try to downgrade Arc -> Lrc -> Rc -> no-Rc in few places
Expecting this be not slower on non-parallel compiler and probably faster on parallel (checked that this PR builds on it).
check array type of repeat exprs is wf
Fixes#111091
Also makes sure that we actually renumber regions in the length of repeat exprs which we previously weren't doing and would cause ICEs in `adt_const_params` + `generic_const_exprs` from attempting to prove the wf goals when the length was an unevaluated constant with `'erased` in the `ty` field of `Const`
The duplicate errors are caused by the fact that `const_arg_to_const`/`array_len_to_const` in `FnCtxt` adds a `WellFormed` goal for the created `Const` which is also checked by the added `WellFormed(array_ty)`. I don't want to change this to just emit a `T: Sized` goal for the element type since that would ignore `ConstArgHasType` wf requirements and generally uncomfortable with the idea of trying to sync up `wf::obligations` for arrays and the code in hir typeck for repeat exprs.
r? `@compiler-errors`
correctly recurse when expanding anon consts
recursing with `super_fold_with` is wrong in case `bac` is itself normalizable, the test that was supposed to test for this being wrong did not actually test for this in reality because of the usage of `{ (N) }` instead of `{{ N }}`. The former resulting in a simple `ConstKind::Param` instead of `ConstKind::Unevaluated`. Tbh generally this test seems very brittle and it will be a lot easier to test once we have normalization of assoc consts since then we can just test that `T::ASSOC` normalizes to some `U::OTHER` which normalizes to some third thing.
r? `@compiler-errors`
Don't suffix `RibKind` variants
This PR
- Removes `use RibKind::*`
- Renames `RibKind::{SomethingRibKind => Something}`
It seems unnecessary to have "RibKind" in the end of all variants, if we can just use it as a normal enum. Additionally previously it was weird that `MacroDefinition` is the only unsuffixed variant.
Encode def span for foreign return-position `impl Trait` in trait
Fixes#111031, yet another def-span encoding issue :/
Includes a smaller repro than the issue, but I can confirm it ICEs:
```
query stack during panic:
#0 [def_span] looking up span for `rpitit::Foo::bar::{opaque#0}`
#1 [object_safety_violations] determining object safety of trait `rpitit::Foo`
#2 [check_is_object_safe] checking if trait `rpitit::Foo` is object safe
#3 [typeck] type-checking `main`
#4 [used_trait_imports] finding used_trait_imports `main`
#5 [analysis] running analysis passes on this crate
```
Luckily since this only affects nightly, this desn't need to be backported.
Explicitly reject negative and reservation drop impls
Fixes#110858
It doesn't really make sense for a type to have a `!Drop` impl. Or at least, I don't want us to implicitly assign a meaning to it by the way the compiler *currently* handles it (incompletely), and rather I would like to see a PR (or an RFC...) assign a meaning to `!Drop` if we actually wanted one for it.
`MemEncoder` was recently removed, leaving `FileEncoder` as the only
encoder. So this prefix is no longer needed, and `write_leb128!` matches
the existing `read_leb128!`.
In #110927 the encode/decode methods for `i8`, `char`, `bool`, and `str`
were made inherent. This commit removes some unnecessary implementations
of these methods that were missed in that PR.
Add cross-language LLVM CFI support to the Rust compiler
This PR adds cross-language LLVM Control Flow Integrity (CFI) support to the Rust compiler by adding the `-Zsanitizer-cfi-normalize-integers` option to be used with Clang `-fsanitize-cfi-icall-normalize-integers` for normalizing integer types (see https://reviews.llvm.org/D139395).
It provides forward-edge control flow protection for C or C++ and Rust -compiled code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code share the same virtual address space). For more information about LLVM CFI and cross-language LLVM CFI support for the Rust compiler, see design document in the tracking issue #89653.
Cross-language LLVM CFI can be enabled with -Zsanitizer=cfi and -Zsanitizer-cfi-normalize-integers, and requires proper (i.e., non-rustc) LTO (i.e., -Clinker-plugin-lto).
Thank you again, ``@bjorn3,`` ``@nikic,`` ``@samitolvanen,`` and the Rust community for all the help!
When we're adding a method to a type DIE, we only want a DW_AT_declaration
there, because LLVM LTO can't unify type definitions when a child DIE is a
full subprogram definition. Now the subprogram definition gets added at the
CU level with a specification link back to the abstract declaration.
This commit adds cross-language LLVM Control Flow Integrity (CFI)
support to the Rust compiler by adding the
`-Zsanitizer-cfi-normalize-integers` option to be used with Clang
`-fsanitize-cfi-icall-normalize-integers` for normalizing integer types
(see https://reviews.llvm.org/D139395).
It provides forward-edge control flow protection for C or C++ and Rust
-compiled code "mixed binaries" (i.e., for when C or C++ and Rust
-compiled code share the same virtual address space). For more
information about LLVM CFI and cross-language LLVM CFI support for the
Rust compiler, see design document in the tracking issue #89653.
Cross-language LLVM CFI can be enabled with -Zsanitizer=cfi and
-Zsanitizer-cfi-normalize-integers, and requires proper (i.e.,
non-rustc) LTO (i.e., -Clinker-plugin-lto).
Avoid ICEing miri on layout query cycles
Miri has special logic for catching panics during interpretation. Raising a fatal error in rustc uses unwinding to abort compilation. Thus miri ends up catching that fatal error and thinks it saw an ICE. While we should probably change that to ignore `Fatal` payloads, I think it's also neat to continue compilation after a layout query cycle 😆
Query cycles now (in addition to reporting an error just like before), return `Err(Cycle)` instead of raising a fatal error. This allows the interpreter to wind down via the regular error paths.
r? `@RalfJung` for a first round, feel free to reroll for the compiler team once the miri side looks good
Don't bail out early when checking invalid `repr` attr
Fixes#111051
An invalid repr delays a bug. If there are other invalid attributes on the item, we emit a warning and exit without re-checking the repr here, so no error is emitted and the delayed bug ICEs
Implement negative bounds for internal testing purposes
Implements partial support the `!` negative polarity on trait bounds. This is incomplete, but should allow us to at least be able to play with the feature.
Not even gonna consider them as a public-facing feature, but I'm implementing them because would've been nice to have in UI tests, for example in #110671.
Currently a `{D,Subd}iagnosticMessage` can be created from any type that
impls `Into<String>`. That includes `&str`, `String`, and `Cow<'static,
str>`, which are reasonable. It also includes `&String`, which is pretty
weird, and results in many places making unnecessary allocations for
patterns like this:
```
self.fatal(&format!(...))
```
This creates a string with `format!`, takes a reference, passes the
reference to `fatal`, which does an `into()`, which clones the
reference, doing a second allocation. Two allocations for a single
string, bleh.
This commit changes the `From` impls so that you can only create a
`{D,Subd}iagnosticMessage` from `&str`, `String`, or `Cow<'static,
str>`. This requires changing all the places that currently create one
from a `&String`. Most of these are of the `&format!(...)` form
described above; each one removes an unnecessary static `&`, plus an
allocation when executed. There are also a few places where the existing
use of `&String` was more reasonable; these now just use `clone()` at
the call site.
As well as making the code nicer and more efficient, this is a step
towards possibly using `Cow<'static, str>` in
`{D,Subd}iagnosticMessage::{Str,Eager}`. That would require changing
the `From<&'a str>` impls to `From<&'static str>`, which is doable, but
I'm not yet sure if it's worthwhile.
Make some simple queries no longer cache on disk
I don't think we need to cache queries with really simple local providers, like loading hir and accessing an attr
r? `@ghost`
Box AssertKind
r? `@nnethercote` this feels like your kind of thing
I want to add a new variant to `AssertKind` that needs 3 operands, and that ends up breaking a bunch of size assertions. So... what if we go the opposite direction first; shrinking `AssertKind` by boxing it?
Mark`feature(return_position_impl_trait_in_trait)` and`feature(async_fn_in_trait)` as not incomplete
I think they've graduated, since as far as I'm aware, they don't cause compiler crashes or unsoundness anymore.
Fix elaboration with associated type bounds
When computing a trait's supertrait predicates, do not add any associated type *trait* bounds to that list of supertrait predicates. This is because supertrait predicates are expected to have the same `Self` type as the trait.
For example, given:
```rust
trait Foo: Bar<Assoc: Send>
```
Before, we would compute that the supertrait predicates of `T: Foo` are `T: Bar` and `<T as Bar>::Assoc: Send`. However, the last bound is a trait predicate for a totally different type than `T`, and existing code that uses supertrait bounds such as vtable construction, closure fn signature deduction, etc. all rely on the invariant that we have a list of predicates for self type `T`.
Fixes#76593
The reason for all the extra diagnostic noise is that we're recomputing predicates with a different filter now. These diagnostics should be deduplicated for any end-user though.
---
This does bring up an interesting question -- is the predicate `<T as Bar>::Assoc: Send` an implied bound of `T: Foo`? Because currently the only bounds implied by a (non-alias) trait are its supertraits. I guess I could fix this too, but it would require even more changes, and I'm inclined to punt this question along.
Stabilize debugger_visualizer
This stabilizes the `debugger_visualizer` attribute (#95939).
* Marks the `debugger_visualizer` feature as `accepted`.
* Marks the `debugger_visualizer` attribute as `ungated`.
* Deletes feature gate test, removes feature gate from other tests.
Closes#95939
Add `ConstParamTy` trait
This is a bit sketch, but idk.
r? `@BoxyUwU`
Yet to be done:
- [x] ~~Figure out if it's okay to implement `StructuralEq` for primitives / possibly remove their special casing~~ (it should be okay, but maybe not in this PR...)
- [ ] Maybe refactor the code a little bit
- [x] Use a macro to make impls a bit nicer
Future work:
- [ ] Actually™ use the trait when checking if a `const` generic type is allowed
- [ ] _Really_ refactor the surrounding code
- [ ] Refactor `marker.rs` into multiple modules for each "theme" of markers
Don't validate constants in const propagation
Validation is neither necessary nor desirable.
The constant validation is already omitted at mir-opt-level >= 3, so there there are not changes in MIR test output (the propagation of invalid constants is covered by an existing test in tests/mir-opt/const_prop/invalid_constant.rs).
This greatly simplifies how hard it is to set a custom bug report url; previously tools had to copy
the entire hook implementation.
- Switch clippy to the new hook
This also adds a `extra_info` callback so clippy can include its own version number, which differs
from rustc's.
- Call `install_ice_hook` in rustfmt
It's only used in tests. Which is bad, because it means that
`FileEncoder` is used in the compiler but isn't used in tests!
`tests/opaque.rs` now tests encoding/decoding round-trips via file.
Because this is slower than memory, this commit also adjusts the
`u16`/`i16` tests so they are more like the `u32`/`i32` tests, i.e. they
don't test every possible value.
Round-trip encoding/decoding of many types is tested in
`compiler/rustc_serialize/tests/opaque.rs`. There is also a small amount
of encoding/decoding testing in three files in `tests/ui-fulldeps`.
There is no obvious reason why these three files are necessary. They
were originally added in 2014. Maybe it wasn't possible for a proc
macro to run in a unit test back then?
This commit just moves the testing from those three files into the unit
test.
Add `#[no_coverage]` to the test harness's `fn main`
There are two main motivations for adding `#[no_coverage]` to the test harness's entry point:
- The entry point is trivial compiler-generated code that doesn't correspond to user source, and it always runs, so there's no value in instrumenting it for coverage.
- Because it has dummy spans, it causes the instrumentor implementation to emit invalid coverage mappings that confuse `llvm-cov` and result in strange coverage reports.
Fixes#110749.
Leave promoteds untainted by errors when borrowck fails
Previously, when borrowck failed it would taint all promoteds within the MIR body. An attempt to evaluated the promoteds would subsequently fail with spurious "note: erroneous constant used". For example:
```console
...
note: erroneous constant used
--> tests/ui/borrowck/tainted-promoteds.rs:7:9
|
7 | a = &0 * &1 * &2 * &3;
| ^^
note: erroneous constant used
--> tests/ui/borrowck/tainted-promoteds.rs:7:14
|
7 | a = &0 * &1 * &2 * &3;
| ^^
note: erroneous constant used
--> tests/ui/borrowck/tainted-promoteds.rs:7:19
|
7 | a = &0 * &1 * &2 * &3;
| ^^
note: erroneous constant used
--> tests/ui/borrowck/tainted-promoteds.rs:7:24
|
7 | a = &0 * &1 * &2 * &3;
| ^^
```
Borrowck failure doesn't indicate that there is anything wrong with promoteds. Leave them untainted.
Fixes#110856.
Make `mem::replace` simpler in codegen
Since they'd mentioned more intrinsics for simplifying stuff recently,
r? `@WaffleLapkin`
This is a continuation of me looking at foundational stuff that ends up with more instructions than it really needs. Specifically I noticed this one because `Range::next` isn't MIR-inlining, and one of the largest parts of it is a `replace::<usize>` that's a good dozen instructions instead of the two it could be.
So this means that `ptr::write` with a `Copy` type no longer generates worse IR than manually dereferencing (well, at least in LLVM -- MIR still has bonus pointer casts), and in doing so means that we're finally down to just the two essential `memcpy`s when emitting `mem::replace` for a large type, rather than the bonus-`alloca` and three `memcpy`s we emitted before this ([or the 6 we currently emit in 1.69 stable](https://rust.godbolt.org/z/67W8on6nP)). That said, LLVM does _usually_ manage to optimize the extra code away. But it's still nice for it not to have to do as much, thanks to (for example) not going through an `alloca` when `replace`ing a primitive like a `usize`.
(This is a new intrinsic, but one that's immediately lowered to existing MIR constructs, so not anything that MIRI or the codegen backends or MIR semantics needs to do work to handle.)
My type ascription
Oh rip it out
Ah
If you think we live too much then
You can sacrifice diagnostics
Don't mix your garbage
Into my syntax
So many weird hacks keep diagnostics alive
Yet I don't even step outside
So many bad diagnostics keep tyasc alive
Yet tyasc doesn't even bother to survive!
Close parentheses for `offset_of` in AST pretty printing
HIR pretty printing already handles it correctly.
This will conflict with #110694 but it seems like that PR is gonna take bit more time.
Remove wrong assertion in match checking.
This assertions is completely misguided, introduced by https://github.com/rust-lang/rust/pull/108504. The responsible PR is on beta, nominating for backport.
Instead of checking that this is not a `&&`, it would make sense to check that neither arms of that `&&` is a `let`. This seems like a lot of code for unclear benefit.
r? `@saethlin`
Tweak await span to not contain dot
Fixes a discrepancy between method calls and await expressions where the latter are desugared to have a span that *contains* the dot (i.e. `.await`) but method call identifiers don't contain the dot. This leads to weird suggestions suggestions in borrowck -- see linked issue.
Fixes#110761
This mostly touches a bunch of tests to tighten their `await` span.
Previously, when borrowck failed it would taint all promoteds within the MIR
body. An attempt to evaluated the promoteds would subsequently fail with
spurious "note: erroneous constant used". For example:
```console
...
note: erroneous constant used
--> tests/ui/borrowck/tainted-promoteds.rs:7:9
|
7 | a = &0 * &1 * &2 * &3;
| ^^
note: erroneous constant used
--> tests/ui/borrowck/tainted-promoteds.rs:7:14
|
7 | a = &0 * &1 * &2 * &3;
| ^^
note: erroneous constant used
--> tests/ui/borrowck/tainted-promoteds.rs:7:19
|
7 | a = &0 * &1 * &2 * &3;
| ^^
note: erroneous constant used
--> tests/ui/borrowck/tainted-promoteds.rs:7:24
|
7 | a = &0 * &1 * &2 * &3;
| ^^
```
Borrowck failure doesn't indicate that there is anything wrong with
promoteds. Leave them untainted.
Rollup of 7 pull requests
Successful merges:
- #110586 (Fix Unreadable non-UTF-8 output on localized MSVC)
- #110652 (Add test for warning-free builds of `core` under `no_global_oom_handling`)
- #110973 (improve error notes for packed struct reference diagnostic)
- #110981 (Move most rustdoc-ui tests into subdirectories)
- #110983 (rustdoc: Get `repr` information through `AdtDef` for foreign items)
- #110984 (Do not resolve anonymous lifetimes in consts to be static.)
- #110997 (Improve internal field comments on `slice::Iter(Mut)`)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
rustdoc: Get `repr` information through `AdtDef` for foreign items
As suggested by `@notriddle,` this approach works too. The only downside is that the display of the original attribute isn't kept, but I think it's an acceptable downside.
r? `@notriddle`
Fix Unreadable non-UTF-8 output on localized MSVC
Fixes#35785 by converting non UTF-8 linker output to Unicode using the OEM code page.
Before:
```text
= note: Non-UTF-8 output: LINK : fatal error LNK1181: cannot open input file \'m\x84rchenhaft.obj\'\r\n
```
After:
```text
= note: LINK : fatal error LNK1181: cannot open input file 'märchenhaft.obj'
```
The difference is more dramatic if using a non-ascii language pack for Windows.
Remove `QueryEngine` trait
This removes the `QueryEngine` trait and `Queries` from `rustc_query_impl` and replaced them with function pointers and fields in `QuerySystem`. As a side effect `OnDiskCache` is moved back into `rustc_middle` and the `OnDiskCache` trait is also removed.
This has a couple of benefits.
- `TyCtxt` is used in the query system instead of the removed `QueryCtxt` which is larger.
- Function pointers are more flexible to work with. A variant of https://github.com/rust-lang/rust/pull/107802 is included which avoids the double indirection. For https://github.com/rust-lang/rust/pull/108938 we can name entry point `__rust_end_short_backtrace` to avoid some overhead. For https://github.com/rust-lang/rust/pull/108062 it avoids the duplicate `QueryEngine` structs.
- `QueryContext` now implements `DepContext` which avoids many `dep_context()` calls in `rustc_query_system`.
- The `rustc_driver` size is reduced by 0.33%, hopefully that means some bootstrap improvements.
- This avoids the unsafe code around the `QueryEngine` trait.
r? `@cjgillot`
Improve niche placement by trying two strategies and picking the better result
Fixes#104807Fixes#105371
Determining which sort order is better requires calculating the struct size (so we can calculate the niche offset). But that in turn depends on the field order, so happens after sorting. So the simple way to solve that is to run the whole thing twice and pick the better result.
1st commit is just code motion, the meat is in the later ones.
Don't duplicate anonymous lifetimes for async fn in traits
`record_lifetime_params_for_async` needs to be called outside of the scope of the function, or else it'll end up collecting anonymous lifetimes twice (those on the function and those within the `AnonymousCreateParameter` rib). This matches how `record_lifetime_params_for_async` is being used for functions with bodies below.
This fixes (partially) #110963 when the lifetimes are late-bound, but does not do so when the lifetimes are early-bound (as seen from the known-bug that I added).
include source error for LoadLibraryExW
In #107595, we added retry behavior for LoadLibraryExW on Windows. If it fails we do not print the underlying error that Windows returned. This made #110889 a little harder to debug.
In this PR I am adding the source error in the message if it is available.
Clear response values for overflow in new solver
When we have an overflow, return a trivial query response. This fixes an ICE with the code described in #110544:
```rust
trait Trait {}
struct W<T>(T);
impl<T, U> Trait for W<(W<T>, W<U>)>
where
W<T>: Trait,
W<U>: Trait,
{}
fn impls<T: Trait>() {}
fn main() {
impls::<W<_>>()
}
```
Where, while proving `W<?0>: Trait`, we overflow but still apply the query response of `?0 = (W<?1>, W<?2>)`. Then while re-processing the query to validate that our evaluation result was stable, we get a different query response that looks like `?1 = (W<?3>, W<?4>), ?2 = (W<?5>, W<?6>)`, and so we trigger the ICE.
Also, by returning a trivial query response we also avoid the infinite-loop/OOM behavior of the old solver.
r? ``@lcnr``
Rollup of 8 pull requests
Successful merges:
- #110877 (Provide better type hints when a type doesn't support a binary operator)
- #110917 (only error combining +whole-archive and +bundle for rlibs)
- #110921 (Use `NonNull::new_unchecked` and `NonNull::len` in `rustc_arena`.)
- #110927 (Encoder/decoder cleanups)
- #110944 (share BinOp::Offset between CTFE and Miri)
- #110948 (run-make test: using single quotes to not trigger the shell)
- #110957 (Fix an ICE in conflict error diagnostics)
- #110960 (fix false negative for `unused_mut`)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
For start-biased layout we want to avoid overpromoting so that
the niche doesn't get pushed back.
For end-biased layout we want to avoid promoting fields that
may contain one of the niches of interest.
fix false negative for `unused_mut`
fixes https://github.com/rust-lang/rust/issues/110849
We want to avoid double diagnostics for code like this, but only if an error actually occurs:
```rust
fn main() {
let mut x: (i32, i32);
x.0 = 1;
}
```
The first commit fixes the lint and the second one removes all the unused `mut`s it found.
Use `NonNull::new_unchecked` and `NonNull::len` in `rustc_arena`.
This avoids a few extra dereferences as well as an `unwrap`.
According to the docs for [`NonNull::len`](https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.len) this also ensures that:
> This function is safe, even when the non-null raw slice cannot be dereferenced to a slice because the pointer does not have a valid address.
I am also fairly sure that the `unwrap` is unneeded in this case, as the docs for [`Box::into_raw`](https://doc.rust-lang.org/std/boxed/struct.Box.html#method.into_raw) also state:
> Consumes the Box, returning a wrapped raw pointer.
**The pointer will be properly aligned and non-null.**
only error combining +whole-archive and +bundle for rlibs
Fixes https://github.com/rust-lang/rust/issues/110912
Checking `flavor == RlibFlavor::Normal` was accidentally lost in 601fc8b36bhttps://github.com/rust-lang/rust/pull/105601
That caused combining +whole-archive and +bundle link modifiers on non-rlib crates to fail with a confusing error message saying that combination is unstable for rlibs. In particular, this caused the build to fail when +whole-archive was used on staticlib crates, even though +whole-archive effectively does nothing on non-bin crates because the final linker invocation is left to an external build system.
cc ``@petrochenkov``
Provide better type hints when a type doesn't support a binary operator
For example, when checking whether `vec![A] == vec![A]` holds, we first evaluate the LHS's ty, then probe for any `PartialEq` implementations for that. If none is found, we report an error by evaluating `Vec<A>: PartialEq<?0>` for fulfillment errors, but the RHS is not yet evaluated and remains an inference variable `?0`!
To fix this, we evaluate the RHS and equate it to that RHS infer var `?0`, so that we are able to provide more detailed fulfillment errors for why `Vec<A>: PartialEq<Vec<A>>` doesn't hold (namely, the nested obligation `A: PartialEq<A>` doesn't hold).
Fixes#95285Fixes#110867
Use MIR's `Offset` for pointer `add` too
~~Status: draft while waiting for #110822 to land, since this is built atop that.~~
~~r? `@ghost~~`
Canonical Rust code has mostly moved to `add`/`sub` on pointers, which take `usize`, instead of `offset` which takes `isize`. (And, relatedly, when `sub_ptr` was added it turned out it replaced every single in-tree use of `offset_from`, because `usize` is just so much more useful than `isize` in Rust.)
Unfortunately, `intrinsics::offset` could only accept `*const` and `isize`, so there's a *huge* amount of type conversions back and forth being done. They're identity conversions in the backend, but still end up producing quite a lot of unhelpful MIR.
This PR changes `intrinsics::offset` to accept `*const` *and* `*mut` along with `isize` *and* `usize`. Conveniently, the backends and CTFE already handle this, since MIR's `BinOp::Offset` [already supports all four combinations](adaac6b166/compiler/rustc_const_eval/src/transform/validate.rs (L523-L528)).
To demonstrate the difference, I added some `mir-opt/pre-codegen/` tests around slice indexing. Here's the difference to `[T]::get_mut`, since it uses `<*mut _>::add` internally:
```diff
`@@` -79,30 +70,21 `@@` fn slice_get_mut_usize(_1: &mut [u32], _2: usize) -> Option<&mut u32> {
StorageLive(_12); // scope 3 at $SRC_DIR/core/src/slice/index.rs:LL:COL
StorageLive(_9); // scope 6 at $SRC_DIR/core/src/slice/index.rs:LL:COL
_9 = _8 as *mut u32 (PtrToPtr); // scope 11 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageLive(_13); // scope 13 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- _13 = _2 as isize (IntToInt); // scope 13 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageLive(_14); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageLive(_15); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- _15 = _9 as *const u32 (Pointer(MutToConstPointer)); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- _14 = Offset(move _15, _13); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageDead(_15); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- _7 = move _14 as *mut u32 (PtrToPtr); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageDead(_14); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageDead(_13); // scope 13 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
+ _7 = Offset(_9, _2); // scope 13 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
StorageDead(_9); // scope 6 at $SRC_DIR/core/src/slice/index.rs:LL:COL
StorageDead(_12); // scope 3 at $SRC_DIR/core/src/slice/index.rs:LL:COL
StorageDead(_11); // scope 3 at $SRC_DIR/core/src/slice/index.rs:LL:COL
```
1c1c8e442a (diff-a841b6a4538657add3f39bc895744331453d0625e7aace128b1f604f0b63c8fdR80)
I was curious about how many `Encodable`/`Decodable` derives we have.
Some grepping revealed that it's over 500 of each, but the number of
`Encodable` ones was higher, which was weird. Most of the
`Encodable`-only ones were in `hir.rs`. This commit removes them all,
plus some other unnecessary derives in that file and others that I found
via trial and error.
Checking that `read_raw_bytes(len)` changes the position by `len` is a
reasonable thing for a test, but isn't much use in just one of the
zillion `Decodable` impls.
Add some missing built-in lints
(and also sort them, so this is best reviewed one commit at a time)
Fixes#110911
I wonder if there's a good way to detect when a lint is built-in (i.e. not associated to a lint pass). If so, it needs to be added to this list, or else we're unable to `allow` or `deny` it. Leaving that for future work, I guess...
Migrate trivially translatable `rustc_parse` diagnostics
cc #100717
Migrate diagnostics in `rustc_parse` which are emitted in a single statement. I worked on this by expanding the lint introduced in #108760, although that isn't included here as there is much more work to be done to satisfy it
More core::fmt::rt cleanup.
- Removes the `V1` suffix from the `Argument` and `Flag` types.
- Moves more of the format_args lang items into the `core::fmt::rt` module. (The only remaining lang item in `core::fmt` is `Arguments` itself, which is a public type.)
Part of https://github.com/rust-lang/rust/issues/99012
Follow-up to https://github.com/rust-lang/rust/pull/110616
Fixes https://github.com/rust-lang/rust/issues/110912
Checking `flavor == RlibFlavor::Normal` was accidentally lost in
601fc8b36bhttps://github.com/rust-lang/rust/pull/105601
That caused combining +whole-archive and +bundle link modifiers on
non-rlib crates to fail with a confusing error message saying that
combination is unstable for rlibs. In particular, this caused the
build to fail when +whole-archive was used on staticlib crates, even
though +whole-archive effectively does nothing on non-bin crates because
the final linker invocation is left to an external build system.
Move the WorkerLocal type from the rustc-rayon fork into rustc_data_structures
This PR moves the definition of the `WorkerLocal` type from `rustc-rayon` into `rustc_data_structures`. This is enabled by the introduction of the `Registry` type which allows you to group up threads to be used by `WorkerLocal` which is basically just an array with an per thread index. The `Registry` type mirrors the one in Rayon and each Rayon worker thread is also registered with the new `Registry`. Safety for `WorkerLocal` is ensured by having it keep a reference to the registry and checking on each access that we're still on the group of threads associated with the registry used to construct it.
Accessing a `WorkerLocal` is micro-optimized due to it being hot since it's used for most arena allocations.
Performance is slightly improved for the parallel compiler:
<table><tr><td rowspan="2">Benchmark</td><td colspan="1"><b>Before</b></th><td colspan="2"><b>After</b></th></tr><tr><td align="right">Time</td><td align="right">Time</td><td align="right">%</th></tr><tr><td>🟣 <b>clap</b>:check</td><td align="right">1.9992s</td><td align="right">1.9949s</td><td align="right"> -0.21%</td></tr><tr><td>🟣 <b>hyper</b>:check</td><td align="right">0.2977s</td><td align="right">0.2970s</td><td align="right"> -0.22%</td></tr><tr><td>🟣 <b>regex</b>:check</td><td align="right">1.1335s</td><td align="right">1.1315s</td><td align="right"> -0.18%</td></tr><tr><td>🟣 <b>syn</b>:check</td><td align="right">1.8235s</td><td align="right">1.8171s</td><td align="right"> -0.35%</td></tr><tr><td>🟣 <b>syntex_syntax</b>:check</td><td align="right">6.9047s</td><td align="right">6.8930s</td><td align="right"> -0.17%</td></tr><tr><td>Total</td><td align="right">12.1586s</td><td align="right">12.1336s</td><td align="right"> -0.21%</td></tr><tr><td>Summary</td><td align="right">1.0000s</td><td align="right">0.9977s</td><td align="right"> -0.23%</td></tr></table>
cc `@SparrowLii`
Nicer ICE for #67981
Provides a slightly nicer ICE for #67981, documenting the problem. A proper fix will be necessary before `#![feature(unsized_fn_params)]` can be stabilized.
The problem is that the design of the `"rust-call"` ABI is fundamentally not compatible with `unsized_fn_params`. `"rust-call"` functions need to collect their arguments into a tuple, but if the arguments are not `Sized`, said tuple is potentially not even a valid type—and if it is, it requires `alloca` to create.
``@rustbot`` label +A-abi +A-codegen +F-unboxed_closures +F-unsized_fn_params
`IntoFuture::into_future` is no longer unstable
We don't need to gate the `IntoFuture::into_future` call in `.await` lowering anymore.
``@bors`` rollup
Sprinkle some `#[inline]` in `rustc_data_structures::tagged_ptr`
This is based on `nm --demangle (rustc +a --print sysroot)/lib/librustc_driver-*.so | rg CopyTaggedPtr` which shows many methods that should probably be inlined. May fix the regression in https://github.com/rust-lang/rust/pull/110795.
r? ```@Nilstrieb```
Fixes#35785 by converting non UTF-8 linker output to Unicode using the OEM code page.
Before:
```text
= note: Non-UTF-8 output: LINK : fatal error LNK1181: cannot open input file \'m\x84rchenhaft.obj\'\r\n
```
After:
```text
= note: LINK : fatal error LNK1181: cannot open input file 'märchenhaft.obj'
```
The difference is more dramatic if using a non-ascii language pack for Visual Studio.
Currently it creates an `Option` and then does `map`/`unwrap_or` and
`map_or_else` on it, which is hard to read.
This commit simplifies things by moving more code into the two arms of
the if/else.
Validation is neither necessary nor desirable.
The validation is already omitted at mir-opt-level >= 3, so there there
are not changes in MIR test output (the propagation of invalid constants
is covered by an existing test in tests/mir-opt/const_prop/invalid_constant.rs).
Rollup of 10 pull requests
Successful merges:
- #108760 (Add lint to deny diagnostics composed of static strings)
- #109444 (Change tidy error message for TODOs)
- #110419 (Spelling library)
- #110550 (Suggest deref on comparison binop RHS even if type is not Copy)
- #110641 (Add new rustdoc book chapter to describe in-doc settings)
- #110798 (pass `unused_extern_crates` in `librustdoc::doctest::make_test`)
- #110819 (simplify TrustedLen impls)
- #110825 (diagnostics: add test case for already-solved issue)
- #110835 (Make some region folders a little stricter.)
- #110847 (rustdoc-json: Time serialization.)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Add lint to deny diagnostics composed of static strings
r? ghost
I'm hoping to have a lint that semi-automatically converts simple diagnostics such as `struct_span_err(span, "msg").help("msg").span_note(span2, "msg").emit()` to typed session diagnostics. It's quite hacky and not entirely working because of problems with `x fix` but should hopefully help reduce some of the work.
I'm going to start trying to apply what I can from this, but opening this as a draft in case anyone wants to develop on it.
cc #100717
coverage: Don't underflow column number
I noticed this when running coverage on a debug build of rustc. There
may be other places that do this but I'm just fixing the one I hit.
r? `@wesleywiser` `@richkadel`
Rewrite MemDecoder around pointers not a slice
This is basically https://github.com/rust-lang/rust/pull/109910 but I'm being a lot more aggressive. The pointer-based structure means that it makes a lot more sense to absorb more complexity into `MemDecoder`, most of the diff is just complexity moving from one place to another.
The primary argument for this structure is that we only incur a single bounds check when doing multi-byte reads from a `MemDecoder`. With the slice-based implementation we need to do those with `data[position..position + len]` , which needs to account for `position + len` wrapping. It would be possible to dodge the first bounds check if we stored a slice that starts at `position`, but that would require updating the pointer and length on every read.
This PR also embeds the failure path in a separate function, which means that this PR should subsume all the perf wins observed in https://github.com/rust-lang/rust/pull/109867.