Update the examples in `String` and `VecDeque::retain`
The examples added in #60396 used a "clever" post-increment hack,
unrelated to the actual point of the examples. That hack was found
[confusing] in the users forum, and #81811 already changed the `Vec`
example to use a more direct iterator. This commit changes `String` and
`VecDeque` in the same way for consistency.
[confusing]: https://users.rust-lang.org/t/help-understand-strange-expression/62858
Optimize fmt::PadAdapter::wrap
After adding the first `write!` usage to my project and printing the result to the console, I noticed, that my binary contains the strings "called `Option::unwrap()` on a `None` value`" and more importantly "C:\Users\Patrick Fischer\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\fmt\builders.rs", with my release build being configured as follows:
```
[profile.release]
panic = "abort"
codegen-units = 1
strip = "symbols" # the important bit
lto = true
```
I am in a no_std environment and my custom panic handler is a simple `loop {}`. I did not expect the above information to be preserved. I heavily suspect the edited function to be the culprit. It contains the only direct use of `Option::unwrap` in the entire file and I tracked the symbols in the assembly to be used from the section `_ZN68_$LT$core..fmt..builders..PadAdapter$u20$as$u20$core..fmt..Write$GT$9write_str17ha1d5e5efe167202aE`.
Aside from me suspecting this function to be the culprit, the replaced code performs the same operation as `Option::insert`, but without the `unreachable_unchecked` optimization `Option::insert` provides. Therefore, it makes sense to me to use the more optimized version, instead.
As I don't change any semantics, I hope a simple pull request suffices.
Fix may not to appropriate might not or must not
I went through and changed occurrences of `may not` to be more explicit with `might not` and `must not`.
I looked in stdlib and as @BurntSushi thought, `raw` is generally
used for raw pointers, or other hazardous kinds of thing. stdlib does
not have `into_parts` apart from the one I added to `IntoInnerError`.
I did an ad-hoc search of the rustdocs for my current game project
Otter, which includes quite a large number of dependencies.
`into_parts` seems heavily used for things quite like this.
So change this name.
Suggested-by: Andrew Gallant <jamslam@gmail.com>
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
I didn't notice the submodule, which means I failed to re-export this
to make it actually-public.
Reported-by: Andrew Gallant <jamslam@gmail.com>
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
Add #[track_caller] for some function in core::mem.
These functions can panic for some types. This makes the panic point to the code that calls e.g. mem::uninitialized(), instead of inside the definition of mem::uninitialized.
Make const panic!("..") work in Rust 2021.
During const eval, this replaces calls to core::panicking::panic_fmt and std::panicking::being_panic_fmt with a call to a new const fn: core::panicking::const_panic_fmt. That function uses fmt::Arguments::as_str() to get the str and calls panic_str with that instead.
panic!() invocations with formatting arguments are still not accepted, as the creation of such a fmt::Arguments cannot be done in constant functions right now.
r? `@RalfJung`
Remove unsound TrustedRandomAccess implementations
Removes the implementations that depend on the user-definable trait `Copy`.
Fixes#85873 in the most straightforward way.
<hr>
_Edit:_ This PR now contains additional trait infrastructure to avoid performance regressions around in-place collect, see the discussion in this thread starting from the codegen test failure at https://github.com/rust-lang/rust/pull/85874#issuecomment-872327577.
With this PR, `TrustedRandomAccess` gains additional documentation that specifically allows for and specifies the safety conditions around subtype coercions – those coercions can happen in safe Rust code with the `Zip` API’s usage of `TrustedRandomAccess`. This PR introduces a new supertrait of `TrustedRandomAccess`(currently named `TrustedRandomAccessNoCoerce`) that _doesn’t allow_ such coercions, which means it can be still be useful for optimizing cases such as in-place collect where no iterator is handed out to a user (who could do coercions) after a `get_unchecked` call; the benefit of the supertrait is that it doesn’t come with the additional safety conditions around supertraits either, so it can be implemented for more types than `TrustedRandomAccess`.
The `TrustedRandomAccess` implementations for `vec::IntoIter`, `vec_deque::IntoIter`, and `array::IntoIter` are removed as they don’t conform with the newly documented safety conditions, this way unsoundness is removed. But this PR in turn (re-)adds a `TrustedRandomAccessNoCoerce` implementation for `vec::IntoIter` to avoid performance regressions from stable in a case of in-place collecting of `Vec`s [the above-mentioned codegen test failure]. Re-introducing the (currently nightly+beta-only) impls for `VecDeque`’s and `[T; N]`’s iterators is technically possible, but goes beyond the scope of this PR (i.e. it can happen in a future PR).
The examples added in #60396 used a "clever" post-increment hack,
unrelated to the actual point of the examples. That hack was found
[confusing] in the users forum, and #81811 already changed the `Vec`
example to use a more direct iterator. This commit changes `String` and
`VecDeque` in the same way for consistency.
[confusing]: https://users.rust-lang.org/t/help-understand-strange-expression/62858
Remove P: Unpin bound on impl Future for Pin
We can safely produce a `Pin<&mut P::Target>` without moving out of the `Pin` by using `Pin::as_mut` directly.
The `Unpin` bound was originally added in #56939 following the recommendation of ``@withoutboats`` in https://github.com/rust-lang/rust/issues/55766#issue-378417538
That comment does not give explicit justification for why the bound should be added. The relevant context was:
> [ ] Remove `impl<P> Unpin for Pin<P>`
>
> This impl is not justified by our standard justification for unpin impls: there is no pointer direction between `Pin<P>` and `P`. Its usefulness is covered by the impls for pointers themselves.
>
> This futures impl (link to the impl changed in this PR) will need to change to add a `P: Unpin` bound.
The decision to remove the unconditional impl of `Unpin for Pin` is sound (these days there is just an auto-impl for when `P: Unpin`). But, I think the decision to also add the `Unpin` bound for `impl Future` may have been unnecessary. Or if that's not the case, I'd be very interested to have the argument for why written down somewhere. The bound _appears_ to not be needed, as demonstrated by the change requiring no unsafe code and by the existence of `Pin::as_mut`.
Stabilize core::task::ready!
_Tracking issue: https://github.com/rust-lang/rust/issues/70922_
This PR stabilizes the `task::ready!` macro. Similar to https://github.com/rust-lang/rust/pull/80886, this PR was waiting on https://github.com/rust-lang/rust/issues/74355 to be fixed.
The `task::ready!` API has existed in the futures ecosystem for several years, and was added on nightly last year in https://github.com/rust-lang/rust/pull/70817. The motivation for this macro is the same as it was back then: virtually every single manual future implementation makes use of this; so much so that it's one of the few things included in the [futures-core](https://docs.rs/futures-core/0.3.12/futures_core) library.
r? ``@tmandry``
cc/ ``@rust-lang/wg-async-foundations`` ``@rust-lang/libs``
## Example
```rust
use core::task::{Context, Poll};
use core::future::Future;
use core::pin::Pin;
async fn get_num() -> usize {
42
}
pub fn do_poll(cx: &mut Context<'_>) -> Poll<()> {
let mut f = get_num();
let f = unsafe { Pin::new_unchecked(&mut f) };
let num = ready!(f.poll(cx));
// ... use num
Poll::Ready(())
}
```
During const eval, this replaces calls to core::panicking::panic_fmt and
std::panicking::being_panic_fmt with a call to a new const fn:
core::panicking::const_panic_fmt. That function uses
fmt::Arguments::as_str() to get the str and calls panic_str with that
instead.
panic!() invocations with formatting arguments are still not accepted,
as the creation of such a fmt::Arguments cannot be done in constant
functions right now.
These functions can panic for some types. This makes the panic point to
the code that calls e.g. mem::uninitialized(), instead of inside the
definition of mem::uninitialized.
Include new details regarding coercions to a subtype.
These conditions also explain why the previously removed implementations
for {array, vec, vec_deque}::IntoIter<T> were unsound, because they introduced
an extra `T: Clone` for the TrustedRandomAccess impl, even though their parameter T
is covariant.
Document math behind MIN/MAX consts on integers
Currently the documentation for `[integer]::{MIN, MAX}` doesn't explain where the constants come from. This documents how the values of those constants are related to powers of 2.
Use hashbrown's `extend_reserve()` in `HashMap`
When we added `extend_reserve()` to our implementation of `Extend` for `HashMap`, hashbrown didn't have a version we could use. Now that hashbrown has added it, we should use its version instead of implementing it ourself.
Implement RFC 3107: `#[derive(Default)]` on enums with a `#[default]` attribute
This PR implements RFC 3107, which permits `#[derive(Default)]` on enums where a unit variant has a `#[default]` attribute. See comments for current status.