate `let x: () = expr;` where `x` has unit
type, or remove the unit binding to leave only `expr;` instead.
- Fix disjoint-capture-in-same-closure test
The type inference of argument-position closures and async blocks
regressed in 1.70 as the evaluation order of async blocks changed, as
they are not implicitly wrapped in an identity-function anymore.
Fixes#112225 by making sure the evaluation order stays the same as it
used to.
Note user-facing types of coercion failure
When coercing, for example, `Box<A>` into `Box<dyn B>`, make sure that any failure notes mention *those* specific types, rather than mentioning inner types, like "the cast from `A` to `dyn B`".
I expect end-users are often confused when we skip layers of types and only mention the "innermost" part of a coercion, especially when other notes point at HIR, e.g. #111406.
Tweak await span to not contain dot
Fixes a discrepancy between method calls and await expressions where the latter are desugared to have a span that *contains* the dot (i.e. `.await`) but method call identifiers don't contain the dot. This leads to weird suggestions suggestions in borrowck -- see linked issue.
Fixes#110761
This mostly touches a bunch of tests to tighten their `await` span.
Improve niche placement by trying two strategies and picking the better result
Fixes#104807Fixes#105371
Determining which sort order is better requires calculating the struct size (so we can calculate the niche offset). But that in turn depends on the field order, so happens after sorting. So the simple way to solve that is to run the whole thing twice and pick the better result.
1st commit is just code motion, the meat is in the later ones.
Substitute missing trait items suggestion correctly
Properly substitute missing item suggestions, so that when they reference generics from their parent trait they actually have the right time for the impl.
Also, some other minor tweaks like using `/* Type */` to signify a GAT's type is actually missing, and fixing generic arg suggestions for GATs in general.
Added diagnostic for pin! macro in addition to Box::pin if Unpin isn't implemented
I made a PR earlier, but accidentally renamed a branch and that deleted the PR... sorry for the duplicate
Currently, if an operation on `Pin<T>` is performed that requires `T` to implement `Unpin`, the diagnostic suggestion is to use `Box::pin` ("note: consider using `Box::pin`").
This PR suggests pin! as well, as that's another valid way of pinning a value, and avoids a heap allocation. Appropriate diagnostic suggestions were included to highlight the difference in semantics (local pinning for pin! vs non-local for Box::pin).
Fixes#109964
Preserve argument indexes when inlining MIR
We store argument indexes on VarDebugInfo. Unlike the previous method of relying on the variable index to know whether a variable is an argument, this survives MIR inlining.
We also no longer check if var.source_info.scope is the outermost scope. When a function gets inlined, the arguments to the inner function will no longer be in the outermost scope. What we care about though is whether they were in the outermost scope prior to inlining, which we know by whether we assigned an argument index.
Fixes#83217
I considered using `Option<NonZeroU16>` instead of `Option<u16>` to store the index. I didn't because `TypeFoldable` isn't implemented for `NonZeroU16` and because it looks like due to padding, it currently wouldn't make any difference. But I indexed from 1 anyway because (a) it'll make it easier if later it becomes worthwhile to use a `NonZeroU16` and because the arguments were previously indexed from 1, so it made for a smaller change.
This is my first PR on rust-lang/rust, so apologies if I've gotten anything not quite right.
We store argument indexes on VarDebugInfo. Unlike the previous method of
relying on the variable index to know whether a variable is an argument,
this survives MIR inlining.
We also no longer check if var.source_info.scope is the outermost scope.
When a function gets inlined, the arguments to the inner function will
no longer be in the outermost scope. What we care about though is
whether they were in the outermost scope prior to inlining, which we
know by whether we assigned an argument index.