Impl {Add,Sub,Mul,Div,Rem,BitXor,BitOr,BitAnd}Assign<$t> for Wrapping<$t> for rust 1.60.0
Tracking issue #93204
This is about adding basic integer operations to the `Wrapping` type:
```rust
let mut value = Wrapping(2u8);
value += 3u8;
value -= 1u8;
value *= 2u8;
value /= 2u8;
value %= 2u8;
value ^= 255u8;
value |= 123u8;
value &= 2u8;
```
Because this adds stable impls on a stable type, it runs into the following issue if an `#[unstable(...)]` attribute is used:
```
an `#[unstable]` annotation here has no effect
note: see issue #55436 <https://github.com/rust-lang/rust/issues/55436> for more information
```
This means - if I understood this correctly - the new impls have to be stabilized instantly.
Which in turn means, this PR has to kick of an FCP on the tracking issue as well?
This impl is analog to 1c0dc1810d#92356 for the `Saturating` type ``@dtolnay`` ``@Mark-Simulacrum``
Suggest 1-tuple parentheses on exprs without existing parens
A follow-on from #86116, split out from #90677.
This alters the suggestion to add a trailing comma to create a 1-tuple - previously we would only apply this if the relevant expression was parenthesised. We now make the suggestion regardless of parentheses, which reduces the fragility of the check (w.r.t formatting).
e.g.
```rust
let a: Option<(i32,)> = Some(3);
```
gets the below suggestion:
```rust
let a: Option<(i32,)> = Some((3,));
// ^ ^^
```
This change also improves the suggestion in other ways, such as by only making the suggestion if the types would match after the suggestion is applied and making the suggestion a multipart suggestion.
Make the pre-commit script pre-push instead
This should make it substantially less annoying, and hopefully more
people will find it useful. In particular, it will no longer run tidy
each time you run `git commit --amend` or rebase a branch.
This also warns if you have the old script in pre-commit; see the HACK
comment for details.
r? ````@Mark-Simulacrum```` cc ````@caass````
use `fold_list` in `try_super_fold_with` for `SubstsRef`
split out from #93505 as this by itself is responsible for most of the perf improvements there
r? `@michaelwoerister`
Fix invalid special casing of the unreachable! macro
This pull-request fix an invalid special casing of the `unreachable!` macro in the same way the `panic!` macro was solved, by adding two new internal only macros `unreachable_2015` and `unreachable_2021` edition dependent and turn `unreachable!` into a built-in macro that do dispatching. This logic is stolen from the `panic!` macro.
~~This pull-request also adds an internal feature `format_args_capture_non_literal` that allows capturing arguments from formatted string that expanded from macros. The original RFC #2795 mentioned this as a future possibility. This feature is [required](https://github.com/rust-lang/rust/issues/92137#issuecomment-1018630522) because of concatenation that needs to be done inside the macro:~~
```rust
$crate::concat!("internal error: entered unreachable code: ", $fmt)
```
**In summary** the new behavior for the `unreachable!` macro with this pr is:
Edition 2021:
```rust
let x = 5;
unreachable!("x is {x}");
```
```
internal error: entered unreachable code: x is 5
```
Edition <= 2018:
```rust
let x = 5;
unreachable!("x is {x}");
```
```
internal error: entered unreachable code: x is {x}
```
Also note that the change in this PR are **insta-stable** and **breaking changes** but this a considered as being a [bug](https://github.com/rust-lang/rust/issues/92137#issuecomment-998441613).
If someone could start a perf run and then a crater run this would be appreciated.
Fixes https://github.com/rust-lang/rust/issues/92137
Rollup of 2 pull requests
Successful merges:
- #90998 (Require const stability attribute on all stable functions that are `const`)
- #93489 (Mark the panic_no_unwind lang item as nounwind)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Mark the panic_no_unwind lang item as nounwind
This has 2 effects:
- It helps LLVM when inlining since it doesn't need to generate landing pads for `panic_no_unwind`.
- It makes it sound for a panic handler to unwind even if `PanicInfo::can_unwind` returns true. This will simply cause another panic once the unwind tries to go past the `panic_no_unwind` lang item. Eventually this will cause a stack overflow, which is safe.
Require const stability attribute on all stable functions that are `const`
This PR requires all stable functions (of all kinds) that are `const fn` to have a `#[rustc_const_stable]` or `#[rustc_const_unstable]` attribute. Stability was previously implied if omitted; a follow-up PR is planned to change the fallback to be unstable.
Optimize `core::str::Chars::count`
I wrote this a while ago after seeing this function as a bottleneck in a profile, but never got around to contributing it. I saw it again, and so here it is. The implementation is fairly complex, but I tried to explain what's happening at both a high level (in the header comment for the file), and in line comments in the impl. Hopefully it's clear enough.
This implementation (`case00_cur_libcore` in the benchmarks below) is somewhat consistently around 4x to 5x faster than the old implementation (`case01_old_libcore` in the benchmarks below), for a wide variety of workloads, without regressing performance on any of the workload sizes I've tried.
I also improved the benchmarks for this code, so that they explicitly check text in different languages and of different sizes (err, the cross product of language x size). The results of the benchmarks are here:
<details>
<summary>Benchmark results</summary>
<pre>
test str::char_count::emoji_huge::case00_cur_libcore ... bench: 20,216 ns/iter (+/- 3,673) = 17931 MB/s
test str::char_count::emoji_huge::case01_old_libcore ... bench: 108,851 ns/iter (+/- 12,777) = 3330 MB/s
test str::char_count::emoji_huge::case02_iter_increment ... bench: 329,502 ns/iter (+/- 4,163) = 1100 MB/s
test str::char_count::emoji_huge::case03_manual_char_len ... bench: 223,333 ns/iter (+/- 14,167) = 1623 MB/s
test str::char_count::emoji_large::case00_cur_libcore ... bench: 293 ns/iter (+/- 6) = 19331 MB/s
test str::char_count::emoji_large::case01_old_libcore ... bench: 1,681 ns/iter (+/- 28) = 3369 MB/s
test str::char_count::emoji_large::case02_iter_increment ... bench: 5,166 ns/iter (+/- 85) = 1096 MB/s
test str::char_count::emoji_large::case03_manual_char_len ... bench: 3,476 ns/iter (+/- 62) = 1629 MB/s
test str::char_count::emoji_medium::case00_cur_libcore ... bench: 48 ns/iter (+/- 0) = 14750 MB/s
test str::char_count::emoji_medium::case01_old_libcore ... bench: 217 ns/iter (+/- 4) = 3262 MB/s
test str::char_count::emoji_medium::case02_iter_increment ... bench: 642 ns/iter (+/- 7) = 1102 MB/s
test str::char_count::emoji_medium::case03_manual_char_len ... bench: 445 ns/iter (+/- 3) = 1591 MB/s
test str::char_count::emoji_small::case00_cur_libcore ... bench: 18 ns/iter (+/- 0) = 3777 MB/s
test str::char_count::emoji_small::case01_old_libcore ... bench: 23 ns/iter (+/- 0) = 2956 MB/s
test str::char_count::emoji_small::case02_iter_increment ... bench: 66 ns/iter (+/- 2) = 1030 MB/s
test str::char_count::emoji_small::case03_manual_char_len ... bench: 29 ns/iter (+/- 1) = 2344 MB/s
test str::char_count::en_huge::case00_cur_libcore ... bench: 25,909 ns/iter (+/- 39,260) = 13299 MB/s
test str::char_count::en_huge::case01_old_libcore ... bench: 102,887 ns/iter (+/- 3,257) = 3349 MB/s
test str::char_count::en_huge::case02_iter_increment ... bench: 166,370 ns/iter (+/- 12,439) = 2071 MB/s
test str::char_count::en_huge::case03_manual_char_len ... bench: 166,332 ns/iter (+/- 4,262) = 2071 MB/s
test str::char_count::en_large::case00_cur_libcore ... bench: 281 ns/iter (+/- 6) = 19160 MB/s
test str::char_count::en_large::case01_old_libcore ... bench: 1,598 ns/iter (+/- 19) = 3369 MB/s
test str::char_count::en_large::case02_iter_increment ... bench: 2,598 ns/iter (+/- 167) = 2072 MB/s
test str::char_count::en_large::case03_manual_char_len ... bench: 2,578 ns/iter (+/- 55) = 2088 MB/s
test str::char_count::en_medium::case00_cur_libcore ... bench: 44 ns/iter (+/- 1) = 15295 MB/s
test str::char_count::en_medium::case01_old_libcore ... bench: 201 ns/iter (+/- 51) = 3348 MB/s
test str::char_count::en_medium::case02_iter_increment ... bench: 322 ns/iter (+/- 40) = 2090 MB/s
test str::char_count::en_medium::case03_manual_char_len ... bench: 319 ns/iter (+/- 5) = 2109 MB/s
test str::char_count::en_small::case00_cur_libcore ... bench: 15 ns/iter (+/- 0) = 2333 MB/s
test str::char_count::en_small::case01_old_libcore ... bench: 14 ns/iter (+/- 0) = 2500 MB/s
test str::char_count::en_small::case02_iter_increment ... bench: 30 ns/iter (+/- 1) = 1166 MB/s
test str::char_count::en_small::case03_manual_char_len ... bench: 30 ns/iter (+/- 1) = 1166 MB/s
test str::char_count::ru_huge::case00_cur_libcore ... bench: 16,439 ns/iter (+/- 3,105) = 19777 MB/s
test str::char_count::ru_huge::case01_old_libcore ... bench: 89,480 ns/iter (+/- 2,555) = 3633 MB/s
test str::char_count::ru_huge::case02_iter_increment ... bench: 217,703 ns/iter (+/- 22,185) = 1493 MB/s
test str::char_count::ru_huge::case03_manual_char_len ... bench: 157,330 ns/iter (+/- 19,188) = 2066 MB/s
test str::char_count::ru_large::case00_cur_libcore ... bench: 243 ns/iter (+/- 6) = 20905 MB/s
test str::char_count::ru_large::case01_old_libcore ... bench: 1,384 ns/iter (+/- 51) = 3670 MB/s
test str::char_count::ru_large::case02_iter_increment ... bench: 3,381 ns/iter (+/- 543) = 1502 MB/s
test str::char_count::ru_large::case03_manual_char_len ... bench: 2,423 ns/iter (+/- 429) = 2096 MB/s
test str::char_count::ru_medium::case00_cur_libcore ... bench: 42 ns/iter (+/- 1) = 15119 MB/s
test str::char_count::ru_medium::case01_old_libcore ... bench: 180 ns/iter (+/- 4) = 3527 MB/s
test str::char_count::ru_medium::case02_iter_increment ... bench: 402 ns/iter (+/- 45) = 1579 MB/s
test str::char_count::ru_medium::case03_manual_char_len ... bench: 280 ns/iter (+/- 29) = 2267 MB/s
test str::char_count::ru_small::case00_cur_libcore ... bench: 12 ns/iter (+/- 0) = 2666 MB/s
test str::char_count::ru_small::case01_old_libcore ... bench: 12 ns/iter (+/- 0) = 2666 MB/s
test str::char_count::ru_small::case02_iter_increment ... bench: 19 ns/iter (+/- 0) = 1684 MB/s
test str::char_count::ru_small::case03_manual_char_len ... bench: 14 ns/iter (+/- 1) = 2285 MB/s
test str::char_count::zh_huge::case00_cur_libcore ... bench: 15,053 ns/iter (+/- 2,640) = 20067 MB/s
test str::char_count::zh_huge::case01_old_libcore ... bench: 82,622 ns/iter (+/- 3,602) = 3656 MB/s
test str::char_count::zh_huge::case02_iter_increment ... bench: 230,456 ns/iter (+/- 7,246) = 1310 MB/s
test str::char_count::zh_huge::case03_manual_char_len ... bench: 220,595 ns/iter (+/- 11,624) = 1369 MB/s
test str::char_count::zh_large::case00_cur_libcore ... bench: 227 ns/iter (+/- 65) = 20792 MB/s
test str::char_count::zh_large::case01_old_libcore ... bench: 1,136 ns/iter (+/- 144) = 4154 MB/s
test str::char_count::zh_large::case02_iter_increment ... bench: 3,147 ns/iter (+/- 253) = 1499 MB/s
test str::char_count::zh_large::case03_manual_char_len ... bench: 2,993 ns/iter (+/- 400) = 1577 MB/s
test str::char_count::zh_medium::case00_cur_libcore ... bench: 36 ns/iter (+/- 5) = 16388 MB/s
test str::char_count::zh_medium::case01_old_libcore ... bench: 142 ns/iter (+/- 18) = 4154 MB/s
test str::char_count::zh_medium::case02_iter_increment ... bench: 379 ns/iter (+/- 37) = 1556 MB/s
test str::char_count::zh_medium::case03_manual_char_len ... bench: 364 ns/iter (+/- 51) = 1620 MB/s
test str::char_count::zh_small::case00_cur_libcore ... bench: 11 ns/iter (+/- 1) = 3000 MB/s
test str::char_count::zh_small::case01_old_libcore ... bench: 11 ns/iter (+/- 1) = 3000 MB/s
test str::char_count::zh_small::case02_iter_increment ... bench: 20 ns/iter (+/- 3) = 1650 MB/s
</pre>
</details>
I also added fairly thorough tests for different sizes and alignments. This completes on my machine in 0.02s, which is surprising given how thorough they are, but it seems to detect bugs in the implementation. (I haven't run the tests on a 32 bit machine yet since before I reworked the code a little though, so... hopefully I'm not about to embarrass myself).
This uses similar SWAR-style techniques to the `is_ascii` impl I contributed in https://github.com/rust-lang/rust/pull/74066, so I'm going to request review from the same person who reviewed that one. That said am not particularly picky, and might not have the correct syntax for requesting a review from someone (so it goes).
r? `@nagisa`
Resolve lifetimes for const generic defaults
We weren't visiting the const generic default argument in `rustc_resolve::late::lifetimes`. This seems to fix the issue, and we deny any non-`'static` lifetimes anyways.
Fixes#93647
Update CPU idle tracking for apple hosts
The previous setup did not properly consider hyperthreads (at least in local
testing), which likely skews CI results as well. The new code is both simpler
and hopefully will produce more accurate results; locally it matches behavior
of the Linux version of this script.
Remove "up here" arrow on item-infos
Use spacing to distinguish what is related to a given heading.
This was originally introduced in #53043, in response to #51387. The arrow is a little distracting, and leads the item-info to not be aligned properly with the text below it.
Demo: https://rustdoc.crud.net/jsha/impl-spacing/std/string/struct.String.html
r? ``@GuillaumeGomez``
Add new target armv7-unknown-linux-uclibceabi (softfloat)
This adds the new target `armv7-unknown-linux-uclibceabi (softfloat)`. It is of course similar to `armv7-unknown-linux-uclibceabihf (hardfloat)` which was just recently added to rust except that it is `softfloat`.
My interest lies in the Broadcom BCM4707/4708/BCM4709 family, notably found in some Netgear and Asus consumer routers. The armv7 Cortex-A9 cpus found in these devices do not have an fpu or NEON support.
With this patch I've been able to bootstrap rustc, std and host tools `(extended = true)` to run on the target device for native compilation, allowing the target to be used as a development platform.
With the recent addition of `armv7-unknown-linux-uclibceabihf (hardfloat)` it looks like many of the edge cases of using the uclibc c-library are getting worked out nicely. I've been able to compile some complex projects. Some patching still needed in some crates, but getting there for sure. I think `armv7-unknown-linux-uclibceabi` is ready to be a tier 3 target.
I use a cross-toolchain from my project to bootstrap rust.
https://github.com/lancethepants/tomatoware
The goal of this project is to create a native development environment with support for various languages.
mips64-openwrt-linux-musl: Add Tier 3 target
Tier 3 tuple for Mips64 OpenWrt toolchain.
This add first-time support for OpenWrt. Future Tier3 targets will be added as I test them.
Signed-off-by: Donald Hoskins <grommish@gmail.com>
Allow unwinding from OOM hooks
This is split off from #88098 and contains just the bare minimum to allow specifying a custom OOM hook with `set_alloc_error_hook` which unwinds instead of aborting.
See #88098 for an actual command-line flag which switches the default OOM behavior to unwind instead of aborting.
Previous perf results show a negligible impact on performance.
The previous setup did not properly consider hyperthreads (at least in local
testing), which likely skews CI results as well. The new code is both simpler
and hopefully will produce more accurate results.
Emit more valid HTML from rustdoc
Previously, tidy-html5 (`tidy`) would complain about a few things in our HTML. The main thing is that `<summary>` tags can't contain `<div>`s. That's easily fixed by changing out the `<div>`s for `<span>`s with `display: block`.
However, there's also a rule that `<span>`s can't contain heading elements. `<span>` permits only "phrasing content" https://developer.mozilla.org/en-US/docs/Web/HTML/Element/span, and `<h3>` (and friends) are "Flow content, heading content, palpable content". https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Heading_Elements
We have a wrapping `<div>` that goes around each `<h3>`/`<h4>`, etc. We turn that into a `<section>` rather than a `<span>` because `<section>` permits "flow content". https://developer.mozilla.org/en-US/docs/Web/HTML/Element/section
After this change we get only three warnings from tidy, run on struct.String.html:
line 6 column 10790 - Warning: trimming empty <span>
line 1 column 1118 - Warning: <link> proprietary attribute "disabled"
line 1 column 1193 - Warning: <link> proprietary attribute "disabled"
The empty `<span>` is a known issue - there's a span in front of the search box to work around a strange Safari issue.
The `<link>` attributes are the non-default stylesheets. We can probably refactor theme application to avoid using this proprietary "disabled" attribute.
We can suppress those warnings with flags to tidy, and get a run that returns 0 (success):
```
tidy -o /dev/null -quiet --drop-empty-elements no --warn-proprietary-attributes no build/x86_64-unknown-linux-gnu/doc/std/string/trait.ToString.html
```
Note: this requires the latest version of tidy-html5, built from https://github.com/htacg/tidy-html5. Older versions (including the default version on Ubuntu 21.10) think `<section>` can't occur inside `<summary>`.
Demo: https://rustdoc.crud.net/jsha/fix-rustdoc-html/std/string/struct.String.html
r? `@GuillaumeGomez`
kmc-solid: Fix off-by-one error in `SystemTime::now`
Fixes a miscalculation of `SystemTime` on the [`*-kmc-solid_*`](https://doc.rust-lang.org/nightly/rustc/platform-support/kmc-solid.html) Tier 3 targets.
Unlike the identically-named libc counterpart `tm::tm_mon`, `SOLID_RTC_TIME::tm_mon` contains a 1-based month number.
impl `Arc::unwrap_or_clone`
The function gets the inner value, cloning only if necessary. The conversation started on [`irlo`](https://internals.rust-lang.org/t/arc-into-inner/15707). If the reviewer think the PR has potential to be merged, and does not need an RFC, then I will create the corresponding tracking issues and update the PR.
## Alternative names
- `into_inner`
- `make_owned`
- `make_unique`
- `take_*` (`take_inner`?)
Stabilize `-Z instrument-coverage` as `-C instrument-coverage`
(Tracking issue for `instrument-coverage`: https://github.com/rust-lang/rust/issues/79121)
This PR stabilizes support for instrumentation-based code coverage, previously provided via the `-Z instrument-coverage` option. (Continue supporting `-Z instrument-coverage` for compatibility for now, but show a deprecation warning for it.)
Many, many people have tested this support, and there are numerous reports of it working as expected.
Move the documentation from the unstable book to stable rustc documentation. Update uses and documentation to use the `-C` option.
Addressing questions raised in the tracking issue:
> If/when stabilized, will the compiler flag be updated to -C instrument-coverage? (If so, the -Z variant could also be supported for some time, to ease migrations for existing users and scripts.)
This stabilization PR updates the option to `-C` and keeps the `-Z` variant to ease migration.
> The Rust coverage implementation depends on (and automatically turns on) -Z symbol-mangling-version=v0. Will stabilizing this feature depend on stabilizing v0 symbol-mangling first? If so, what is the current status and timeline?
This stabilization PR depends on https://github.com/rust-lang/rust/pull/90128 , which stabilizes `-C symbol-mangling-version=v0` (but does not change the default symbol-mangling-version).
> The Rust coverage implementation implements the latest version of LLVM's Coverage Mapping Format (version 4), which forces a dependency on LLVM 11 or later. A compiler error is generated if attempting to compile with coverage, and using an older version of LLVM.
Given that LLVM 13 has now been released, requiring LLVM 11 for coverage support seems like a reasonable requirement. If people don't have at least LLVM 11, nothing else breaks; they just can't use coverage support. Given that coverage support currently requires a nightly compiler and LLVM 11 or newer, allowing it on a stable compiler built with LLVM 11 or newer seems like an improvement.
The [tracking issue](https://github.com/rust-lang/rust/issues/79121) and the [issue label A-code-coverage](https://github.com/rust-lang/rust/labels/A-code-coverage) link to a few open issues related to `instrument-coverage`, but none of them seem like showstoppers. All of them seem like improvements and refinements we can make after stabilization.
The original `-Z instrument-coverage` support went through a compiler-team MCP at https://github.com/rust-lang/compiler-team/issues/278 . Based on that, `@pnkfelix` suggested that this needed a stabilization PR and a compiler-team FCP.