This covers:
impl<T> MaybeUninit<T> {
pub unsafe fn assume_init_read(&self) -> T { ... }
pub unsafe fn assume_init_drop(&mut self) { ... }
}
It does not cover the const-ness of `write` under
`const_maybe_uninit_write` nor the const-ness of
`assume_init_read` (this commit adds
`const_maybe_uninit_assume_init_read` for that).
FCP: https://github.com/rust-lang/rust/issues/63567#issuecomment-958590287.
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Methods that were only blocked on `const_panic` have been stabilized.
The remaining methods of `duration_consts_2` are all related to floats,
and as such have been placed behind the `duration_consts_float` feature
gate.
Stabilize `const_raw_ptr_deref` for `*const T`
This stabilizes dereferencing immutable raw pointers in const contexts.
It does not stabilize `*mut T` dereferencing. This is behind the
same feature gate as mutable references.
closes https://github.com/rust-lang/rust/issues/51911
pub use core::simd;
A portable abstraction over SIMD has been a major pursuit in recent years for several programming languages. In Rust, `std::arch` offers explicit SIMD acceleration via compiler intrinsics, but it does so at the cost of having to individually maintain each and every single such API, and is almost completely `unsafe` to use. `core::simd` offers safe abstractions that are resolved to the appropriate SIMD instructions by LLVM during compilation, including scalar instructions if that is all that is available.
`core::simd` is enabled by the `#![portable_simd]` nightly feature tracked in https://github.com/rust-lang/rust/issues/86656 and is introduced here by pulling in the https://github.com/rust-lang/portable-simd repository as a subtree. We built the repository out-of-tree to allow faster compilation and a stochastic test suite backed by the proptest crate to verify that different targets, features, and optimizations produce the same result, so that using this library does not introduce any surprises. As these tests are technically non-deterministic, and thus can introduce overly interesting Heisenbugs if included in the rustc CI, they are visible in the commit history of the subtree but do nothing here. Some tests **are** introduced via the documentation, but these use deterministic asserts.
There are multiple unsolved problems with the library at the current moment, including a want for better documentation, technical issues with LLVM scalarizing and lowering to libm, room for improvement for the APIs, and so far I have not added the necessary plumbing for allowing the more experimental or libm-dependent APIs to be used. However, I thought it would be prudent to open this for review in its current condition, as it is both usable and it is likely I am going to learn something else needs to be fixed when bors tries this out.
The major types are
- `core::simd::Simd<T, N>`
- `core::simd::Mask<T, N>`
There is also the `LaneCount` struct, which, together with the SimdElement and SupportedLaneCount traits, limit the implementation's maximum support to vectors we know will actually compile and provide supporting logic for bitmasks. I'm hoping to simplify at least some of these out of the way as the compiler and library evolve.
These tests just verify some basic APIs of core::simd function, and
guarantees that attempting to access the wrong things doesn't work.
The majority of tests are stochastic, and so remain upstream, but
a few deterministic tests arrive in the subtree as doc tests.
This stabilizes dereferencing immutable raw pointers in const contexts.
It does not stabilize `*mut T` dereferencing. This is placed behind the
`const_raw_mut_ptr_deref` feature gate.
Add 'core::array::from_fn' and 'core::array::try_from_fn'
These auxiliary methods fill uninitialized arrays in a safe way and are particularly useful for elements that don't implement `Default`.
```rust
// Foo doesn't implement Default
struct Foo(usize);
let _array = core::array::from_fn::<_, _, 2>(|idx| Foo(idx));
```
Different from `FromIterator`, it is guaranteed that the array will be fully filled and no error regarding uninitialized state will be throw. In certain scenarios, however, the creation of an **element** can fail and that is why the `try_from_fn` function is also provided.
```rust
#[derive(Debug, PartialEq)]
enum SomeError {
Foo,
}
let array = core::array::try_from_fn(|i| Ok::<_, SomeError>(i));
assert_eq!(array, Ok([0, 1, 2, 3, 4]));
let another_array = core::array::try_from_fn(|_| Err(SomeError::Foo));
assert_eq!(another_array, Err(SomeError::Foo));
```
Constify ?-operator for Result and Option
Try to make `?`-operator usable in `const fn` with `Result` and `Option`, see #74935 . Note that the try-operator itself was constified in #87237.
TODO
* [x] Add tests for const T -> T conversions
* [x] cleanup commits
* [x] Remove `#![allow(incomplete_features)]`
* [?] Await decision in #86808 - I'm not sure
* [x] Await support for parsing `~const` in bootstrapping compiler
* [x] Tracking issue(s)? - #88674
Added the `Option::unzip()` method
* Adds the `Option::unzip()` method to turn an `Option<(T, U)>` into `(Option<T>, Option<U>)` under the `unzip_option` feature
* Adds tests for both `Option::unzip()` and `Option::zip()`, I noticed that `.zip()` didn't have any
* Adds `#[inline]` to a few of `Option`'s methods that were missing it
Add Integer::log variants
_This is another attempt at landing https://github.com/rust-lang/rust/pull/70835, which was approved by the libs team but failed on Android tests through Bors. The text copied here is from the original issue. The only change made so far is the addition of non-`checked_` variants of the log methods._
_Tracking issue: #70887_
---
This implements `{log,log2,log10}` methods for all integer types. The implementation was provided by `@substack` for use in the stdlib.
_Note: I'm not big on math, so this PR is a best effort written with limited knowledge. It's likely I'll be getting things wrong, but happy to learn and correct. Please bare with me._
## Motivation
Calculating the logarithm of a number is a generally useful operation. Currently the stdlib only provides implementations for floats, which means that if we want to calculate the logarithm for an integer we have to cast it to a float and then back to an int.
> would be nice if there was an integer log2 instead of having to either use the f32 version or leading_zeros() which i have to verify the results of every time to be sure
_— [`@substack,` 2020-03-08](https://twitter.com/substack/status/1236445105197727744)_
At higher numbers converting from an integer to a float we also risk overflows. This means that Rust currently only provides log operations for a limited set of integers.
The process of doing log operations by converting between floats and integers is also prone to rounding errors. In the following example we're trying to calculate `base10` for an integer. We might try and calculate the `base2` for the values, and attempt [a base swap](https://www.rapidtables.com/math/algebra/Logarithm.html#log-rules) to arrive at `base10`. However because we're performing intermediate rounding we arrive at the wrong result:
```rust
// log10(900) = ~2.95 = 2
dbg!(900f32.log10() as u64);
// log base change rule: logb(x) = logc(x) / logc(b)
// log2(900) / log2(10) = 9/3 = 3
dbg!((900f32.log2() as u64) / (10f32.log2() as u64));
```
_[playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=6bd6c68b3539e400f9ca4fdc6fc2eed0)_
This is somewhat nuanced as a lot of the time it'll work well, but in real world code this could lead to some hard to track bugs. By providing correct log implementations directly on integers we can help prevent errors around this.
## Implementation notes
I checked whether LLVM intrinsics existed before implementing this, and none exist yet. ~~Also I couldn't really find a better way to write the `ilog` function. One option would be to make it a private method on the number, but I didn't see any precedent for that. I also didn't know where to best place the tests, so I added them to the bottom of the file. Even though they might seem like quite a lot they take no time to execute.~~
## References
- [Log rules](https://www.rapidtables.com/math/algebra/Logarithm.html#log-rules)
- [Rounding error playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=6bd6c68b3539e400f9ca4fdc6fc2eed0)
- [substack's tweet asking about integer log2 in the stdlib](https://twitter.com/substack/status/1236445105197727744)
- [Integer Logarithm, A. Jaffer 2008](https://people.csail.mit.edu/jaffer/III/ilog.pdf)
core: add unstable no_fp_fmt_parse to disable float formatting code
In some projects (e.g. kernel), floating point is forbidden. They can disable
hardware floating point support and use `+soft-float` to avoid fp instructions
from being generated, but as libcore contains the formatting code for `f32`
and `f64`, some fp intrinsics are depended. One could define stubs for these
intrinsics that just panic [1], but it means that if any formatting functions
are accidentally used, mistake can only be caught during the runtime rather
than during compile-time or link-time, and they consume a lot of space without
LTO.
This patch provides an unstable cfg `no_fp_fmt_parse` to disable these.
A panicking stub is still provided for the `Debug` implementation (unfortunately)
because there are some SIMD types that use `#[derive(Debug)]`.
[1]: https://lkml.org/lkml/2021/4/14/1028