Remove macOS 10.10 dynamic linker bug workaround
Rust's current minimum macOS version is 10.12, so the hack can be removed. This PR also updates the `remove_dir_all` docs to reflect that all supported macOS versions are protected against TOCTOU race conditions (the fallback implementation was already removed in #127683).
try-job: dist-x86_64-apple
try-job: dist-aarch64-apple
try-job: dist-apple-various
try-job: aarch64-apple
try-job: x86_64-apple-1
`pal::unsupported::process::ExitCode`: use an `u8` instead of a `bool`
`ExitCode` should “represents the status code the current process can return to its parent under normal termination”, but is currently represented as a `bool` on unsupported platforms, making the `impl From<u8> for ExitCode` lossy.
Fixes#130532.
History: [IRLO thread](https://internals.rust-lang.org/t/mini-pre-rfc-redesigning-process-exitstatus/5426) (`ExitCode` as a `main` return), #48618 (initial impl), #93445 (`From<u8>` impl).
Win: Open dir for sync access in remove_dir_all
A small follow up to #129800.
We should explicitly open directories for synchronous access. We ultimately use `GetFileInformationByHandleEx` to read directories which should paper over any issues caused by using async directory reads (or else return an error) but it's better to do the right thing in the first place. Note though that `delete` does not read or write any data so it's not necessary there.
In the implementation of `force_mut`, I chose performance over safety.
For `LazyLock` this isn't really a choice; the code has to be unsafe.
But for `LazyCell`, we can have a full-safe implementation, but it will
be a bit less performant, so I went with the unsafe approach.
fix: Remove duplicate `LazyLock` example.
The top-level docs for `LazyLock` included two lines of code, each with an accompanying comment, that were identical and with nearly- identical comments. This looks like an oversight from a past edit which was perhaps trying to rewrite an existing example but ended up duplicating rather than replacing, though I haven't gone back through the Git history to check.
This commit removes what I personally think is the less-clear of the two examples.
[library/std/src/process.rs] `PartialEq` for `ExitCode`
Converting a third-party CLI to a library so started passing around [`std::process::ExitCode`](https://doc.rust-lang.org/std/process/struct.ExitCode.html) in an `Either`. Then I realised the tests can't be modified to compare equality of `ExitCode`s.
This PR fixes this oversight.
The top-level docs for `LazyLock` included two lines of code, each
with an accompanying comment, that were identical and with nearly-
identical comments. This looks like an oversight from a past edit
which was perhaps trying to rewrite an existing example but ended
up duplicating rather than replacing, though I haven't gone back
through the Git history to check.
This commit removes what I personally think is the less-clear of
the two examples.
Signed-off-by: Andrew Lilley Brinker <alilleybrinker@gmail.com>
Add `core::panic::abort_unwind`
`abort_unwind` is like `catch_unwind` except that it aborts the process if it unwinds, using the `#[rustc_nounwind]` mechanism also used by `extern "C" fn` to abort unwinding. The docs attempt to make it clear when to (rarely) and when not to (usually) use the function.
Although usage of the function is discouraged, having it available will help to normalize the experience when abort_unwind shims are hit, as opposed to the current ecosystem where there exist multiple common patterns for converting unwinding into a process abort.
For further information and justification, see the linked ACP.
- Tracking issue: https://github.com/rust-lang/rust/issues/130338
- ACP: https://github.com/rust-lang/libs-team/issues/441
Stabilize `&mut` (and `*mut`) as well as `&Cell` (and `*const Cell`) in const
This stabilizes `const_mut_refs` and `const_refs_to_cell`. That allows a bunch of new things in const contexts:
- Mentioning `&mut` types
- Creating `&mut` and `*mut` values
- Creating `&T` and `*const T` values where `T` contains interior mutability
- Dereferencing `&mut` and `*mut` values (both for reads and writes)
The same rules as at runtime apply: mutating immutable data is UB. This includes mutation through pointers derived from shared references; the following is diagnosed with a hard error:
```rust
#[allow(invalid_reference_casting)]
const _: () = {
let mut val = 15;
let ptr = &val as *const i32 as *mut i32;
unsafe { *ptr = 16; }
};
```
The main limitation that is enforced is that the final value of a const (or non-`mut` static) may not contain `&mut` values nor interior mutable `&` values. This is necessary because the memory those references point to becomes *read-only* when the constant is done computing, so (interior) mutable references to such memory would be pretty dangerous. We take a multi-layered approach here to ensuring no mutable references escape the initializer expression:
- A static analysis rejects (interior) mutable references when the referee looks like it may outlive the current MIR body.
- To be extra sure, this static check is complemented by a "safety net" of dynamic checks. ("Dynamic" in the sense of "running during/after const-evaluation, e.g. at runtime of this code" -- in contrast to "static" which works entirely by looking at the MIR without evaluating it.)
- After the final value is computed, we do a type-driven traversal of the entire value, and if we find any `&mut` or interior-mutable `&` we error out.
- However, the type-driven traversal cannot traverse `union` or raw pointers, so there is a second dynamic check where if the final value of the const contains any pointer that was not derived from a shared reference, we complain. This is currently a future-compat lint, but will become an ICE in #128543. On the off-chance that it's actually possible to trigger this lint on stable, I'd prefer if we could make it an ICE before stabilizing const_mut_refs, but it's not a hard blocker. This part of the "safety net" is only active for mutable references since with shared references, it has false positives.
Altogether this should prevent people from leaking (interior) mutable references out of the const initializer.
While updating the tests I learned that surprisingly, this code gets rejected:
```rust
const _: Vec<i32> = {
let mut x = Vec::<i32>::new(); //~ ERROR destructor of `Vec<i32>` cannot be evaluated at compile-time
let r = &mut x;
let y = x;
y
};
```
The analysis that rejects destructors in `const` is very conservative when it sees an `&mut` being created to `x`, and then considers `x` to be always live. See [here](https://github.com/rust-lang/rust/issues/65394#issuecomment-541499219) for a longer explanation. `const_precise_live_drops` will solve this, so I consider this problem to be tracked by https://github.com/rust-lang/rust/issues/73255.
Cc `@rust-lang/wg-const-eval` `@rust-lang/lang`
Cc https://github.com/rust-lang/rust/issues/57349
Cc https://github.com/rust-lang/rust/issues/80384
some const cleanup: remove unnecessary attributes, add const-hack indications
I learned that we use `FIXME(const-hack)` on top of the "const-hack" label. That seems much better since it marks the right place in the code and moves around with the code. So I went through the PRs with that label and added appropriate FIXMEs in the code. IMO this means we can then remove the label -- Cc ``@rust-lang/wg-const-eval.``
I also noticed some const stability attributes that don't do anything useful, and removed them.
r? ``@fee1-dead``
Expand documentation of PathBuf, discussing lack of sanitization
Various methods in `PathBuf`, in particular `set_file_name` and `set_extension` accept strings which include path seperators (like `../../etc`). These methods just glue together strings, so you can end up with strange strings.
This isn't reasonable to change/fix at this point, and might not even be fixable, but I think should be documented. In particular, you probably shouldn't blindly build paths using strings given by possibly malicious users.
Limit `libc::link` usage to `nto70` target only, not NTO OS
It seems QNX 7.0 does not support `linkat` at all (most tests were failing). Limiting to QNX 7.0 only, while using `linkat` for the future versions seems like the right path forward (tested on 7.0).
Fixes#129895
CC: `@japaric` `@flba-eb` `@saethlin`
enable const-float-classify test, and test_next_up/down on 32bit x86
The test_next_up/down tests have been disabled on all 32bit x86 targets, which goes too far -- they should definitely work on our (tier 1) i686 target, it is only without SSE that we might run into trouble due to https://github.com/rust-lang/rust/issues/114479. However, I cannot reproduce that trouble any more -- maybe that got fixed by https://github.com/rust-lang/rust/pull/123351?
The const-float-classify test relied on const traits "because we can", and got disabled when const traits got removed. That's an unfortunate reduction in test coverage of our float functionality, so let's restore the test in a way that does not rely on const traits.
The const-float tests are actually testing runtime behavior as well, and I don't think that runtime behavior is covered anywhere else. Probably they shouldn't be called "const-float", but we don't have a `tests/ui/float` folder... should I create one and move them there? Are there any other ui tests that should be moved there?
I also removed some FIXME referring to not use x87 for Rust-to-Rust-calls -- that has happened in #123351 so this got fixed indeed. Does that mean we can simplify all that float code again? I am not sure how to test it. Is running the test suite with an i586 target enough?
Cc ```@tgross35``` ```@workingjubilee```
It seems QNX 7.0 does not support `linkat` at all (most tests were failing). Limiting to QNX 7.0 only, while using `linkat` for the future versions seems like the right path forward (tested on 7.0).
Fixes 129895