For certain sorts of systems, programming, it's deemed essential that
all allocation failures be explicitly handled where they occur. For
example, see Linus Torvald's opinion in [1]. Merely not calling global
panic handlers, or always `try_reserving` first (for vectors), is not
deemed good enough, because the mere presence of the global OOM handlers
is burdens static analysis.
One option for these projects to use rust would just be to skip `alloc`,
rolling their own allocation abstractions. But this would, in my
opinion be a real shame. `alloc` has a few `try_*` methods already, and
we could easily have more. Features like custom allocator support also
demonstrate and existing to support diverse use-cases with the same
abstractions.
A natural way to add such a feature flag would a Cargo feature, but
there are currently uncertainties around how std library crate's Cargo
features may or not be stable, so to avoid any risk of stabilizing by
mistake we are going with a more low-level "raw cfg" token, which
cannot be interacted with via Cargo alone.
Note also that since there is no notion of "default cfg tokens" outside
of Cargo features, we have to invert the condition from
`global_oom_handling` to to `not(no_global_oom_handling)`. This breaks
the monotonicity that would be important for a Cargo feature (i.e.
turning on more features should never break compatibility), but it
doesn't matter for raw cfg tokens which are not intended to be
"constraint solved" by Cargo or anything else.
To support this use-case we create a new feature, "global-oom-handling",
on by default, and put the global OOM handler infra and everything else
it that depends on it behind it. By default, nothing is changed, but
users concerned about global handling can make sure it is disabled, and
be confident that all OOM handling is local and explicit.
For this first iteration, non-flat collections are outright disabled.
`Vec` and `String` don't yet have `try_*` allocation methods, but are
kept anyways since they can be oom-safely created "from parts", and we
hope to add those `try_` methods in the future.
[1]: https://lore.kernel.org/lkml/CAHk-=wh_sNLoz84AUUzuqXEsYH35u=8HV3vK-jbRbJ_B-JjGrg@mail.gmail.com/
mark raw_vec::ptr with inline
when a lot of vectors is used in a enum as in the example in #66617 if this function is not inlined and multiple cgus is used this results in huge compile times. with this fix the compile time is 6s from minutes for the example in #66617. I did not have the patience to wait for it to compile for more then 3 min.
Do not inline finish_grow
Fixes#78471.
Looking at libgkrust.a in Firefox, the sizes for the `gkrust.*.o` file is:
- 18584816 (text) 582418 (data) with unmodified master
- 17937659 (text) 582554 (data) with #72227 reverted
- 17968228 (text) 582858 (data) with `#[inline(never)]` on `grow_amortized` and `grow_exact`, but that has some performance consequences
- 17927760 (text) 582322 (data) with this change
So in terms of size, at least in the case of Firefox, this patch more than undoes the regression. I don't think it should affect performance, but we'll see.
We also change the specialization of `SpecFromIterNested::from_iter` for
`TrustedLen` to use `Vec::with_capacity` when the iterator has a proper size
hint, instead of `Vec::new`, avoiding calls to `grow_*` and thus
`finish_grow` in some fully inlinable cases, which would regress with
this change.
Fixes#78471.
Rename/Deprecate LayoutErr in favor of LayoutError
Implements rust-lang/wg-allocators#73.
This patch renames LayoutErr to LayoutError, and uses a type alias to support users using the old name.
The new name will be instantly stable in release 1.49 (current nightly), the type alias will become deprecated in release 1.51 (so that when the current nightly is 1.51, 1.49 will be stable).
This is the only error type in `std` that ends in `Err` rather than `Error`, if this PR lands all stdlib error types will end in `Error` 🥰
replace `#[allow_internal_unstable]` with `#[rustc_allow_const_fn_unstable]` for `const fn`s
`#[allow_internal_unstable]` is currently used to side-step feature gate and stability checks.
While it was originally only meant to be used only on macros, its use was expanded to `const fn`s.
This pr adds stricter checks for the usage of `#[allow_internal_unstable]` (only on macros) and introduces the `#[rustc_allow_const_fn_unstable]` attribute for usage on `const fn`s.
This pr does not change any of the functionality associated with the use of `#[allow_internal_unstable]` on macros or the usage of `#[rustc_allow_const_fn_unstable]` (instead of `#[allow_internal_unstable]`) on `const fn`s (see https://github.com/rust-lang/rust/issues/69399#issuecomment-712911540).
Note: The check for `#[rustc_allow_const_fn_unstable]` currently only validates that the attribute is used on a function, because I don't know how I would check if the function is a `const fn` at the place of the check. I therefore openend this as a 'draft pull request'.
Closesrust-lang/rust#69399
r? @oli-obk
Remove `Box::leak_with_alloc`
Add leak-test for box with allocator
Rename `AllocErr` to `AllocError` in leak-test
Add `Box::alloc` and adjust examples to use the new API