Edit `rustc_trait_selection::infer::lattice` docs
Closes#94311.
Removes mentions of outdated/missing type and filename (`infer.rs` and `LatticeValue`).
Use impl substs in `#[rustc_on_unimplemented]`
We were using the trait-ref substs instead of impl substs in `rustc_on_unimplemented`, even when computing the `rustc_on_unimplemented` attached to an impl block. Let's not do that.
This PR also untangles impl and trait def-ids in the logic in `on_unimplemented` a bit.
Fixes#94675
Generalize `get_nullable_type` to allow types where null is all-ones.
Generalize get_nullable_type to accept types that have an all-ones bit
pattern as their sentry "null" value.
This will allow [`OwnedFd`], [`BorrowedFd`], [`OwnedSocket`], and
[`BorrowedSocket`] to be marked with
`#[rustc_nonnull_optimization_guaranteed]`, which will allow
`Option<OwnedFd>`, `Option<BorrowedFd>`, `Option<OwnedSocket>`, and
`Option<BorrowedSocket>` to be used in FFI declarations, as described
in the [I/O safety RFC].
For example, it will allow a function like `open` on Unix and `WSASocketW`
on Windows to be declared using `Option<OwnedFd>` and `Option<OwnedSocket>`
return types, respectively.
The actual change to add `#[rustc_nonnull_optimization_guaranteed]`
to the abovementioned types will be a separate PR, as it'll depend on
having this patch in the stage0 compiler.
Also, update the diagnostics to mention that "niche optimizations" are
used in libstd as well as libcore, as `rustc_layout_scalar_valid_range_start`
and `rustc_layout_scalar_valid_range_end` are already in use in libstd.
[`OwnedFd`]: c9dc44be24/library/std/src/os/fd/owned.rs (L49)
[`BorrowedFd`]: c9dc44be24/library/std/src/os/fd/owned.rs (L29)
[`OwnedSocket`]: c9dc44be24/library/std/src/os/windows/io/socket.rs (L51)
[`BorrowedSocket`]: c9dc44be24/library/std/src/os/windows/io/socket.rs (L29)
[I/O safety RFC]: https://github.com/rust-lang/rfcs/blob/master/text/3128-io-safety.md#ownedfd-and-borrowedfdfd-1
Emit `unused_attributes` if a level attr only has a reason
Fixes a comment from `compiler/rustc_lint/src/levels.rs`. Lint level attributes that only contain a reason will also trigger the `unused_attribute` lint. The lint now also checks for the `expect` lint level.
That's it, have a great rest of the day for everyone reasoning this 🙃
cc: #55112
This makes the order of the output always consistent:
1. Place of the `match` missing arms
2. The `enum` definition span
3. The structured suggestion to add a fallthrough arm
Add link to closed PR for future optimizers of ChunkedBitSet relations
While optimizing these operations proved unfruitful w.r.t. improving compiler performance right now, faster versions might be needed at a later time. This PR adds a link in the FIXME to save any future optimizers some time, as requested by `@nnethercote` in https://github.com/rust-lang/rust/pull/94625.
r? `@nnethercote`
Rollup of 4 pull requests
Successful merges:
- #93350 (libunwind: readd link attrs to _Unwind_Backtrace)
- #93827 (Stabilize const_fn_fn_ptr_basics, const_fn_trait_bound, and const_impl_trait)
- #94696 (Remove whitespaces and use CSS to align line numbers to the right instead)
- #94700 (rustdoc: Update minifier version)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Clarify `Layout` interning.
`Layout` is another type that is sometimes interned, sometimes not, and
we always use references to refer to it so we can't take any advantage
of the uniqueness properties for hashing or equality checks.
This commit renames `Layout` as `LayoutS`, and then introduces a new
`Layout` that is a newtype around an `Interned<LayoutS>`. It also
interns more layouts than before. Previously layouts within layouts
(via the `variants` field) were never interned, but now they are. Hence
the lifetime on the new `Layout` type.
Unlike other interned types, these ones are in `rustc_target` instead of
`rustc_middle`. This reflects the existing structure of the code, which
does layout-specific stuff in `rustc_target` while `TyAndLayout` is
generic over the `Ty`, allowing the type-specific stuff to occur in
`rustc_middle`.
The commit also adds a `HashStable` impl for `Interned`, which was
needed. It hashes the contents, unlike the `Hash` impl which hashes the
pointer.
r? `@fee1-dead`
interpret: move saturating_add/sub into (pub) helper method
I plan to use them for `simd_saturating_add/sub`.
The first commit just moves code, the 2nd simplifies it a bit with some helper methods that did not exist yet when the code was originally written.
Remove ordering traits from `rustc_span::hygiene::LocalExpnId`
Part of work on #90317.
Also adds a negative impl block as a form of documentation and a roadblock to regression.
CTFE engine: expose misc_cast to Miri
We need that to implement `simd_cast`/`simd_as` in Miri.
While at it, also change other code outside `cast.rs` to use `misc_cast` instead of lower-level methods.
r? `@oli-obk`
Check extra function arg exprs even if the fn is not C-variadic
We should still call check_expr on the args that exceed the formal input ty count, so that we have expr types to emit during writeback.
Not sure where this regressed, but it wasn't due to the same root cause as #94334 I think. I thought this might've regressed in #92360, but I think that is in stable, ad the test I provided (which minimizes #94599) passes on stable in playground. Maybe it regressed in #93118.
Anywho, fixes#94599.
`Layout` is another type that is sometimes interned, sometimes not, and
we always use references to refer to it so we can't take any advantage
of the uniqueness properties for hashing or equality checks.
This commit renames `Layout` as `LayoutS`, and then introduces a new
`Layout` that is a newtype around an `Interned<LayoutS>`. It also
interns more layouts than before. Previously layouts within layouts
(via the `variants` field) were never interned, but now they are. Hence
the lifetime on the new `Layout` type.
Unlike other interned types, these ones are in `rustc_target` instead of
`rustc_middle`. This reflects the existing structure of the code, which
does layout-specific stuff in `rustc_target` while `TyAndLayout` is
generic over the `Ty`, allowing the type-specific stuff to occur in
`rustc_middle`.
The commit also adds a `HashStable` impl for `Interned`, which was
needed. It hashes the contents, unlike the `Hash` impl which hashes the
pointer.
Introduce `ConstAllocation`.
Currently some `Allocation`s are interned, some are not, and it's very
hard to tell at a use point which is which.
This commit introduces `ConstAllocation` for the known-interned ones,
which makes the division much clearer. `ConstAllocation::inner()` is
used to get the underlying `Allocation`.
In some places it's natural to use an `Allocation`, in some it's natural
to use a `ConstAllocation`, and in some places there's no clear choice.
I've tried to make things look as nice as possible, while generally
favouring `ConstAllocation`, which is the type that embodies more
information. This does require quite a few calls to `inner()`.
The commit also tweaks how `PartialOrd` works for `Interned`. The
previous code was too clever by half, building on `T: Ord` to make the
code shorter. That caused problems with deriving `PartialOrd` and `Ord`
for `ConstAllocation`, so I changed it to build on `T: PartialOrd`,
which is slightly more verbose but much more standard and avoided the
problems.
r? `@fee1-dead`
Currently some `Allocation`s are interned, some are not, and it's very
hard to tell at a use point which is which.
This commit introduces `ConstAllocation` for the known-interned ones,
which makes the division much clearer. `ConstAllocation::inner()` is
used to get the underlying `Allocation`.
In some places it's natural to use an `Allocation`, in some it's natural
to use a `ConstAllocation`, and in some places there's no clear choice.
I've tried to make things look as nice as possible, while generally
favouring `ConstAllocation`, which is the type that embodies more
information. This does require quite a few calls to `inner()`.
The commit also tweaks how `PartialOrd` works for `Interned`. The
previous code was too clever by half, building on `T: Ord` to make the
code shorter. That caused problems with deriving `PartialOrd` and `Ord`
for `ConstAllocation`, so I changed it to build on `T: PartialOrd`,
which is slightly more verbose but much more standard and avoided the
problems.
explain why shift with signed offset works the way it does
I was worried for a bit here that Miri/CTFE would be inconsistent with codegen, but I *think* everything is all right, actually.
Cc `@oli-obk` `@eddyb`
Always include global target features in function attributes
This ensures that information about target features configured with
`-C target-feature=...` or detected with `-C target-cpu=native` is
retained for subsequent consumers of LLVM bitcode.
This is crucial for linker plugin LTO, since this information is not
conveyed to the plugin otherwise.
<details><summary>Additional test case demonstrating the issue</summary>
```rust
extern crate core;
#[inline]
#[target_feature(enable = "aes")]
unsafe fn f(a: u128, b: u128) -> u128 {
use core::arch::x86_64::*;
use core::mem::transmute;
transmute(_mm_aesenc_si128(transmute(a), transmute(b)))
}
pub fn g(a: u128, b: u128) -> u128 {
unsafe { f(a, b) }
}
fn main() {
let mut args = std::env::args();
let _ = args.next().unwrap();
let a: u128 = args.next().unwrap().parse().unwrap();
let b: u128 = args.next().unwrap().parse().unwrap();
println!("{}", g(a, b));
}
```
```console
$ rustc --edition=2021 a.rs -Clinker-plugin-lto -Clink-arg=-fuse-ld=lld -Ctarget-feature=+aes -O
...
= note: LLVM ERROR: Cannot select: intrinsic %llvm.x86.aesni.aesenc
```
</details>
r? `@nagisa`