Commit Graph

1462 Commits

Author SHA1 Message Date
Taiki Endo
241f82ad91 Basic inline assembly support for SPARC and SPARC64 2024-11-07 21:19:03 +09:00
Matthias Krüger
73035552c9
Rollup merge of #132562 - alexcrichton:remove-wasm32-wasi, r=jieyouxu
Remove the `wasm32-wasi` target from rustc

This commit is the final step in the journey of renaming the historical `wasm32-wasi` target in the Rust compiler to `wasm32-wasip1`. Various steps in this journey so far have been:

* 2023-04-03: rust-lang/compiler-team#607 - initial proposal for this rename
* 2024-11-27: rust-lang/compiler-team#695 - amended schedule/procedure for rename
* 2024-01-29: rust-lang/rust#120468 - initial introduction of `wasm32-wasip1`
* 2024-06-18: rust-lang/rust#126662 - warn on usage of `wasm32-wasi`
* 2024-11-08: this PR - remove the `wasm32-wasi` target

The full transition schedule is in [this comment][comment] and is summarized with:

* 2024-05-02: Rust 1.78 released with `wasm32-wasip1` target
* 2024-09-05: Rust 1.81 released warning on usage of `wasm32-wasi`
* 2025-01-09: Rust 1.84 to be released without the `wasm32-wasi` target

This means that support on stable for the replacement target of `wasm32-wasip1` has currently been available for 6 months. Users have already seen warnings on stable for 2 months about usage of `wasm32-wasi` and stable users have another 2 months of warnings before the target is removed from stable.

This commit is intended to be the final step in this transition so the source tree should no longer mention `wasm32-wasi` except in historical reference to the older name of the `wasm32-wasip1` target.

[comment]: https://github.com/rust-lang/rust/pull/120468#issuecomment-1977878747
2024-11-05 23:43:58 +01:00
Matthias Krüger
088e698835
Rollup merge of #132077 - alexcrichton:wide-arithmetic, r=jieyouxu
Add a new `wide-arithmetic` feature for WebAssembly

This commit adds a new rustc target feature named `wide-arithmetic` for WebAssembly targets. This corresponds to the [wide-arithmetic] proposal for WebAssembly which adds new instructions catered towards accelerating integer arithmetic larger than 64-bits. This proposal to WebAssembly is not standard yet so this new feature is flagged as an unstable target feature. Additionally Rust's LLVM version doesn't support this new feature yet since support will first be added in LLVM 20, so the feature filtering logic for LLVM is updated to handle this.

I'll also note that I'm not currently planning to add wasm-specific intrinsics to `std::arch::wasm32` at this time. The currently proposed instructions are all accessible through `i128` or `u128`-based operations which Rust already supports, so intrinsic shouldn't be necessary to get access to these new instructions.

[wide-arithmetic]: https://github.com/WebAssembly/wide-arithmetic
2024-11-05 23:43:57 +01:00
bors
e8c698bb3b Auto merge of #129884 - RalfJung:forbidden-target-features, r=workingjubilee
mark some target features as 'forbidden' so they cannot be (un)set with -Ctarget-feature

The context for this is https://github.com/rust-lang/rust/issues/116344: some target features change the way floats are passed between functions. Changing those target features is unsound as code compiled for the same target may now use different ABIs.

So this introduces a new concept of "forbidden" target features (on top of the existing "stable " and "unstable" categories), and makes it a hard error to (un)set such a target feature. For now, the x86 and ARM feature `soft-float` is on that list. We'll have to make some effort to collect more relevant features, and similar features from other targets, but that can happen after the basic infrastructure for this landed. (These features are being collected in https://github.com/rust-lang/rust/issues/131799.)

I've made this a warning for now to give people some time to speak up if this would break something.

MCP: https://github.com/rust-lang/compiler-team/issues/780
2024-11-05 16:25:45 +00:00
bors
96477c55bc Auto merge of #131341 - taiki-e:ppc-clobber-abi, r=bzEq,workingjubilee
Support clobber_abi and vector registers (clobber-only) in PowerPC inline assembly

This supports `clobber_abi` which is one of the requirements of stabilization mentioned in #93335.

This basically does a similar thing I did in https://github.com/rust-lang/rust/pull/130630 to implement `clobber_abi` for s390x, but for powerpc/powerpc64/powerpc64le.
- This also supports vector registers (as `vreg`) as clobber-only, which need to support clobbering of them to implement `clobber_abi`.
- `vreg` should be able to accept `#[repr(simd)]` types as input/output if the unstable `altivec` target feature is enabled, but `core::arch::{powerpc,powerpc64}` vector types, `#[repr(simd)]`, and `core::simd` are all unstable, so the fact that this is currently a clobber-only should not be considered a blocker of clobber_abi implementation or stabilization. So I have not implemented it in this PR.
  - See https://github.com/rust-lang/rust/pull/131551 (which is based on this PR) for a PR to implement this.
  - (I'm not sticking to whether that PR should be a separate PR or part of this PR, so I can merge that PR into this PR if needed.)

Refs:
- PPC32 SysV: Section "Function Calling Sequence" in [System V Application Binary Interface PowerPC Processor Supplement](https://refspecs.linuxfoundation.org/elf/elfspec_ppc.pdf)
- PPC64 ELFv1: Section 3.2 "Function Calling Sequence" in [64-bit PowerPC ELF Application Binary Interface Supplement](https://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html#FUNC-CALL)
- PPC64 ELFv2: Section 2.2 "Function Calling Sequence" in [64-Bit ELF V2 ABI Specification](https://openpowerfoundation.org/specifications/64bitelfabi/)
- AIX: [Register usage and conventions](https://www.ibm.com/docs/en/aix/7.3?topic=overview-register-usage-conventions), [Special registers in the PowerPC®](https://www.ibm.com/docs/en/aix/7.3?topic=overview-special-registers-in-powerpc), [AIX vector programming](https://www.ibm.com/docs/en/aix/7.3?topic=concepts-aix-vector-programming)
- Register definition in LLVM: https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/PowerPC/PPCRegisterInfo.td#L189

If I understand the above four ABI documentations correctly, except for the PPC32 SysV's VR (Vector Registers) and 32-bit AIX (currently not supported by rustc)'s r13, there does not appear to be important differences in terms of implementing `clobber_abi`:
- The above four ABIs are consistent about FPR (0-13: volatile, 14-31: nonvolatile), CR (0-1,5-7: volatile, 2-4: nonvolatile), XER (volatile), and CTR (volatile).
- As for GPR, only the registers we are treating as reserved are slightly different
  - r0, r3-r12 are volatile
  - r1(sp, reserved), r14-31 are nonvolatile
  - r2(reserved) is TOC pointer in PPC64 ELF/AIX, system-reserved register in PPC32 SysV (AFAIK used as thread pointer in Linux/BSDs)
  - r13(reserved for non-32-bit-AIX) is thread pointer in PPC64 ELF, small data area pointer register in PPC32 SysV, "reserved under 64-bit environment; not restored across system calls[^r13]" in AIX)
- As for FPSCR, volatile in PPC64 ELFv1/AIX, some fields are volatile only in certain situations (rest are volatile) in PPC32 SysV/PPC64 ELFv2.
- As for VR (Vector Registers), it is not mentioned in PPC32 SysV, v0-v19 are volatile in both in PPC64 ELF/AIX, v20-v31 are nonvolatile in PPC64 ELF, reserved or nonvolatile depending on the ABI ([vec-extabi vs vec-default in LLVM](https://reviews.llvm.org/D89684), we are [using vec-extabi](https://github.com/rust-lang/rust/pull/131341#discussion_r1797693299)) in AIX:
  > When the default Vector enabled mode is used, these registers are reserved and must not be used.
  > In the extended ABI vector enabled mode, these registers are nonvolatile and their values are preserved across function calls

  I left [FIXME comment about PPC32 SysV](https://github.com/rust-lang/rust/pull/131341#discussion_r1790496095) and added ABI check for AIX.
- As for VRSAVE, it is not mentioned in PPC32 SysV, nonvolatile in PPC64 ELFv1, reserved in PPC64 ELFv2/AIX
- As for VSCR, it is not mentioned in PPC32 SysV/PPC64 ELFv1, some fields are volatile only in certain situations (rest are volatile) in PPC64 ELFv2, volatile in AIX

We are currently treating r1-r2, r13 (non-32-bit-AIX), r29-r31, LR, CTR, and VRSAVE as reserved.
We are currently not processing anything about FPSCR and VSCR, but I feel those are things that should be processed by `preserves_flags` rather than `clobber_abi` if we need to do something about them. (However, PPCRegisterInfo.td in LLVM does not seem to define anything about them.)

Replaces #111335 and #124279

cc `@ecnelises` `@bzEq` `@lu-zero`

r? `@Amanieu`

`@rustbot` label +O-PowerPC +A-inline-assembly

[^r13]: callee-saved, according to [LLVM](6a6af0246b/llvm/lib/Target/PowerPC/PPCCallingConv.td (L322)) and [GCC](a9173a50e7/gcc/config/rs6000/rs6000.h (L859)).
2024-11-05 03:13:47 +00:00
Ralf Jung
ffad9aac27 mark some target features as 'forbidden' so they cannot be (un)set
For now, this is just a warning, but should become a hard error in the future
2024-11-04 22:56:47 +01:00
bjorn3
775aad80fc Remove is_builtin target spec field
It is unused.
2024-11-03 21:06:49 +00:00
Alex Crichton
c049cc17f3 Remove the wasm32-wasi target from rustc
This commit is the final step in the journey of renaming the historical
`wasm32-wasi` target in the Rust compiler to `wasm32-wasip1`. Various
steps in this journey so far have been:

* 2023-04-03: rust-lang/compiler-team#607 - initial proposal for this rename
* 2024-11-27: rust-lang/compiler-team#695 - amended schedule/procedure for rename
* 2024-01-29: rust-lang/rust#120468 - initial introduction of `wasm32-wasip1`
* 2024-06-18: rust-lang/rust#126662 - warn on usage of `wasm32-wasi`
* 2024-11-08: this PR - remove the `wasm32-wasi` target

The full transition schedule is in [this comment][comment] and is
summarized with:

* 2024-05-02: Rust 1.78 released with `wasm32-wasip1` target
* 2024-09-05: Rust 1.81 released warning on usage of `wasm32-wasi`
* 2025-01-09: Rust 1.84 to be released without the `wasm32-wasi` target

This means that support on stable for the replacement target of
`wasm32-wasip1` has currently been available for 6 months. Users have
already seen warnings on stable for 2 months about usage of
`wasm32-wasi` and stable users have another 2 months of warnings before
the target is removed from stable.

This commit is intended to be the final step in this transition so the
source tree should no longer mention `wasm32-wasi` except in historical
reference to the older name of the `wasm32-wasip1` target.

[comment]: https://github.com/rust-lang/rust/pull/120468#issuecomment-1977878747
2024-11-03 07:09:34 -08:00
Noratrieb
a26450cf81 Rename target triple to target tuple in many places in the compiler
This changes the naming to the new naming, used by `--print
target-tuple`.
It does not change all locations, but many.
2024-11-02 21:29:59 +01:00
Taiki Endo
d19517dcd0 Support clobber_abi and vector registers (clobber-only) in PowerPC inline assembly 2024-11-02 20:26:08 +09:00
Matthias Krüger
bb544f863f
Rollup merge of #131037 - madsmtm:move-llvm-target-versioning, r=petrochenkov
Move versioned Apple LLVM targets from `rustc_target` to `rustc_codegen_ssa`

Fully specified LLVM targets contain the OS version on macOS/iOS/tvOS/watchOS/visionOS, and this version depends on the deployment target environment variables like `MACOSX_DEPLOYMENT_TARGET`, `IPHONEOS_DEPLOYMENT_TARGET` etc.

We would like to move this to later in the compilation pipeline, both because it feels impure to access environment variables when fetching target information, but mostly because we need access to more information from https://github.com/rust-lang/rust/pull/130883 to do https://github.com/rust-lang/rust/issues/118204. See also https://github.com/rust-lang/rust/pull/129342#issuecomment-2335156119 for some discussion.

The first and second commit does the actual refactor, it should be a non-functional change, the third commit adds diagnostics for invalid deployment targets, which are now possible to do because we have access to the session.

Tested with the same commands as in https://github.com/rust-lang/rust/pull/130435.

r? ``````@petrochenkov``````
2024-11-02 08:33:10 +01:00
Mads Marquart
e75a7ddad3 Move Mach-O platform information to rustc_codegen_ssa:🔙:apple
To align with the general decision to have this sort of information
there instead.

Also use the visionOS values added in newer `object` release.
2024-11-01 17:07:19 +01:00
Mads Marquart
e1233153ac Move versioned LLVM target creation to rustc_codegen_ssa
The OS version depends on the deployment target environment variables,
the access of which we want to move to later in the compilation pipeline
that has access to more information, for example `env_depinfo`.
2024-11-01 17:07:18 +01:00
Jubilee
acd839d992
Rollup merge of #132422 - maurer:sparc-layout, r=durin42
llvm: Match new LLVM 128-bit integer alignment on sparc

LLVM continues to align more 128-bit integers to 128-bits in the data layout rather than relying on the high level language to do it. Update SPARC target files to match and add a backcompat replacement for current LLVMs.

See llvm/llvm-project#106951 for details

`@rustbot` label: +llvm-main

r? `@durin42`

(Please wait for the LLVM CI to come back before approving), creating this PR to get it tested there.
2024-10-31 17:50:44 -07:00
Jubilee
6da4221d96
Rollup merge of #132385 - workingjubilee:move-abi-to-rustc-abi, r=jieyouxu,compiler-errors
compiler: Move `rustc_target::spec::abi::Abi` to `rustc_abi::ExternAbi`

Lift `enum Abi` from its rather odd place in the middle of rustc_target, and make it available again from rustc_abi. You know, the crate where you would expect the enum that describes all the ABIs to be? The platform-neutral ones, at least. This will help further refactoring of how we handle ABIs in the near future[^0].

Rename `Abi` to `ExternAbi` because quite a lot of the compiler overloads the concept of "ABI" enough that the existing name is imprecise and it is often renamed _anyway_. Often this was to avoid conflicts with the *other* type formerly known as `Abi` (now named BackendRepr[^1]), but sometimes it is just for clarity, and this name seems more self-explanatory. It does get reexported, though, using its old name, to reduce the odds of merge-conflicting over the entire tree.

All of `ExternAbi`'s friends come along for the ride, which costs adding some optional dependencies to the rustc_abi crate. However, all of this also allows simply moving three crates entirely off rustc_target:
- rustc_hir_pretty
- rustc_lint_defs
- rustc_mir_build

This odd selection is mostly to demonstrate a secondary motivation: The majority of the front-end of the compiler should be as target-agnostic as possible, and it is easier to assure this if they simply don't depend on the crate that describes targets. Note that I didn't migrate crates that don't benefit from it in this way yet, and I didn't survey every last crate.

[^0]: This is being undertaken as part of https://github.com/rust-lang/rust/issues/119183
[^1]: https://github.com/rust-lang/rust/pull/132246
2024-10-31 17:50:42 -07:00
Jubilee
a43492b884
Rollup merge of #131168 - madsmtm:target-info-psx-os, r=davidtwco
Fix `target_os` for `mipsel-sony-psx`

Previously set to `target_os = "none"` and `target_env = "psx"` in [the PR introducing the target](https://github.com/rust-lang/rust/pull/102689/), but although the Playstation 1 is _close_ to a bare metal target in some regards, it's still very much an operating system, so we should instead set `target_os = "psx"`.

This also matches the `mipsel-sony-psp` target, which sets `target_os = "psp"`.

CC target maintainer ``@ayrtonm.``

If there's any code out there that uses `cfg(target_env = "psx")`, they can use `cfg(any(target_os = "psx", target_env = "psx"))` until they bump their MSRV to a version where this is fully fixed.
2024-10-31 17:50:40 -07:00
Matthew Maurer
9caced7bad llvm: Match new LLVM 128-bit integer alignment on sparc
LLVM continues to align more 128-bit integers to 128-bits in the data
layout rather than relying on the high level language to do it. Update
SPARC target files to match and add a backcompat replacement for current
LLVMs.

See llvm/llvm-project#106951 for details
2024-10-31 20:37:54 +00:00
Matthias Krüger
6b96a7944a
Rollup merge of #132354 - koute:master, r=workingjubilee
Add `lp64e` RISC-V ABI

This PR adds support for the `lp64e` RISC-V ABI, which is the 64-bit equivalent of the `ilp32e` ABI that is already supported.

For reference, this ABI was originally added to LLVM in [this PR](https://reviews.llvm.org/D70401).
2024-10-31 12:35:56 +01:00
Jan Bujak
c1db011ccb Add lp64e ABI to the spec tests match 2024-10-31 16:38:47 +09:00
Jubilee Young
eca17022ef compiler: Lift rustc_target::spec::abi::Abi to rustc_abi::ExternAbi 2024-10-30 22:38:49 -07:00
Jubilee Young
7086dd83cc compiler: rustc_abi::Abi => BackendRepr
The initial naming of "Abi" was an awful mistake, conveying wrong ideas
about how psABIs worked and even more about what the enum meant.
It was only meant to represent the way the value would be described to
a codegen backend as it was lowered to that intermediate representation.
It was never meant to mean anything about the actual psABI handling!
The conflation is because LLVM typically will associate a certain form
with a certain ABI, but even that does not hold when the special cases
that actually exist arise, plus the IR annotations that modify the ABI.

Reframe `rustc_abi::Abi` as the `BackendRepr` of the type, and rename
`BackendRepr::Aggregate` as `BackendRepr::Memory`. Unfortunately, due to
the persistent misunderstandings, this too is now incorrect:
- Scattered ABI-relevant code is entangled with BackendRepr
- We do not always pre-compute a correct BackendRepr that reflects how
  we "actually" want this value to be handled, so we leave the backend
  interface to also inject various special-cases here
- In some cases `BackendRepr::Memory` is a "real" aggregate, but in
  others it is in fact using memory, and in some cases it is a scalar!

Our rustc-to-backend lowering code handles this sort of thing right now.
That will eventually be addressed by lifting duplicated lowering code
to either rustc_codegen_ssa or rustc_target as appropriate.
2024-10-29 14:56:00 -07:00
Alex Crichton
f534974037 Add a new wide-arithmetic feature for WebAssembly
This commit adds a new rustc target feature named `wide-arithmetic` for
WebAssembly targets. This corresponds to the [wide-arithmetic] proposal
for WebAssembly which adds new instructions catered towards accelerating
integer arithmetic larger than 64-bits. This proposal to WebAssembly is
not standard yet so this new feature is flagged as an unstable target
feature. Additionally Rust's LLVM version doesn't support this new
feature yet since support will first be added in LLVM 20, so the
feature filtering logic for LLVM is updated to handle this.

I'll also note that I'm not currently planning to add wasm-specific
intrinsics to `std::arch::wasm32` at this time. The currently proposed
instructions are all accessible through `i128` or `u128`-based
operations which Rust already supports, so intrinsic shouldn't be
necessary to get access to these new instructions.

[wide-arithmetic]: https://github.com/WebAssembly/wide-arithmetic
2024-10-28 08:11:47 -07:00
bors
f7cf41c973 Auto merge of #131900 - mrkajetanp:target-feature-pauth-lr, r=Amanieu
rustc_target: Add pauth-lr aarch64 target feature

Add the pauth-lr target feature, corresponding to aarch64 FEAT_PAuth_LR. This feature has been added in LLVM 19.
It is currently not supported by the Linux hwcap and so we cannot add runtime feature detection for it at this time.

r? `@Amanieu`
2024-10-27 00:09:49 +00:00
许杰友 Jieyou Xu (Joe)
656a2ec0bd
Rollup merge of #132174 - RalfJung:pclmulqdq, r=calebzulawski
x86 target features: make pclmulqdq imply sse2

Based on comments in https://github.com/rust-lang/stdarch/issues/1661

Fixes https://github.com/rust-lang/stdarch/issues/1661
2024-10-26 22:01:13 +08:00
Ralf Jung
867640e24d x86 target features: make pclmulqdq imply sse2 2024-10-26 09:48:39 +02:00
Rémy Rakic
bd8477b562 Revert "Emit error when calling/declaring functions with unavailable vectors."
This reverts commit 5af56cac38.
2024-10-25 20:42:09 +00:00
bors
6faf0bd3e5 Auto merge of #127731 - veluca93:abi_checks, r=RalfJung
Emit future-incompatibility lint when calling/declaring functions with vectors that require missing target feature

On some architectures, vector types may have a different ABI depending on whether the relevant target features are enabled. (The ABI when the feature is disabled is often not specified, but LLVM implements some de-facto ABI.)

As discussed in https://github.com/rust-lang/lang-team/issues/235, this turns out to very easily lead to unsound code.

This commit makes it a post-monomorphization error to declare or call functions using those vector types in a context in which the corresponding target features are disabled, if using an ABI for which the difference is relevant. This ensures that these functions are always called with a consistent ABI.

See the [nomination comment](https://github.com/rust-lang/rust/pull/127731#issuecomment-2288558187) for more discussion.

r? RalfJung

Part of https://github.com/rust-lang/rust/issues/116558
2024-10-25 15:17:47 +00:00
WANG Rui
baa3b6d95e Enable LSX feature for LoongArch Linux targets 2024-10-25 21:35:19 +08:00
Luca Versari
5af56cac38 Emit error when calling/declaring functions with unavailable vectors.
On some architectures, vector types may have a different ABI when
relevant target features are enabled.

As discussed in https://github.com/rust-lang/lang-team/issues/235, this
turns out to very easily lead to unsound code.

This commit makes it an error to declare or call functions using those
vector types in a context in which the corresponding target features are
disabled, if using an ABI for which the difference is relevant.
2024-10-25 08:46:40 +02:00
Stuart Cook
40d787234b
Rollup merge of #131169 - madsmtm:target-info-nto-vendor, r=wesleywiser
Fix `target_vendor` in QNX Neutrino targets

The `x86_64-pc-nto-qnx710` and `i586-pc-nto-qnx700` targets have `pc` in their target triple names, but the vendor was set to the default `"unknown"`.

CC target maintainers `@flba-eb,` `@gh-tr,` `@jonathanpallant` and `@japaric`
2024-10-24 14:19:53 +11:00
bors
b8bb2968ce Auto merge of #132079 - fmease:rollup-agrd358, r=fmease
Rollup of 9 pull requests

Successful merges:

 - #130991 (Vectorized SliceContains)
 - #131928 (rustdoc: Document `markdown` module.)
 - #131955 (Set `signext` or `zeroext` for integer arguments on RISC-V and LoongArch64)
 - #131979 (Minor tweaks to `compare_impl_item.rs`)
 - #132036 (Add a test case for #131164)
 - #132039 (Specialize `read_exact` and `read_buf_exact` for `VecDeque`)
 - #132060 ("innermost", "outermost", "leftmost", and "rightmost" don't need hyphens)
 - #132065 (Clarify documentation of `ptr::dangling()` function)
 - #132066 (Fix a typo in documentation of `pointer::sub_ptr()`)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-10-23 22:28:57 +00:00
Graydon Hoare
3ba87498fa
Fix rustc_target test: wasmNN-none should support dynamic linking 2024-10-22 23:04:44 -07:00
Graydon Hoare
212d516ab0
Address review comments on wasm32v1-none target 2024-10-22 23:04:44 -07:00
Graydon Hoare
e14d6d8314
Add wasm32v1-none target (compiler-team/#791) 2024-10-22 23:04:44 -07:00
Asuna
57bffe1d59 Set signext or zeroext for integer arguments on LoongArch64 2024-10-23 04:42:21 +02:00
Asuna
6b65524620 Set signext or zeroext for integer arguments on RISC-V 2024-10-23 04:42:03 +02:00
Asuna
03df13b70d Introduce adjust_for_rust_abi in rustc_target 2024-10-23 03:21:59 +02:00
bors
bca5fdebe0 Auto merge of #131321 - RalfJung:feature-activation, r=nnethercote
terminology: #[feature] *enables* a feature (instead of "declaring" or "activating" it)

Mostly, we currently call a feature that has a corresponding `#[feature(name)]` attribute in the current crate a "declared" feature. I think that is confusing as it does not align with what "declaring" usually means. Furthermore, we *also* refer to `#[stable]`/`#[unstable]` as *declaring* a feature (e.g. in [these diagnostics](f25e5abea2/compiler/rustc_passes/messages.ftl (L297-L301))), which aligns better with what "declaring" usually means. To make things worse, the functions  `tcx.features().active(...)` and  `tcx.features().declared(...)` both exist and they are doing almost the same thing (testing whether a corresponding `#[feature(name)]`  exists) except that `active` would ICE if the feature is not an unstable lang feature. On top of this, the callback when a feature is activated/declared is called `set_enabled`, and many comments also talk about "enabling" a feature.

So really, our terminology is just a mess.

I would suggest we use "declaring a feature" for saying that something is/was guarded by a feature (e.g. `#[stable]`/`#[unstable]`), and "enabling a feature" for  `#[feature(name)]`. This PR implements that.
2024-10-22 11:02:35 +00:00
Ralf Jung
46ce5cbf33 terminology: #[feature] *enables* a feature (instead of "declaring" or "activating" it) 2024-10-22 07:37:54 +01:00
bors
f225713007 Auto merge of #132020 - workingjubilee:rollup-a8iehqg, r=workingjubilee
Rollup of 6 pull requests

Successful merges:

 - #130432 (rust_for_linux: -Zregparm=<N> commandline flag for X86 (#116972))
 - #131697 (`rt::Argument`: elide lifetimes)
 - #131807 (Always specify `llvm_abiname` for RISC-V targets)
 - #131954 (shave 150ms off bootstrap)
 - #132015 (Move const trait tests from `ui/rfcs/rfc-2632-const-trait-impl` to `ui/traits/const-traits`)
 - #132017 (Update triagebot.toml)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-10-22 05:49:18 +00:00
Jubilee
1b24c6fc14
Rollup merge of #131807 - beetrees:riscv-target-abi, r=workingjubilee
Always specify `llvm_abiname` for RISC-V targets

For RISC-V targets, when `llvm_abiname` is not specified LLVM will infer the ABI from the target features, causing #116344 to occur. This PR adds the correct `llvm_abiname` to all RISC-V targets where it is missing (which are all soft-float targets), and adds a test to prevent future RISC-V targets from accidentally omitting `llvm_abiname`. The only affect of this PR is that `-Ctarget-feature=+f` (or similar) will no longer affect the ABI on the modified targets.

<!-- homu-ignore:start -->
r? `@RalfJung`
<!--- homu-ignore:end -->
2024-10-21 20:32:01 -07:00
Jubilee
fe2cbbd2d5
Rollup merge of #130432 - azhogin:azhogin/regparm, r=workingjubilee,pnkfelix
rust_for_linux: -Zregparm=<N> commandline flag for X86 (#116972)

Command line flag `-Zregparm=<N>` for X86 (32-bit) for rust-for-linux: https://github.com/rust-lang/rust/issues/116972
Implemented in the similar way as fastcall/vectorcall support (args are marked InReg if fit).
2024-10-21 20:32:00 -07:00
Ralf Jung
de3cbf3c56 make unsupported_calling_conventions a hard error 2024-10-20 15:22:21 +02:00
Stuart Cook
0bfc49b053
Rollup merge of #131876 - workingjubilee:llvm-c-c-c-comdat, r=Zalathar
compiler: Use LLVM's Comdat support

Acting on these long-ago issues:
- https://github.com/rust-lang/rust/issues/46437
- https://github.com/rust-lang/rust/issues/68955
2024-10-20 14:06:03 +11:00
Jubilee Young
45d61b0d26 cg_llvm: Reuse LLVM-C Comdat support
Migrate `llvm::set_comdat` and `llvm::SetUniqueComdat` to LLVM-C FFI.

Note, now we can call `llvm::set_comdat` only when the target actually
supports adding comdat. As this has no convenient LLVM-C API, we
implement this as `TargetOptions::supports_comdat`.

Co-authored-by: Stuart Cook <Zalathar@users.noreply.github.com>
2024-10-19 10:46:10 -07:00
Jubilee Young
b9c96780b4 compiler: Revert -Zregparm handling for extern Rust 2024-10-18 11:59:20 -07:00
WANG Rui
275ec06900 Default to the medium code model on OpenHarmony LoongArch target
The context for this is #130266: setting the medium code model for the
'loongarch64-linux-ohos' target.
2024-10-18 14:16:51 +08:00
Andrew Zhogin
b3ae64d24f rust_for_linux: -Zregparm=<N> commandline flag for X86 (#116972) 2024-10-18 00:29:31 +07:00
WANG Rui
67ed9fac55 Enable XRay instrumentation for LoongArch Linux targets 2024-10-17 22:35:51 +08:00
Matthias Krüger
9aee5d98cf
Rollup merge of #131583 - heiher:loong-issue-118053, r=jieyouxu
Setting up indirect access to external data for loongarch64-linux-{musl,ohos}

In issue #118053, the `loongarch64-unknown-linux-gnu` target needs indirection to access external data, and so do the `loongarch64-unknown-linux-musl` and `loongarch64-unknown-linux-ohos` targets.
2024-10-17 12:07:20 +02:00