mirror of
https://github.com/rust-lang/rust.git
synced 2024-11-25 08:13:41 +00:00
Introduce adjust_for_rust_abi
in rustc_target
This commit is contained in:
parent
8bf64f106a
commit
03df13b70d
@ -1,11 +1,14 @@
|
||||
use std::fmt;
|
||||
use std::str::FromStr;
|
||||
use std::{fmt, iter};
|
||||
|
||||
pub use rustc_abi::{Reg, RegKind};
|
||||
use rustc_macros::HashStable_Generic;
|
||||
use rustc_span::Symbol;
|
||||
|
||||
use crate::abi::{self, Abi, Align, HasDataLayout, Size, TyAbiInterface, TyAndLayout};
|
||||
use crate::abi::{
|
||||
self, Abi, AddressSpace, Align, HasDataLayout, Pointer, Size, TyAbiInterface, TyAndLayout,
|
||||
};
|
||||
use crate::spec::abi::Abi as SpecAbi;
|
||||
use crate::spec::{self, HasTargetSpec, HasWasmCAbiOpt, HasX86AbiOpt, WasmCAbi};
|
||||
|
||||
mod aarch64;
|
||||
@ -720,6 +723,116 @@ impl<'a, Ty> FnAbi<'a, Ty> {
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn adjust_for_rust_abi<C>(&mut self, cx: &C, abi: SpecAbi)
|
||||
where
|
||||
Ty: TyAbiInterface<'a, C> + Copy,
|
||||
C: HasDataLayout + HasTargetSpec,
|
||||
{
|
||||
let spec = cx.target_spec();
|
||||
match &spec.arch[..] {
|
||||
"x86" => x86::compute_rust_abi_info(cx, self, abi),
|
||||
_ => {}
|
||||
};
|
||||
|
||||
for (arg_idx, arg) in self
|
||||
.args
|
||||
.iter_mut()
|
||||
.enumerate()
|
||||
.map(|(idx, arg)| (Some(idx), arg))
|
||||
.chain(iter::once((None, &mut self.ret)))
|
||||
{
|
||||
if arg.is_ignore() {
|
||||
continue;
|
||||
}
|
||||
|
||||
if arg_idx.is_none() && arg.layout.size > Pointer(AddressSpace::DATA).size(cx) * 2 {
|
||||
// Return values larger than 2 registers using a return area
|
||||
// pointer. LLVM and Cranelift disagree about how to return
|
||||
// values that don't fit in the registers designated for return
|
||||
// values. LLVM will force the entire return value to be passed
|
||||
// by return area pointer, while Cranelift will look at each IR level
|
||||
// return value independently and decide to pass it in a
|
||||
// register or not, which would result in the return value
|
||||
// being passed partially in registers and partially through a
|
||||
// return area pointer.
|
||||
//
|
||||
// While Cranelift may need to be fixed as the LLVM behavior is
|
||||
// generally more correct with respect to the surface language,
|
||||
// forcing this behavior in rustc itself makes it easier for
|
||||
// other backends to conform to the Rust ABI and for the C ABI
|
||||
// rustc already handles this behavior anyway.
|
||||
//
|
||||
// In addition LLVM's decision to pass the return value in
|
||||
// registers or using a return area pointer depends on how
|
||||
// exactly the return type is lowered to an LLVM IR type. For
|
||||
// example `Option<u128>` can be lowered as `{ i128, i128 }`
|
||||
// in which case the x86_64 backend would use a return area
|
||||
// pointer, or it could be passed as `{ i32, i128 }` in which
|
||||
// case the x86_64 backend would pass it in registers by taking
|
||||
// advantage of an LLVM ABI extension that allows using 3
|
||||
// registers for the x86_64 sysv call conv rather than the
|
||||
// officially specified 2 registers.
|
||||
//
|
||||
// FIXME: Technically we should look at the amount of available
|
||||
// return registers rather than guessing that there are 2
|
||||
// registers for return values. In practice only a couple of
|
||||
// architectures have less than 2 return registers. None of
|
||||
// which supported by Cranelift.
|
||||
//
|
||||
// NOTE: This adjustment is only necessary for the Rust ABI as
|
||||
// for other ABI's the calling convention implementations in
|
||||
// rustc_target already ensure any return value which doesn't
|
||||
// fit in the available amount of return registers is passed in
|
||||
// the right way for the current target.
|
||||
arg.make_indirect();
|
||||
continue;
|
||||
}
|
||||
|
||||
match arg.layout.abi {
|
||||
Abi::Aggregate { .. } => {}
|
||||
|
||||
// This is a fun case! The gist of what this is doing is
|
||||
// that we want callers and callees to always agree on the
|
||||
// ABI of how they pass SIMD arguments. If we were to *not*
|
||||
// make these arguments indirect then they'd be immediates
|
||||
// in LLVM, which means that they'd used whatever the
|
||||
// appropriate ABI is for the callee and the caller. That
|
||||
// means, for example, if the caller doesn't have AVX
|
||||
// enabled but the callee does, then passing an AVX argument
|
||||
// across this boundary would cause corrupt data to show up.
|
||||
//
|
||||
// This problem is fixed by unconditionally passing SIMD
|
||||
// arguments through memory between callers and callees
|
||||
// which should get them all to agree on ABI regardless of
|
||||
// target feature sets. Some more information about this
|
||||
// issue can be found in #44367.
|
||||
//
|
||||
// Note that the intrinsic ABI is exempt here as
|
||||
// that's how we connect up to LLVM and it's unstable
|
||||
// anyway, we control all calls to it in libstd.
|
||||
Abi::Vector { .. } if abi != SpecAbi::RustIntrinsic && spec.simd_types_indirect => {
|
||||
arg.make_indirect();
|
||||
continue;
|
||||
}
|
||||
|
||||
_ => continue,
|
||||
}
|
||||
// Compute `Aggregate` ABI.
|
||||
|
||||
let is_indirect_not_on_stack =
|
||||
matches!(arg.mode, PassMode::Indirect { on_stack: false, .. });
|
||||
assert!(is_indirect_not_on_stack);
|
||||
|
||||
let size = arg.layout.size;
|
||||
if !arg.layout.is_unsized() && size <= Pointer(AddressSpace::DATA).size(cx) {
|
||||
// We want to pass small aggregates as immediates, but using
|
||||
// an LLVM aggregate type for this leads to bad optimizations,
|
||||
// so we pick an appropriately sized integer type instead.
|
||||
arg.cast_to(Reg { kind: RegKind::Integer, size });
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl FromStr for Conv {
|
||||
|
@ -1,6 +1,9 @@
|
||||
use crate::abi::call::{ArgAttribute, FnAbi, PassMode, Reg, RegKind};
|
||||
use crate::abi::{Abi, Align, HasDataLayout, TyAbiInterface, TyAndLayout};
|
||||
use crate::abi::{
|
||||
Abi, AddressSpace, Align, Float, HasDataLayout, Pointer, TyAbiInterface, TyAndLayout,
|
||||
};
|
||||
use crate::spec::HasTargetSpec;
|
||||
use crate::spec::abi::Abi as SpecAbi;
|
||||
|
||||
#[derive(PartialEq)]
|
||||
pub(crate) enum Flavor {
|
||||
@ -207,3 +210,35 @@ pub(crate) fn fill_inregs<'a, Ty, C>(
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn compute_rust_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>, abi: SpecAbi)
|
||||
where
|
||||
Ty: TyAbiInterface<'a, C> + Copy,
|
||||
C: HasDataLayout + HasTargetSpec,
|
||||
{
|
||||
// Avoid returning floats in x87 registers on x86 as loading and storing from x87
|
||||
// registers will quiet signalling NaNs. Also avoid using SSE registers since they
|
||||
// are not always available (depending on target features).
|
||||
if !fn_abi.ret.is_ignore()
|
||||
// Intrinsics themselves are not actual "real" functions, so theres no need to change their ABIs.
|
||||
&& abi != SpecAbi::RustIntrinsic
|
||||
{
|
||||
let has_float = match fn_abi.ret.layout.abi {
|
||||
Abi::Scalar(s) => matches!(s.primitive(), Float(_)),
|
||||
Abi::ScalarPair(s1, s2) => {
|
||||
matches!(s1.primitive(), Float(_)) || matches!(s2.primitive(), Float(_))
|
||||
}
|
||||
_ => false, // anyway not passed via registers on x86
|
||||
};
|
||||
if has_float {
|
||||
if fn_abi.ret.layout.size <= Pointer(AddressSpace::DATA).size(cx) {
|
||||
// Same size or smaller than pointer, return in a register.
|
||||
fn_abi.ret.cast_to(Reg { kind: RegKind::Integer, size: fn_abi.ret.layout.size });
|
||||
} else {
|
||||
// Larger than a pointer, return indirectly.
|
||||
fn_abi.ret.make_indirect();
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,7 +1,7 @@
|
||||
use std::iter;
|
||||
|
||||
use rustc_abi::Primitive::{Float, Pointer};
|
||||
use rustc_abi::{Abi, AddressSpace, PointerKind, Scalar, Size};
|
||||
use rustc_abi::Primitive::Pointer;
|
||||
use rustc_abi::{Abi, PointerKind, Scalar, Size};
|
||||
use rustc_hir as hir;
|
||||
use rustc_hir::lang_items::LangItem;
|
||||
use rustc_middle::bug;
|
||||
@ -13,8 +13,7 @@ use rustc_middle::ty::{self, InstanceKind, Ty, TyCtxt};
|
||||
use rustc_session::config::OptLevel;
|
||||
use rustc_span::def_id::DefId;
|
||||
use rustc_target::abi::call::{
|
||||
ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, Conv, FnAbi, PassMode, Reg, RegKind,
|
||||
RiscvInterruptKind,
|
||||
ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, Conv, FnAbi, PassMode, RiscvInterruptKind,
|
||||
};
|
||||
use rustc_target::spec::abi::Abi as SpecAbi;
|
||||
use tracing::debug;
|
||||
@ -678,6 +677,8 @@ fn fn_abi_adjust_for_abi<'tcx>(
|
||||
let tcx = cx.tcx();
|
||||
|
||||
if abi == SpecAbi::Rust || abi == SpecAbi::RustCall || abi == SpecAbi::RustIntrinsic {
|
||||
fn_abi.adjust_for_rust_abi(cx, abi);
|
||||
|
||||
// Look up the deduced parameter attributes for this function, if we have its def ID and
|
||||
// we're optimizing in non-incremental mode. We'll tag its parameters with those attributes
|
||||
// as appropriate.
|
||||
@ -688,125 +689,9 @@ fn fn_abi_adjust_for_abi<'tcx>(
|
||||
&[]
|
||||
};
|
||||
|
||||
let fixup = |arg: &mut ArgAbi<'tcx, Ty<'tcx>>, arg_idx: Option<usize>| {
|
||||
for (arg_idx, arg) in fn_abi.args.iter_mut().enumerate() {
|
||||
if arg.is_ignore() {
|
||||
return;
|
||||
}
|
||||
|
||||
// Avoid returning floats in x87 registers on x86 as loading and storing from x87
|
||||
// registers will quiet signalling NaNs. Also avoid using SSE registers since they
|
||||
// are not always available (depending on target features).
|
||||
if tcx.sess.target.arch == "x86"
|
||||
&& arg_idx.is_none()
|
||||
// Intrinsics themselves are not actual "real" functions, so theres no need to
|
||||
// change their ABIs.
|
||||
&& abi != SpecAbi::RustIntrinsic
|
||||
{
|
||||
let has_float = match arg.layout.abi {
|
||||
Abi::Scalar(s) => matches!(s.primitive(), Float(_)),
|
||||
Abi::ScalarPair(s1, s2) => {
|
||||
matches!(s1.primitive(), Float(_)) || matches!(s2.primitive(), Float(_))
|
||||
}
|
||||
_ => false, // anyway not passed via registers on x86
|
||||
};
|
||||
if has_float {
|
||||
if arg.layout.size <= Pointer(AddressSpace::DATA).size(cx) {
|
||||
// Same size or smaller than pointer, return in a register.
|
||||
arg.cast_to(Reg { kind: RegKind::Integer, size: arg.layout.size });
|
||||
} else {
|
||||
// Larger than a pointer, return indirectly.
|
||||
arg.make_indirect();
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if arg_idx.is_none() && arg.layout.size > Pointer(AddressSpace::DATA).size(cx) * 2 {
|
||||
// Return values larger than 2 registers using a return area
|
||||
// pointer. LLVM and Cranelift disagree about how to return
|
||||
// values that don't fit in the registers designated for return
|
||||
// values. LLVM will force the entire return value to be passed
|
||||
// by return area pointer, while Cranelift will look at each IR level
|
||||
// return value independently and decide to pass it in a
|
||||
// register or not, which would result in the return value
|
||||
// being passed partially in registers and partially through a
|
||||
// return area pointer.
|
||||
//
|
||||
// While Cranelift may need to be fixed as the LLVM behavior is
|
||||
// generally more correct with respect to the surface language,
|
||||
// forcing this behavior in rustc itself makes it easier for
|
||||
// other backends to conform to the Rust ABI and for the C ABI
|
||||
// rustc already handles this behavior anyway.
|
||||
//
|
||||
// In addition LLVM's decision to pass the return value in
|
||||
// registers or using a return area pointer depends on how
|
||||
// exactly the return type is lowered to an LLVM IR type. For
|
||||
// example `Option<u128>` can be lowered as `{ i128, i128 }`
|
||||
// in which case the x86_64 backend would use a return area
|
||||
// pointer, or it could be passed as `{ i32, i128 }` in which
|
||||
// case the x86_64 backend would pass it in registers by taking
|
||||
// advantage of an LLVM ABI extension that allows using 3
|
||||
// registers for the x86_64 sysv call conv rather than the
|
||||
// officially specified 2 registers.
|
||||
//
|
||||
// FIXME: Technically we should look at the amount of available
|
||||
// return registers rather than guessing that there are 2
|
||||
// registers for return values. In practice only a couple of
|
||||
// architectures have less than 2 return registers. None of
|
||||
// which supported by Cranelift.
|
||||
//
|
||||
// NOTE: This adjustment is only necessary for the Rust ABI as
|
||||
// for other ABI's the calling convention implementations in
|
||||
// rustc_target already ensure any return value which doesn't
|
||||
// fit in the available amount of return registers is passed in
|
||||
// the right way for the current target.
|
||||
arg.make_indirect();
|
||||
return;
|
||||
}
|
||||
|
||||
match arg.layout.abi {
|
||||
Abi::Aggregate { .. } => {}
|
||||
|
||||
// This is a fun case! The gist of what this is doing is
|
||||
// that we want callers and callees to always agree on the
|
||||
// ABI of how they pass SIMD arguments. If we were to *not*
|
||||
// make these arguments indirect then they'd be immediates
|
||||
// in LLVM, which means that they'd used whatever the
|
||||
// appropriate ABI is for the callee and the caller. That
|
||||
// means, for example, if the caller doesn't have AVX
|
||||
// enabled but the callee does, then passing an AVX argument
|
||||
// across this boundary would cause corrupt data to show up.
|
||||
//
|
||||
// This problem is fixed by unconditionally passing SIMD
|
||||
// arguments through memory between callers and callees
|
||||
// which should get them all to agree on ABI regardless of
|
||||
// target feature sets. Some more information about this
|
||||
// issue can be found in #44367.
|
||||
//
|
||||
// Note that the intrinsic ABI is exempt here as
|
||||
// that's how we connect up to LLVM and it's unstable
|
||||
// anyway, we control all calls to it in libstd.
|
||||
Abi::Vector { .. }
|
||||
if abi != SpecAbi::RustIntrinsic && tcx.sess.target.simd_types_indirect =>
|
||||
{
|
||||
arg.make_indirect();
|
||||
return;
|
||||
}
|
||||
|
||||
_ => return,
|
||||
}
|
||||
// Compute `Aggregate` ABI.
|
||||
|
||||
let is_indirect_not_on_stack =
|
||||
matches!(arg.mode, PassMode::Indirect { on_stack: false, .. });
|
||||
assert!(is_indirect_not_on_stack, "{:?}", arg);
|
||||
|
||||
let size = arg.layout.size;
|
||||
if !arg.layout.is_unsized() && size <= Pointer(AddressSpace::DATA).size(cx) {
|
||||
// We want to pass small aggregates as immediates, but using
|
||||
// an LLVM aggregate type for this leads to bad optimizations,
|
||||
// so we pick an appropriately sized integer type instead.
|
||||
arg.cast_to(Reg { kind: RegKind::Integer, size });
|
||||
continue;
|
||||
}
|
||||
|
||||
// If we deduced that this parameter was read-only, add that to the attribute list now.
|
||||
@ -814,9 +699,7 @@ fn fn_abi_adjust_for_abi<'tcx>(
|
||||
// The `readonly` parameter only applies to pointers, so we can only do this if the
|
||||
// argument was passed indirectly. (If the argument is passed directly, it's an SSA
|
||||
// value, so it's implicitly immutable.)
|
||||
if let (Some(arg_idx), &mut PassMode::Indirect { ref mut attrs, .. }) =
|
||||
(arg_idx, &mut arg.mode)
|
||||
{
|
||||
if let &mut PassMode::Indirect { ref mut attrs, .. } = &mut arg.mode {
|
||||
// The `deduced_param_attrs` list could be empty if this is a type of function
|
||||
// we can't deduce any parameters for, so make sure the argument index is in
|
||||
// bounds.
|
||||
@ -827,11 +710,6 @@ fn fn_abi_adjust_for_abi<'tcx>(
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
fixup(&mut fn_abi.ret, None);
|
||||
for (arg_idx, arg) in fn_abi.args.iter_mut().enumerate() {
|
||||
fixup(arg, Some(arg_idx));
|
||||
}
|
||||
} else {
|
||||
fn_abi
|
||||
|
Loading…
Reference in New Issue
Block a user