Disable the tests and generate an error if MC/DC is used on LLVM 19.
The support will be ported separately, as it is substantially
different on LLVM 19, and there are no plans to support both
versions.
Sync ar_archive_writer to LLVM 18.1.3
From LLVM 15.0.0-rc3. This adds support for COFF archives containing Arm64EC object files and has various fixes for AIX big archive files.
The return value changed from an Instruction to a DbgRecord in
LLVM 19. As we don't actually use the result, drop the return
value entirely to support both.
Since this codegen flag now only controls LLVM-generated comments rather than
all assembly comments, make the name more accurate (and also match Clang).
If we don't do this, some versions of LLVM (at least 17, experimentally)
will double-emit some error messages, which is how I noticed this. Given
that it seems to be costing some extra work, let's only request the
summary bitcode production if we'll actually bother writing it down,
otherwise skip it.
Typical uses of ThinLTO don't have any use for this as a standalone
file, but distributed ThinLTO uses this to make the linker phase more
efficient. With clang you'd do something like `clang -flto=thin
-fthin-link-bitcode=foo.indexing.o -c foo.c` and then get both foo.o
(full of bitcode) and foo.indexing.o (just the summary or index part of
the bitcode). That's then usable by a two-stage linking process that's
more friendly to distributed build systems like bazel, which is why I'm
working on this area.
I talked some to @teresajohnson about naming in this area, as things
seem to be a little confused between various blog posts and build
systems. "bitcode index" and "bitcode summary" tend to be a little too
ambiguous, and she tends to use "thin link bitcode" and "minimized
bitcode" (which matches the descriptions in LLVM). Since the clang
option is thin-link-bitcode, I went with that to try and not add a new
spelling in the world.
Per @dtolnay, you can work around the lack of this by using `lld
--thinlto-index-only` to do the indexing on regular .o files of
bitcode, but that is a bit wasteful on actions when we already have all
the information in rustc and could just write out the matching minimized
bitcode. I didn't test that at all in our infrastructure, because by the
time I learned that I already had this patch largely written.
Set writable and dead_on_unwind attributes for sret arguments
Set the `writable` and `dead_on_unwind` attributes for `sret` arguments. This allows call slot optimization to remove more memcpy's.
See https://llvm.org/docs/LangRef.html#parameter-attributes for the specification of these attributes. In short, the statement we're making here is that:
* The return slot is writable.
* The return slot will not be read if the function unwinds.
Fixes https://github.com/rust-lang/rust/issues/90595.
Rust passes a *const &OperandBundleDef to these APIs, usually from a
Vec<&OperandBundleDef> or so. Previously we were dereferencing that
pointer and passing it to the ArrayRef constructor with some length (N).
This meant that if the length was 0, we were dereferencing a pointer to
nowhere, and if the length was >1 then loading the *second* element
somewhere in LLVM would've been reading past the end.
Since Rust can't hold OperandBundleDef by-value we're forced to indirect
through a vector that copies out the OperandBundleDefs from the
by-reference list on the Rust side in order to match the LLVM expected
API.
Remove unnecessary cast from `LLVMRustGetInstrProfIncrementIntrinsic`
(Noticed while reviewing #123409.)
This particular cast appears to have been copied over from clang, but there are plenty of other call sites in clang that don't bother with a cast here, and it works fine without one.
For context, `llvm::Intrinsic::ID` is a typedef for `unsigned`, and `llvm::Intrinsic::instrprof_increment` is a member of `enum IndependentIntrinsics : unsigned`.
---
The formatting change in `unwrap(M)` is the result of manually running `clang-format` on this file, and then reverting all changes other than the ones affecting these lines.
Add consistency with phrases "meantime" and "mean time"
"mean time" is used in a few places while "meantime" is used everywhere else; this would make usage consistent throughout the codebase.
This particular cast appears to have been copied over from clang, but there are
plenty of other call sites in clang that don't bother with a cast here, and it
works fine without one.
For context, `llvm::Intrinsic::ID` is a typedef for `unsigned`, and
`llvm::Intrinsic::instrprof_increment` is a member of
`enum IndependentIntrinsics : unsigned`.
Manually run `clang-format` on `CoverageMappingWrapper.cpp`
In the current version of #123409, there are several unrelated changes to `CoverageMappingWrapper.cpp` that seem to be the result of running `clang-format` on that file.
Instead of asking for those changes to be undone, I figure it's easier to just make them myself as a separate PR, since I was vaguely intending to do that at some point anyway.
In a few cases I've strategically added comments to make the grouping of parameters a little nicer, but mostly it doesn't matter much.
The bad-alloc installer was incorrectly asserting that the other handler
isn't set yet, instead of checking its own, but we can avoid that by
changing the order we install them.
Ref: https://github.com/llvm/llvm-project/issues/83040
LLVM's default bad-alloc handler may throw if exceptions are enabled,
and `operator new` isn't hooked at all by default. Now we register our
own handler that prints a message similar to fatal errors, then aborts.
We also call the function that registers the C++ `std::new_handler`.
Add asm goto support to `asm!`
Tracking issue: #119364
This PR implements asm-goto support, using the syntax described in "future possibilities" section of [RFC2873](https://rust-lang.github.io/rfcs/2873-inline-asm.html#asm-goto).
Currently I have only implemented the `label` part, not the `fallthrough` part (i.e. fallthrough is implicit). This doesn't reduce the expressive though, since you can use label-break to get arbitrary control flow or simply set a value and rely on jump threading optimisation to get the desired control flow. I can add that later if deemed necessary.
r? ``@Amanieu``
cc ``@ojeda``
Explicitly assign constructed C++ classes
C++ style guides I am aware of recommend specifically preferring = syntax for any classes with fairly obvious constructors[^0] that do not perform any complicated logic in their constructor. I contend that all constructors that the `rustc_llvm` code uses qualify. This has only become more common since C++ 17 guaranteed many cases of copy initialization elision.
The other detail is that I tried to ask another contributor with infinitely more C++ experience than me (i.e. any) what this constructor syntax was, and they thought it was a macro. I know of no other language that has adopted this same syntax. As the rustc codebase features many contributors experienced in many other languages, using a less... unique... style has many other benefits in making this code more lucid and maintainable, which is something it direly needs.
[^0]: e.g. https://abseil.io/tips/88
C++ style guides I am aware of recommend specifically preferring = syntax
for any classes with fairly obvious constructors[^0] that do not perform
any complicated logic in their constructor. I contend that all constructors
that the `rustc_llvm` code uses qualify. This has only become more common
since C++ 17 guaranteed many cases of copy initialization elision.
The other detail is that I tried to ask another contributor with
infinitely more C++ experience than me (i.e. any) what this constructor
syntax was, and they thought it was a macro. I know of no other language
that has adopted this same syntax. As the rustc codebase features many
contributors experienced in many other languages, using a less...
unique... style has many other benefits in making this code more
lucid and maintainable, which is something it direly needs.
[^0]: e.g. https://abseil.io/tips/88
Adds initial support for DataFlowSanitizer to the Rust compiler. It
currently supports `-Zsanitizer-dataflow-abilist`. Additional options
for it can be passed to LLVM command line argument processor via LLVM
arguments using `llvm-args` codegen option (e.g.,
`-Cllvm-args=-dfsan-combine-pointer-labels-on-load=false`).
llvm-wrapper/ArchiveWrapper.cpp(70): warning C4305: 'argument': truncation from 'int' to 'bool'
while in llvm 12 signature was
static ErrorOr<std::unique_ptr<MemoryBuffer>> getFile(const Twine &Filename, int64_t FileSize = -1, bool RequiresNullTerminator = true, bool IsVolatile = false);
fed41342a8/llvm/include/llvm/Support/MemoryBuffer.h (L85-L87)
in llvm 13 and later it was changed to
static ErrorOr<std::unique_ptr<MemoryBuffer>> getFile(const Twine &Filename, bool IsText = false, bool RequiresNullTerminator = true, bool IsVolatile = false);
75e33f71c2/llvm/include/llvm/Support/MemoryBuffer.h (L86-L88)
so code was interpreted as MemoryBuffer::getFile(Path, /*IsText*/true, /*RequiresNullTerminator=*/false), but now will be MemoryBuffer::getFile(Path, /*IsText*/false, /*RequiresNullTerminator=*/false). How that worked before?
Update to LLVM 18
LLVM 18 final is planned to be released on Mar 5th. Rust 1.78 is planned to be released on May 2nd.
Tested images: dist-x86_64-linux, dist-s390x-linux, dist-aarch64-linux, dist-riscv64-linux, dist-loongarch64-linux, dist-x86_64-freebsd, dist-x86_64-illumos, dist-x86_64-musl, x86_64-linux-integration, test-various, armhf-gnu, i686-msvc, x86_64-msvc, i686-mingw, x86_64-mingw, x86_64-apple-1, x86_64-apple-2, dist-aarch64-apple
r? `@ghost`
`.debug_pubnames` and `.debug_pubtypes` are poorly designed and people
seldom use them. However, they take a considerable portion of size in
the final binary. This tells LLVM stop emitting those sections on
DWARFv4 or lower. DWARFv5 use `.debug_names` which is more concise
in size and performant for name lookup.
Add emulated TLS support
This is a reopen of https://github.com/rust-lang/rust/pull/96317 . many android devices still only use 128 pthread keys, so using emutls can be helpful.
Currently LLVM uses emutls by default for some targets (such as android, openbsd), but rust does not use it, because `has_thread_local` is false.
This commit has some changes to allow users to enable emutls:
1. add `-Zhas-thread-local` flag to specify that std uses `#[thread_local]` instead of pthread key.
2. when using emutls, decorate symbol names to find thread local symbol correctly.
3. change `-Zforce-emulated-tls` to `-Ztls-model=emulated` to explicitly specify whether to generate emutls.
r? `@Amanieu`
Suppress warnings in LLVM wrapper when targeting MSVC
The LLVM header files generate many warnings when compiled using MSVC. This makes it difficult to work on the LLVM wrapper code, because the warnings and errors that are relevant to local edits are obscured by the hundreds of lines of warnings from the LLVM Headers.
Currently LLVM uses emutls by default
for some targets (such as android, openbsd),
but rust does not use it, because `has_thread_local` is false.
This commit has some changes to allow users to enable emutls:
1. add `-Zhas-thread-local` flag to specify
that std uses `#[thread_local]` instead of pthread key.
2. when using emutls, decorate symbol names
to find thread local symbol correctly.
3. change `-Zforce-emulated-tls` to `-Ztls-model=emulated`
to explicitly specify whether to generate emutls.
Restore `#![no_builtins]` crates participation in LTO.
After #113716, we can make `#![no_builtins]` crates participate in LTO again.
`#![no_builtins]` with LTO does not result in undefined references to the error. I believe this type of issue won't happen again.
Fixes#72140. Fixes#112245. Fixes#110606. Fixes#105734. Fixes#96486. Fixes#108853. Fixes#108893. Fixes#78744. Fixes#91158. Fixes https://github.com/rust-lang/cargo/issues/10118. Fixes https://github.com/rust-lang/compiler-builtins/issues/347.
The `nightly-2023-07-20` version does not always reproduce problems due to changes in compiler-builtins, core, and user code. That's why this issue recurs and disappears.
Some issues were not tested due to the difficulty of reproducing them.
r? pnkfelix
cc `@bjorn3` `@japaric` `@alexcrichton` `@Amanieu`
This is intended to be used for Linux kernel RETHUNK builds.
With this commit (optionally backported to Rust 1.73.0), plus a
patched Linux kernel to pass the flag, I get a RETHUNK build with
Rust enabled that is `objtool`-warning-free and is able to boot in
QEMU and load a sample Rust kernel module.
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
llvm-wrapper: Pass newly added param to DIBuilder::createStaticMemberType()
This was added in https://github.com/llvm/llvm-project/pull/72234.
DW_TAG_member was the implicit default before.
The LLVM change is quite sinister since due to weakly typed ints and default params, this was still successfully compiling against LLVM but was passing the wrong parameters.
When building with LTO, builtin functions that are defined but whose calls have not been inserted yet, get internalized.
We need to prevent these symbols from being internalized at LTO time.
Refer to https://reviews.llvm.org/D49434.
debuginfo: add compiler option to allow compressed debuginfo sections
LLVM already supports emitting compressed debuginfo. In debuginfo=full builds, the debug section is often a large amount of data, and it typically compresses very well (3x is not unreasonable.) We add a new knob to allow debuginfo to be compressed when the matching LLVM functionality is present. Like clang, if a known-but-disabled compression mechanism is requested, we disable compression and emit uncompressed debuginfo sections.
The API is different enough on older LLVMs we just pretend the support
is missing on LLVM older than 16.
lto: load bitcode sections by name
Upstream change
llvm/llvm-project@6b539f5eb8 changed `isSectionBitcode` works and it now only respects `.llvm.lto` sections instead of also `.llvmbc`, which it says was never intended to be used for LTO. We instead load sections by name, and sniff for raw bitcode by hand.
This is an alternative approach to #115136, where we tried the same thing using the `object` crate, but it got too fraught to continue.
r? `@nikic`
`@rustbot` label: +llvm-main
LLVM already supports emitting compressed debuginfo. In debuginfo=full
builds, the debug section is often a large amount of data, and it
typically compresses very well (3x is not unreasonable.) We add a new
knob to allow debuginfo to be compressed when the matching LLVM
functionality is present. Like clang, if a known-but-disabled
compression mechanism is requested, we disable compression and emit
uncompressed debuginfo sections.
The API is different enough on older LLVMs we just pretend the support
is missing on LLVM older than 16.
Upstream change
llvm/llvm-project@6b539f5eb8 changed
`isSectionBitcode` works and it now only respects `.llvm.lto` sections
instead of also `.llvmbc`, which it says was never intended to be used
for LTO. We instead load sections by name, and sniff for raw bitcode by
hand.
r? @nikic
@rustbot label: +llvm-main
`-Cllvm-args` usability improvement
fixes: #26338fixes: #115564
Two problems were found during playing with `-Cllvm-args`
1. When `llvm.link-shared` is set to `false` in `config.toml`, output of `rustc -C llvm-args='--help-list-hidden'` doesn't contain `--emit-dwarf-unwind` and `--emulated-tls`. When it is set to `true`, `rustc -C llvm-args='--help-list-hidden'` emits `--emit-dwarf-unwind`, but `--emulated-tls` is still missing.
2. Setting `-Cllvm-args=--emit-dwarf-unwind=always` doesn't take any effect, but `-Cllvm-args=-machine-outliner-reruns=3` does work.
### 1
Adding `RegisterCodeGenFlags` to register codegen flags fixed the first problem. `rustc -C llvm-args='--help-list-hidden'` emits full codegen flags including `--emit-dwarf-unwind` and `--emulated-tls`.
### 2
Constructing `TargetOptions` from `InitTargetOptionsFromCodeGenFlags` in `LLVMRustCreateTargetMachine` fixed the second problem. The `LLVMRustSetLLVMOptions` calls `ParseCommandLineOptions` which parses given `llvm-args`. For options like `machine-outliner-reruns`, it just works, since the codegen logic directly consumes the parsing result:
[machine-outliner-reruns register](0537f6354c/llvm/lib/CodeGen/MachineOutliner.cpp (L114))
[machine-outliner-reruns consumption](0537f6354c/llvm/lib/CodeGen/MachineOutliner.cpp (L1138))
But for flags defined in `TargetOptions` and `MCTargetOptions` to take effect, constructing them with `InitTargetOptionsFromCodeGenFlags` is essential, or the parsing result is just not consumed. Similar patterns can be observed in [lli](0537f6354c/llvm/tools/llc/llc.cpp (L494)), [llc](0537f6354c/llvm/tools/lli/lli.cpp (L517)), etc.
Add CL and CMD into to pdb debug info
Partial fix for https://github.com/rust-lang/rust/issues/96475
The Arg0 and CommandLineArgs of the MCTargetOptions cpp class are not set within bb548f9645/compiler/rustc_llvm/llvm-wrapper/PassWrapper.cpp (L378)
This causes LLVM to not neither output any compiler path (cl) nor the arguments that were used when invoking it (cmd) in the PDB file.
This fix adds the missing information to the target machine so LLVM can use it.
Upstream change
llvm/llvm-project@6b539f5eb8 changed
`isSectionBitcode` works and it now only respects `.llvm.lto` sections
instead of also `.llvmbc`, which it says was never intended to be used
for LTO. We instead load sections by name, and sniff for raw bitcode by
hand.
r? @nikic
@rustbot label: +llvm-main
Move a local to the `#if` block where it is used
For other cases (LLVM < 17), this was complaining under `-Wall`:
```
warning: llvm-wrapper/PassWrapper.cpp: In function ‘void LLVMRustPrintTargetCPUs(LLVMTargetMachineRef, const char*)’:
warning: llvm-wrapper/PassWrapper.cpp:311:26: warning: unused variable ‘MCInfo’ [-Wunused-variable]
warning: 311 | const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo();
warning: | ^~~~~~
```
coverage: Don't convert filename/symbol strings to `CString` for FFI
LLVM APIs are usually perfectly happy to accept pointer/length strings, as long as we supply a suitable length value when creating a `StringRef` or `std::string`.
This lets us avoid quite a few intermediate `CString` copies during coverage codegen. It also lets us use an `IndexSet<Symbol>` (instead of an `IndexSet<CString>`) when building the deduplicated filename table.
update llvm-wrapper include to silence deprecation warning
Includes of `include/llvm/Support/Host.h` now emit a deprecated warning: `warning: This header is deprecated, please use llvm/TargetParser/Host.h`.
I don't believe we are using this include.
I don't believe we need to bump the `download-ci-llvm` stamp since these warnings are emitted while building the `llvm-wrapper`.
r? ```@nikic```
CFI: Fix error compiling core with LLVM CFI enabled
Fix#90546 by filtering out global value function pointer types from the type tests, and adding the LowerTypeTests pass to the rustc LTO optimization pipelines.
Add hotness data to LLVM remarks
Slight improvement of https://github.com/rust-lang/rust/pull/113040. This makes sure that if PGO is used, remarks generated using `-Zremark-dir` will include the `Hotness` attribute.
r? `@tmiasko`
Fix#90546 by filtering out global value function pointer types from the
type tests, and adding the LowerTypeTests pass to the rustc LTO
optimization pipelines.
Filter out short-lived LLVM diagnostics before they reach the rustc handler
During profiling I saw remark passes being unconditionally enabled: for example `Machine Optimization Remark Emitter`.
The diagnostic remarks enabled by default are [from missed optimizations and opt analyses](https://github.com/rust-lang/rust/pull/113339#discussion_r1259480303). They are created by LLVM, passed to the diagnostic handler on the C++ side, emitted to rust, where they are unpacked, C++ strings are converted to rust, etc.
Then they are discarded in the vast majority of the time (i.e. unless some kind of `-Cremark` has enabled some of these passes' output to be printed).
These unneeded allocations are very short-lived, basically only lasting between the LLVM pass emitting them and the rust handler where they are discarded. So it doesn't hugely impact max-rss, and is only a slight reduction in instruction count (cachegrind reports a reduction between 0.3% and 0.5%) _on linux_. It's possible that targets without `jemalloc` or with a worse allocator, may optimize these less.
It is however significant in the aggregate, looking at the total number of allocated bytes:
- it's the biggest source of allocations according to dhat, on the benchmarks I've tried e.g. `syn` or `cargo`
- allocations on `syn` are reduced by 440MB, 17% (from 2440722647 bytes total, to 2030461328 bytes)
- allocations on `cargo` are reduced by 6.6GB, 19% (from 35371886402 bytes total, to 28723987743 bytes)
Some of these diagnostics objects [are allocated in LLVM](https://github.com/rust-lang/rust/pull/113339#discussion_r1252387484) *before* they're emitted to our diagnostic handler, where they'll be filtered out. So we could remove those in the future, but that will require changing a few LLVM call-sites upstream, so I left a FIXME.
this will eliminate many short-lived allocations (e.g. 20% of the memory used
building cargo) when unpacking the diagnostic and converting its various
C++ strings into rust strings, just to be filtered out most of the time.
Both GCC and Clang write by default a `.comment` section with compiler
information:
```txt
$ gcc -c -xc /dev/null && readelf -p '.comment' null.o
String dump of section '.comment':
[ 1] GCC: (GNU) 11.2.0
$ clang -c -xc /dev/null && readelf -p '.comment' null.o
String dump of section '.comment':
[ 1] clang version 14.0.1 (https://github.com/llvm/llvm-project.git c62053979489ccb002efe411c3af059addcb5d7d)
```
They also implement the `-Qn` flag to avoid doing so:
```txt
$ gcc -Qn -c -xc /dev/null && readelf -p '.comment' null.o
readelf: Warning: Section '.comment' was not dumped because it does not exist!
$ clang -Qn -c -xc /dev/null && readelf -p '.comment' null.o
readelf: Warning: Section '.comment' was not dumped because it does not exist!
```
So far, `rustc` only does it for WebAssembly targets and only
when debug info is enabled:
```txt
$ echo 'fn main(){}' | rustc --target=wasm32-unknown-unknown --emit=llvm-ir -Cdebuginfo=2 - && grep llvm.ident rust_out.ll
!llvm.ident = !{!27}
```
In the RFC part of this PR it was decided to always add
the information, which gets us closer to other popular compilers.
An opt-out flag like GCC and Clang may be added later on if deemed
necessary.
Implementation-wise, this covers both `ModuleLlvm::new()` and
`ModuleLlvm::new_metadata()` cases by moving the addition to
`context::create_module` and adds a few test cases.
ThinLTO also sees the `llvm.ident` named metadata duplicated (in
temporary outputs), so this deduplicates it like it is done for
`wasm.custom_sections`. The tests also check this duplication does
not take place.
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Support `--print KIND=PATH` command line syntax
As is already done for `--emit KIND=PATH` and `-L KIND=PATH`.
In the discussion of #110785, it was pointed out that `--print KIND=PATH` is nicer than trying to apply the single global `-o` path to `--print`'s output, because in general there can be multiple print requests within a single rustc invocation, and anyway `-o` would already be used for a different meaning in the case of `link-args` and `native-static-libs`.
I am interested in using `--print cfg=PATH` in Buck2. Currently Buck2 works around the lack of support for `--print KIND=PATH` by [indirecting through a Python wrapper script](d43cf3a51a/prelude/rust/tools/get_rustc_cfg.py) to redirect rustc's stdout into the location dictated by the build system.
From skimming Cargo's usages of `--print`, it definitely seems like it would benefit from `--print KIND=PATH` too. Currently it is working around the lack of this by inserting `--crate-name=___ --print=crate-name` so that it can look for a line containing `___` as a delimiter between the 2 other `--print` informations it actually cares about. This is commented as a "HACK" and "abuse". 31eda6f7c3/src/cargo/core/compiler/build_context/target_info.rs (L242) (FYI `@weihanglo` as you dealt with this recently in https://github.com/rust-lang/cargo/pull/11633.)
Mentioning reviewers active in #110785: `@fee1-dead` `@jyn514` `@bjorn3`
LLVM has a neat [statistics] feature that tracks how often optimizations kick
in. It's very handy for optimization work. Since we expose the LLVM pass
timings, I thought it made sense to expose the LLVM statistics too.
[statistics]: https://llvm.org/docs/ProgrammersManual.html#the-statistic-class-stats-option
Remove `LLVMRustCoverageHashCString`
Coverage has two FFI functions for computing the hash of a byte string. One takes a ptr/len pair (`LLVMRustCoverageHashByteArray`), and the other takes a NUL-terminated C string (`LLVMRustCoverageHashCString`).
But on closer inspection, the C string version is unnecessary. The calling-side code converts a Rust `&str` into a `CString`, and the C++ code then immediately turns it back into a ptr/len string before actually hashing it. So we can just call the ptr/len version directly instead.
---
This PR also fixes a bug in the C++ declaration of `LLVMRustCoverageHashByteArray`. It should be `size_t`, since that's what is declared and passed on the Rust side, and it's what `StrRef`'s constructor expects to receive on the callee side.
Coverage has two FFI functions for computing the hash of a byte string. One
takes a ptr/len pair, and the other takes a NUL-terminated C string.
But on closer inspection, the C string version is unnecessary. The calling-side
code converts a Rust `&str` into a C string, and the C++ code then immediately
turns it back into a ptr/len string before actually hashing it.