rust/compiler/rustc_expand/src/config.rs

497 lines
19 KiB
Rust
Raw Normal View History

2020-03-08 21:32:25 +00:00
//! Conditional compilation stripping.
use std::iter;
use rustc_ast::token::{Delimiter, Token, TokenKind};
use rustc_ast::tokenstream::{
AttrTokenStream, AttrTokenTree, LazyAttrTokenStream, Spacing, TokenTree,
};
use rustc_ast::{
self as ast, AttrKind, AttrStyle, Attribute, HasAttrs, HasTokens, MetaItem, MetaItemInner,
NodeId, NormalAttr,
};
use rustc_attr_parsing as attr;
use rustc_data_structures::flat_map_in_place::FlatMapInPlace;
use rustc_feature::{
ACCEPTED_LANG_FEATURES, AttributeSafety, EnabledLangFeature, EnabledLibFeature, Features,
REMOVED_LANG_FEATURES, UNSTABLE_LANG_FEATURES,
};
use rustc_lint_defs::BuiltinLintDiag;
use rustc_parse::validate_attr;
use rustc_session::Session;
use rustc_session::parse::feature_err;
use rustc_span::{STDLIB_STABLE_CRATES, Span, Symbol, sym};
use thin_vec::ThinVec;
use tracing::instrument;
2019-02-06 17:33:01 +00:00
use crate::errors::{
CrateNameInCfgAttr, CrateTypeInCfgAttr, FeatureNotAllowed, FeatureRemoved,
FeatureRemovedReason, InvalidCfg, MalformedFeatureAttribute, MalformedFeatureAttributeHelp,
RemoveExprNotSupported,
};
2016-06-01 02:13:45 +00:00
/// A folder that strips out items that do not belong in the current configuration.
pub struct StripUnconfigured<'a> {
pub sess: &'a Session,
2016-06-11 01:37:24 +00:00
pub features: Option<&'a Features>,
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 23:33:17 +00:00
/// If `true`, perform cfg-stripping on attached tokens.
/// This is only used for the input to derive macros,
/// which needs eager expansion of `cfg` and `cfg_attr`
pub config_tokens: bool,
pub lint_node_id: NodeId,
}
pub fn features(sess: &Session, krate_attrs: &[Attribute], crate_name: Symbol) -> Features {
2024-10-04 12:59:04 +00:00
fn feature_list(attr: &Attribute) -> ThinVec<ast::MetaItemInner> {
2023-10-13 08:58:33 +00:00
if attr.has_name(sym::feature)
&& let Some(list) = attr.meta_item_list()
{
list
} else {
ThinVec::new()
}
}
2020-01-02 11:33:56 +00:00
let mut features = Features::default();
// Process all features enabled in the code.
2020-01-02 11:33:56 +00:00
for attr in krate_attrs {
for mi in feature_list(attr) {
2020-01-02 11:33:56 +00:00
let name = match mi.ident() {
Some(ident) if mi.is_word() => ident.name,
Some(ident) => {
sess.dcx().emit_err(MalformedFeatureAttribute {
span: mi.span(),
help: MalformedFeatureAttributeHelp::Suggestion {
span: mi.span(),
suggestion: ident.name,
},
});
2020-01-02 11:33:56 +00:00
continue;
}
None => {
sess.dcx().emit_err(MalformedFeatureAttribute {
span: mi.span(),
help: MalformedFeatureAttributeHelp::Label { span: mi.span() },
});
2020-01-02 11:33:56 +00:00
continue;
}
};
// If the enabled feature has been removed, issue an error.
if let Some(f) = REMOVED_LANG_FEATURES.iter().find(|f| name == f.feature.name) {
let pull_note = if let Some(pull) = f.pull {
format!(
"; see <https://github.com/rust-lang/rust/pull/{}> for more information",
pull
)
} else {
"".to_owned()
};
sess.dcx().emit_err(FeatureRemoved {
span: mi.span(),
reason: f.reason.map(|reason| FeatureRemovedReason { reason }),
removed_rustc_version: f.feature.since,
current_rustc_version: sess.cfg_version,
pull_note,
});
continue;
2020-01-02 11:33:56 +00:00
}
// If the enabled feature is stable, record it.
if let Some(f) = ACCEPTED_LANG_FEATURES.iter().find(|f| name == f.name) {
features.set_enabled_lang_feature(EnabledLangFeature {
gate_name: name,
attr_sp: mi.span(),
stable_since: Some(Symbol::intern(f.since)),
});
2020-01-02 11:33:56 +00:00
continue;
}
// If `-Z allow-features` is used and the enabled feature is
// unstable and not also listed as one of the allowed features,
// issue an error.
if let Some(allowed) = sess.opts.unstable_opts.allow_features.as_ref() {
if allowed.iter().all(|f| name.as_str() != f) {
sess.dcx().emit_err(FeatureNotAllowed { span: mi.span(), name });
2020-01-02 11:33:56 +00:00
continue;
}
}
// If the enabled feature is unstable, record it.
if UNSTABLE_LANG_FEATURES.iter().find(|f| name == f.name).is_some() {
// When the ICE comes a standard library crate, there's a chance that the person
// hitting the ICE may be using -Zbuild-std or similar with an untested target.
// The bug is probably in the standard library and not the compiler in that case,
// but that doesn't really matter - we want a bug report.
if features.internal(name) && !STDLIB_STABLE_CRATES.contains(&crate_name) {
sess.using_internal_features.store(true, std::sync::atomic::Ordering::Relaxed);
}
features.set_enabled_lang_feature(EnabledLangFeature {
gate_name: name,
attr_sp: mi.span(),
stable_since: None,
});
2020-01-02 11:33:56 +00:00
continue;
}
// Otherwise, the feature is unknown. Enable it as a lib feature.
// It will be checked later whether the feature really exists.
features
.set_enabled_lib_feature(EnabledLibFeature { gate_name: name, attr_sp: mi.span() });
// Similar to above, detect internal lib features to suppress
// the ICE message that asks for a report.
if features.internal(name) && !STDLIB_STABLE_CRATES.contains(&crate_name) {
sess.using_internal_features.store(true, std::sync::atomic::Ordering::Relaxed);
}
2020-01-02 11:33:56 +00:00
}
}
features
}
pub fn pre_configure_attrs(sess: &Session, attrs: &[Attribute]) -> ast::AttrVec {
let strip_unconfigured = StripUnconfigured {
sess,
features: None,
config_tokens: false,
lint_node_id: ast::CRATE_NODE_ID,
};
attrs
.iter()
.flat_map(|attr| strip_unconfigured.process_cfg_attr(attr))
.take_while(|attr| !is_cfg(attr) || strip_unconfigured.cfg_true(attr).0)
.collect()
}
pub(crate) fn attr_into_trace(mut attr: Attribute, trace_name: Symbol) -> Attribute {
match &mut attr.kind {
AttrKind::Normal(normal) => {
let NormalAttr { item, tokens } = &mut **normal;
item.path.segments[0].ident.name = trace_name;
// This makes the trace attributes unobservable to token-based proc macros.
*tokens = Some(LazyAttrTokenStream::new_direct(AttrTokenStream::default()));
}
AttrKind::DocComment(..) => unreachable!(),
}
attr
}
#[macro_export]
macro_rules! configure {
($this:ident, $node:ident) => {
match $this.configure($node) {
Some(node) => node,
None => return Default::default(),
}
2019-12-22 22:42:04 +00:00
};
}
impl<'a> StripUnconfigured<'a> {
pub fn configure<T: HasAttrs + HasTokens>(&self, mut node: T) -> Option<T> {
Overhaul `syntax::fold::Folder`. This commit changes `syntax::fold::Folder` from a functional style (where most methods take a `T` and produce a new `T`) to a more imperative style (where most methods take and modify a `&mut T`), and renames it `syntax::mut_visit::MutVisitor`. The first benefit is speed. The functional style does not require any reallocations, due to the use of `P::map` and `MoveMap::move_{,flat_}map`. However, every field in the AST must be overwritten; even those fields that are unchanged are overwritten with the same value. This causes a lot of unnecessary memory writes. The imperative style reduces instruction counts by 1--3% across a wide range of workloads, particularly incremental workloads. The second benefit is conciseness; the imperative style is usually more concise. E.g. compare the old functional style: ``` fn fold_abc(&mut self, abc: ABC) { ABC { a: fold_a(abc.a), b: fold_b(abc.b), c: abc.c, } } ``` with the imperative style: ``` fn visit_abc(&mut self, ABC { a, b, c: _ }: &mut ABC) { visit_a(a); visit_b(b); } ``` (The reductions get larger in more complex examples.) Overall, the patch removes over 200 lines of code -- even though the new code has more comments -- and a lot of the remaining lines have fewer characters. Some notes: - The old style used methods called `fold_*`. The new style mostly uses methods called `visit_*`, but there are a few methods that map a `T` to something other than a `T`, which are called `flat_map_*` (`T` maps to multiple `T`s) or `filter_map_*` (`T` maps to 0 or 1 `T`s). - `move_map.rs`/`MoveMap`/`move_map`/`move_flat_map` are renamed `map_in_place.rs`/`MapInPlace`/`map_in_place`/`flat_map_in_place` to reflect their slightly changed signatures. - Although this commit renames the `fold` module as `mut_visit`, it keeps it in the `fold.rs` file, so as not to confuse git. The next commit will rename the file.
2019-02-05 04:20:55 +00:00
self.process_cfg_attrs(&mut node);
self.in_cfg(node.attrs()).then(|| {
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 23:33:17 +00:00
self.try_configure_tokens(&mut node);
node
})
2016-06-01 02:13:45 +00:00
}
fn try_configure_tokens<T: HasTokens>(&self, node: &mut T) {
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 23:33:17 +00:00
if self.config_tokens {
if let Some(Some(tokens)) = node.tokens_mut() {
let attr_stream = tokens.to_attr_token_stream();
*tokens = LazyAttrTokenStream::new_direct(self.configure_tokens(&attr_stream));
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 23:33:17 +00:00
}
}
}
/// Performs cfg-expansion on `stream`, producing a new `AttrTokenStream`.
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 23:33:17 +00:00
/// This is only used during the invocation of `derive` proc-macros,
/// which require that we cfg-expand their entire input.
/// Normal cfg-expansion operates on parsed AST nodes via the `configure` method
fn configure_tokens(&self, stream: &AttrTokenStream) -> AttrTokenStream {
fn can_skip(stream: &AttrTokenStream) -> bool {
stream.0.iter().all(|tree| match tree {
AttrTokenTree::AttrsTarget(_) => false,
AttrTokenTree::Token(..) => true,
AttrTokenTree::Delimited(.., inner) => can_skip(inner),
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 23:33:17 +00:00
})
}
if can_skip(stream) {
return stream.clone();
}
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 23:33:17 +00:00
let trees: Vec<_> = stream
.0
.iter()
.filter_map(|tree| match tree.clone() {
AttrTokenTree::AttrsTarget(mut target) => {
// Expand any `cfg_attr` attributes.
target.attrs.flat_map_in_place(|attr| self.process_cfg_attr(&attr));
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 23:33:17 +00:00
if self.in_cfg(&target.attrs) {
target.tokens = LazyAttrTokenStream::new_direct(
self.configure_tokens(&target.tokens.to_attr_token_stream()),
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 23:33:17 +00:00
);
Some(AttrTokenTree::AttrsTarget(target))
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 23:33:17 +00:00
} else {
// Remove the target if there's a `cfg` attribute and
// the condition isn't satisfied.
None
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 23:33:17 +00:00
}
}
AttrTokenTree::Delimited(sp, spacing, delim, mut inner) => {
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 23:33:17 +00:00
inner = self.configure_tokens(&inner);
Some(AttrTokenTree::Delimited(sp, spacing, delim, inner))
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 23:33:17 +00:00
}
AttrTokenTree::Token(Token { kind, .. }, _) if kind.is_delim() => {
panic!("Should be `AttrTokenTree::Delimited`, not delim tokens: {:?}", tree);
}
AttrTokenTree::Token(token, spacing) => Some(AttrTokenTree::Token(token, spacing)),
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 23:33:17 +00:00
})
.collect();
AttrTokenStream::new(trees)
}
/// Parse and expand all `cfg_attr` attributes into a list of attributes
/// that are within each `cfg_attr` that has a true configuration predicate.
///
2020-03-06 11:13:55 +00:00
/// Gives compiler warnings if any `cfg_attr` does not contain any
/// attributes and is in the original source code. Gives compiler errors if
/// the syntax of any `cfg_attr` is incorrect.
fn process_cfg_attrs<T: HasAttrs>(&self, node: &mut T) {
Overhaul `syntax::fold::Folder`. This commit changes `syntax::fold::Folder` from a functional style (where most methods take a `T` and produce a new `T`) to a more imperative style (where most methods take and modify a `&mut T`), and renames it `syntax::mut_visit::MutVisitor`. The first benefit is speed. The functional style does not require any reallocations, due to the use of `P::map` and `MoveMap::move_{,flat_}map`. However, every field in the AST must be overwritten; even those fields that are unchanged are overwritten with the same value. This causes a lot of unnecessary memory writes. The imperative style reduces instruction counts by 1--3% across a wide range of workloads, particularly incremental workloads. The second benefit is conciseness; the imperative style is usually more concise. E.g. compare the old functional style: ``` fn fold_abc(&mut self, abc: ABC) { ABC { a: fold_a(abc.a), b: fold_b(abc.b), c: abc.c, } } ``` with the imperative style: ``` fn visit_abc(&mut self, ABC { a, b, c: _ }: &mut ABC) { visit_a(a); visit_b(b); } ``` (The reductions get larger in more complex examples.) Overall, the patch removes over 200 lines of code -- even though the new code has more comments -- and a lot of the remaining lines have fewer characters. Some notes: - The old style used methods called `fold_*`. The new style mostly uses methods called `visit_*`, but there are a few methods that map a `T` to something other than a `T`, which are called `flat_map_*` (`T` maps to multiple `T`s) or `filter_map_*` (`T` maps to 0 or 1 `T`s). - `move_map.rs`/`MoveMap`/`move_map`/`move_flat_map` are renamed `map_in_place.rs`/`MapInPlace`/`map_in_place`/`flat_map_in_place` to reflect their slightly changed signatures. - Although this commit renames the `fold` module as `mut_visit`, it keeps it in the `fold.rs` file, so as not to confuse git. The next commit will rename the file.
2019-02-05 04:20:55 +00:00
node.visit_attrs(|attrs| {
attrs.flat_map_in_place(|attr| self.process_cfg_attr(&attr));
Overhaul `syntax::fold::Folder`. This commit changes `syntax::fold::Folder` from a functional style (where most methods take a `T` and produce a new `T`) to a more imperative style (where most methods take and modify a `&mut T`), and renames it `syntax::mut_visit::MutVisitor`. The first benefit is speed. The functional style does not require any reallocations, due to the use of `P::map` and `MoveMap::move_{,flat_}map`. However, every field in the AST must be overwritten; even those fields that are unchanged are overwritten with the same value. This causes a lot of unnecessary memory writes. The imperative style reduces instruction counts by 1--3% across a wide range of workloads, particularly incremental workloads. The second benefit is conciseness; the imperative style is usually more concise. E.g. compare the old functional style: ``` fn fold_abc(&mut self, abc: ABC) { ABC { a: fold_a(abc.a), b: fold_b(abc.b), c: abc.c, } } ``` with the imperative style: ``` fn visit_abc(&mut self, ABC { a, b, c: _ }: &mut ABC) { visit_a(a); visit_b(b); } ``` (The reductions get larger in more complex examples.) Overall, the patch removes over 200 lines of code -- even though the new code has more comments -- and a lot of the remaining lines have fewer characters. Some notes: - The old style used methods called `fold_*`. The new style mostly uses methods called `visit_*`, but there are a few methods that map a `T` to something other than a `T`, which are called `flat_map_*` (`T` maps to multiple `T`s) or `filter_map_*` (`T` maps to 0 or 1 `T`s). - `move_map.rs`/`MoveMap`/`move_map`/`move_flat_map` are renamed `map_in_place.rs`/`MapInPlace`/`map_in_place`/`flat_map_in_place` to reflect their slightly changed signatures. - Although this commit renames the `fold` module as `mut_visit`, it keeps it in the `fold.rs` file, so as not to confuse git. The next commit will rename the file.
2019-02-05 04:20:55 +00:00
});
2016-06-01 02:13:45 +00:00
}
fn process_cfg_attr(&self, attr: &Attribute) -> Vec<Attribute> {
if attr.has_name(sym::cfg_attr) {
self.expand_cfg_attr(attr, true)
} else {
vec![attr.clone()]
}
}
/// Parse and expand a single `cfg_attr` attribute into a list of attributes
/// when the configuration predicate is true, or otherwise expand into an
/// empty list of attributes.
///
2018-10-22 16:21:55 +00:00
/// Gives a compiler warning when the `cfg_attr` contains no attributes and
/// is in the original source file. Gives a compiler error if the syntax of
2019-02-08 13:53:55 +00:00
/// the attribute is incorrect.
pub(crate) fn expand_cfg_attr(&self, cfg_attr: &Attribute, recursive: bool) -> Vec<Attribute> {
validate_attr::check_attribute_safety(
&self.sess.psess,
Some(AttributeSafety::Normal),
&cfg_attr,
ast::CRATE_NODE_ID,
);
2024-07-03 04:52:16 +00:00
// A trace attribute left in AST in place of the original `cfg_attr` attribute.
// It can later be used by lints or other diagnostics.
let trace_attr = attr_into_trace(cfg_attr.clone(), sym::cfg_attr_trace);
2022-02-18 23:48:49 +00:00
let Some((cfg_predicate, expanded_attrs)) =
rustc_parse::parse_cfg_attr(cfg_attr, &self.sess.psess)
2023-07-13 01:49:27 +00:00
else {
return vec![trace_attr];
2023-07-13 01:49:27 +00:00
};
2019-06-22 10:11:01 +00:00
// Lint on zero attributes in source.
if expanded_attrs.is_empty() {
self.sess.psess.buffer_lint(
rustc_lint_defs::builtin::UNUSED_ATTRIBUTES,
cfg_attr.span,
ast::CRATE_NODE_ID,
BuiltinLintDiag::CfgAttrNoAttributes,
);
2018-10-04 11:55:47 +00:00
}
if !attr::cfg_matches(&cfg_predicate, &self.sess, self.lint_node_id, self.features) {
return vec![trace_attr];
2019-12-05 05:45:50 +00:00
}
if recursive {
// We call `process_cfg_attr` recursively in case there's a
// `cfg_attr` inside of another `cfg_attr`. E.g.
// `#[cfg_attr(false, cfg_attr(true, some_attr))]`.
let expanded_attrs = expanded_attrs
.into_iter()
.flat_map(|item| self.process_cfg_attr(&self.expand_cfg_attr_item(cfg_attr, item)));
iter::once(trace_attr).chain(expanded_attrs).collect()
} else {
let expanded_attrs =
expanded_attrs.into_iter().map(|item| self.expand_cfg_attr_item(cfg_attr, item));
iter::once(trace_attr).chain(expanded_attrs).collect()
}
}
fn expand_cfg_attr_item(
&self,
cfg_attr: &Attribute,
(item, item_span): (ast::AttrItem, Span),
) -> Attribute {
// Convert `#[cfg_attr(pred, attr)]` to `#[attr]`.
// Use the `#` from `#[cfg_attr(pred, attr)]` in the result `#[attr]`.
let mut orig_trees = cfg_attr.token_trees().into_iter();
let Some(TokenTree::Token(pound_token @ Token { kind: TokenKind::Pound, .. }, _)) =
orig_trees.next()
2023-07-13 01:49:27 +00:00
else {
panic!("Bad tokens for attribute {cfg_attr:?}");
};
// For inner attributes, we do the same thing for the `!` in `#![attr]`.
let mut trees = if cfg_attr.style == AttrStyle::Inner {
let Some(TokenTree::Token(bang_token @ Token { kind: TokenKind::Bang, .. }, _)) =
orig_trees.next()
Improve `print_tts` by changing `tokenstream::Spacing`. `tokenstream::Spacing` appears on all `TokenTree::Token` instances, both punct and non-punct. Its current usage: - `Joint` means "can join with the next token *and* that token is a punct". - `Alone` means "cannot join with the next token *or* can join with the next token but that token is not a punct". The fact that `Alone` is used for two different cases is awkward. This commit augments `tokenstream::Spacing` with a new variant `JointHidden`, resulting in: - `Joint` means "can join with the next token *and* that token is a punct". - `JointHidden` means "can join with the next token *and* that token is a not a punct". - `Alone` means "cannot join with the next token". This *drastically* improves the output of `print_tts`. For example, this: ``` stringify!(let a: Vec<u32> = vec![];) ``` currently produces this string: ``` let a : Vec < u32 > = vec! [] ; ``` With this PR, it now produces this string: ``` let a: Vec<u32> = vec![] ; ``` (The space after the `]` is because `TokenTree::Delimited` currently doesn't have spacing information. The subsequent commit fixes this.) The new `print_tts` doesn't replicate original code perfectly. E.g. multiple space characters will be condensed into a single space character. But it's much improved. `print_tts` still produces the old, uglier output for code produced by proc macros. Because we have to translate the generated code from `proc_macro::Spacing` to the more expressive `token::Spacing`, which results in too much `proc_macro::Along` usage and no `proc_macro::JointHidden` usage. So `space_between` still exists and is used by `print_tts` in conjunction with the `Spacing` field. This change will also help with the removal of `Token::Interpolated`. Currently interpolated tokens are pretty-printed nicely via AST pretty printing. `Token::Interpolated` removal will mean they get printed with `print_tts`. Without this change, that would result in much uglier output for code produced by decl macro expansions. With this change, AST pretty printing and `print_tts` produce similar results. The commit also tweaks the comments on `proc_macro::Spacing`. In particular, it refers to "compound tokens" rather than "multi-char operators" because lifetimes aren't operators.
2023-08-08 01:43:44 +00:00
else {
panic!("Bad tokens for attribute {cfg_attr:?}");
Improve `print_tts` by changing `tokenstream::Spacing`. `tokenstream::Spacing` appears on all `TokenTree::Token` instances, both punct and non-punct. Its current usage: - `Joint` means "can join with the next token *and* that token is a punct". - `Alone` means "cannot join with the next token *or* can join with the next token but that token is not a punct". The fact that `Alone` is used for two different cases is awkward. This commit augments `tokenstream::Spacing` with a new variant `JointHidden`, resulting in: - `Joint` means "can join with the next token *and* that token is a punct". - `JointHidden` means "can join with the next token *and* that token is a not a punct". - `Alone` means "cannot join with the next token". This *drastically* improves the output of `print_tts`. For example, this: ``` stringify!(let a: Vec<u32> = vec![];) ``` currently produces this string: ``` let a : Vec < u32 > = vec! [] ; ``` With this PR, it now produces this string: ``` let a: Vec<u32> = vec![] ; ``` (The space after the `]` is because `TokenTree::Delimited` currently doesn't have spacing information. The subsequent commit fixes this.) The new `print_tts` doesn't replicate original code perfectly. E.g. multiple space characters will be condensed into a single space character. But it's much improved. `print_tts` still produces the old, uglier output for code produced by proc macros. Because we have to translate the generated code from `proc_macro::Spacing` to the more expressive `token::Spacing`, which results in too much `proc_macro::Along` usage and no `proc_macro::JointHidden` usage. So `space_between` still exists and is used by `print_tts` in conjunction with the `Spacing` field. This change will also help with the removal of `Token::Interpolated`. Currently interpolated tokens are pretty-printed nicely via AST pretty printing. `Token::Interpolated` removal will mean they get printed with `print_tts`. Without this change, that would result in much uglier output for code produced by decl macro expansions. With this change, AST pretty printing and `print_tts` produce similar results. The commit also tweaks the comments on `proc_macro::Spacing`. In particular, it refers to "compound tokens" rather than "multi-char operators" because lifetimes aren't operators.
2023-08-08 01:43:44 +00:00
};
vec![
AttrTokenTree::Token(pound_token, Spacing::Joint),
AttrTokenTree::Token(bang_token, Spacing::JointHidden),
]
} else {
vec![AttrTokenTree::Token(pound_token, Spacing::JointHidden)]
};
// And the same thing for the `[`/`]` delimiters in `#[attr]`.
let Some(TokenTree::Delimited(delim_span, delim_spacing, Delimiter::Bracket, _)) =
orig_trees.next()
else {
panic!("Bad tokens for attribute {cfg_attr:?}");
Improve `print_tts` by changing `tokenstream::Spacing`. `tokenstream::Spacing` appears on all `TokenTree::Token` instances, both punct and non-punct. Its current usage: - `Joint` means "can join with the next token *and* that token is a punct". - `Alone` means "cannot join with the next token *or* can join with the next token but that token is not a punct". The fact that `Alone` is used for two different cases is awkward. This commit augments `tokenstream::Spacing` with a new variant `JointHidden`, resulting in: - `Joint` means "can join with the next token *and* that token is a punct". - `JointHidden` means "can join with the next token *and* that token is a not a punct". - `Alone` means "cannot join with the next token". This *drastically* improves the output of `print_tts`. For example, this: ``` stringify!(let a: Vec<u32> = vec![];) ``` currently produces this string: ``` let a : Vec < u32 > = vec! [] ; ``` With this PR, it now produces this string: ``` let a: Vec<u32> = vec![] ; ``` (The space after the `]` is because `TokenTree::Delimited` currently doesn't have spacing information. The subsequent commit fixes this.) The new `print_tts` doesn't replicate original code perfectly. E.g. multiple space characters will be condensed into a single space character. But it's much improved. `print_tts` still produces the old, uglier output for code produced by proc macros. Because we have to translate the generated code from `proc_macro::Spacing` to the more expressive `token::Spacing`, which results in too much `proc_macro::Along` usage and no `proc_macro::JointHidden` usage. So `space_between` still exists and is used by `print_tts` in conjunction with the `Spacing` field. This change will also help with the removal of `Token::Interpolated`. Currently interpolated tokens are pretty-printed nicely via AST pretty printing. `Token::Interpolated` removal will mean they get printed with `print_tts`. Without this change, that would result in much uglier output for code produced by decl macro expansions. With this change, AST pretty printing and `print_tts` produce similar results. The commit also tweaks the comments on `proc_macro::Spacing`. In particular, it refers to "compound tokens" rather than "multi-char operators" because lifetimes aren't operators.
2023-08-08 01:43:44 +00:00
};
trees.push(AttrTokenTree::Delimited(
delim_span,
delim_spacing,
Delimiter::Bracket,
item.tokens
.as_ref()
.unwrap_or_else(|| panic!("Missing tokens for {item:?}"))
.to_attr_token_stream(),
));
let tokens = Some(LazyAttrTokenStream::new_direct(AttrTokenStream::new(trees)));
2024-12-07 14:27:17 +00:00
let attr = ast::attr::mk_attr_from_item(
&self.sess.psess.attr_id_generator,
2022-09-02 08:29:40 +00:00
item,
tokens,
cfg_attr.style,
2022-09-02 08:29:40 +00:00
item_span,
);
if attr.has_name(sym::crate_type) {
self.sess.dcx().emit_err(CrateTypeInCfgAttr { span: attr.span });
}
if attr.has_name(sym::crate_name) {
self.sess.dcx().emit_err(CrateNameInCfgAttr { span: attr.span });
}
attr
2019-12-05 05:45:50 +00:00
}
2019-02-08 13:53:55 +00:00
/// Determines if a node with the given attributes should be included in this configuration.
fn in_cfg(&self, attrs: &[Attribute]) -> bool {
attrs.iter().all(|attr| !is_cfg(attr) || self.cfg_true(attr).0)
}
pub(crate) fn cfg_true(&self, attr: &Attribute) -> (bool, Option<MetaItem>) {
let meta_item = match validate_attr::parse_meta(&self.sess.psess, attr) {
Ok(meta_item) => meta_item,
Make `DiagnosticBuilder::emit` consuming. This works for most of its call sites. This is nice, because `emit` very much makes sense as a consuming operation -- indeed, `DiagnosticBuilderState` exists to ensure no diagnostic is emitted twice, but it uses runtime checks. For the small number of call sites where a consuming emit doesn't work, the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will be removed in subsequent commits.) Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes consuming, while `delay_as_bug_without_consuming` is added (which will also be removed in subsequent commits.) All this requires significant changes to `DiagnosticBuilder`'s chaining methods. Currently `DiagnosticBuilder` method chaining uses a non-consuming `&mut self -> &mut Self` style, which allows chaining to be used when the chain ends in `emit()`, like so: ``` struct_err(msg).span(span).emit(); ``` But it doesn't work when producing a `DiagnosticBuilder` value, requiring this: ``` let mut err = self.struct_err(msg); err.span(span); err ``` This style of chaining won't work with consuming `emit` though. For that, we need to use to a `self -> Self` style. That also would allow `DiagnosticBuilder` production to be chained, e.g.: ``` self.struct_err(msg).span(span) ``` However, removing the `&mut self -> &mut Self` style would require that individual modifications of a `DiagnosticBuilder` go from this: ``` err.span(span); ``` to this: ``` err = err.span(span); ``` There are *many* such places. I have a high tolerance for tedious refactorings, but even I gave up after a long time trying to convert them all. Instead, this commit has it both ways: the existing `&mut self -> Self` chaining methods are kept, and new `self -> Self` chaining methods are added, all of which have a `_mv` suffix (short for "move"). Changes to the existing `forward!` macro lets this happen with very little additional boilerplate code. I chose to add the suffix to the new chaining methods rather than the existing ones, because the number of changes required is much smaller that way. This doubled chainging is a bit clumsy, but I think it is worthwhile because it allows a *lot* of good things to subsequently happen. In this commit, there are many `mut` qualifiers removed in places where diagnostics are emitted without being modified. In subsequent commits: - chaining can be used more, making the code more concise; - more use of chaining also permits the removal of redundant diagnostic APIs like `struct_err_with_code`, which can be replaced easily with `struct_err` + `code_mv`; - `emit_without_diagnostic` can be removed, which simplifies a lot of machinery, removing the need for `DiagnosticBuilderState`.
2024-01-03 01:17:35 +00:00
Err(err) => {
err.emit();
return (true, None);
2018-09-01 21:13:22 +00:00
}
};
2024-07-03 04:52:16 +00:00
2024-08-07 06:36:28 +00:00
validate_attr::deny_builtin_meta_unsafety(&self.sess.psess, &meta_item);
2024-07-03 04:52:16 +00:00
(
parse_cfg(&meta_item, self.sess).is_none_or(|meta_item| {
attr::cfg_matches(meta_item, &self.sess, self.lint_node_id, self.features)
}),
Some(meta_item),
)
}
/// If attributes are not allowed on expressions, emit an error for `attr`
#[instrument(level = "trace", skip(self))]
pub(crate) fn maybe_emit_expr_attr_err(&self, attr: &Attribute) {
if self.features.is_some_and(|features| !features.stmt_expr_attributes())
&& !attr.span.allows_unstable(sym::stmt_expr_attributes)
{
2019-12-22 22:42:04 +00:00
let mut err = feature_err(
&self.sess,
2019-12-22 22:42:04 +00:00
sym::stmt_expr_attributes,
attr.span,
crate::fluent_generated::expand_attributes_on_expressions_experimental,
2019-12-22 22:42:04 +00:00
);
if attr.is_doc_comment() {
err.help(if attr.style == AttrStyle::Outer {
crate::fluent_generated::expand_help_outer_doc
} else {
crate::fluent_generated::expand_help_inner_doc
});
2016-06-11 01:37:24 +00:00
}
err.emit();
2016-05-15 09:15:02 +00:00
}
}
#[instrument(level = "trace", skip(self))]
pub fn configure_expr(&self, expr: &mut ast::Expr, method_receiver: bool) {
if !method_receiver {
for attr in expr.attrs.iter() {
self.maybe_emit_expr_attr_err(attr);
}
}
2016-06-11 01:37:24 +00:00
// If an expr is valid to cfg away it will have been removed by the
// outer stmt or expression folder before descending in here.
// Anything else is always required, and thus has to error out
// in case of a cfg attr.
//
Overhaul `syntax::fold::Folder`. This commit changes `syntax::fold::Folder` from a functional style (where most methods take a `T` and produce a new `T`) to a more imperative style (where most methods take and modify a `&mut T`), and renames it `syntax::mut_visit::MutVisitor`. The first benefit is speed. The functional style does not require any reallocations, due to the use of `P::map` and `MoveMap::move_{,flat_}map`. However, every field in the AST must be overwritten; even those fields that are unchanged are overwritten with the same value. This causes a lot of unnecessary memory writes. The imperative style reduces instruction counts by 1--3% across a wide range of workloads, particularly incremental workloads. The second benefit is conciseness; the imperative style is usually more concise. E.g. compare the old functional style: ``` fn fold_abc(&mut self, abc: ABC) { ABC { a: fold_a(abc.a), b: fold_b(abc.b), c: abc.c, } } ``` with the imperative style: ``` fn visit_abc(&mut self, ABC { a, b, c: _ }: &mut ABC) { visit_a(a); visit_b(b); } ``` (The reductions get larger in more complex examples.) Overall, the patch removes over 200 lines of code -- even though the new code has more comments -- and a lot of the remaining lines have fewer characters. Some notes: - The old style used methods called `fold_*`. The new style mostly uses methods called `visit_*`, but there are a few methods that map a `T` to something other than a `T`, which are called `flat_map_*` (`T` maps to multiple `T`s) or `filter_map_*` (`T` maps to 0 or 1 `T`s). - `move_map.rs`/`MoveMap`/`move_map`/`move_flat_map` are renamed `map_in_place.rs`/`MapInPlace`/`map_in_place`/`flat_map_in_place` to reflect their slightly changed signatures. - Although this commit renames the `fold` module as `mut_visit`, it keeps it in the `fold.rs` file, so as not to confuse git. The next commit will rename the file.
2019-02-05 04:20:55 +00:00
// N.B., this is intentionally not part of the visit_expr() function
// in order for filter_map_expr() to be able to avoid this check
2023-04-09 21:07:18 +00:00
if let Some(attr) = expr.attrs().iter().find(|a| is_cfg(a)) {
self.sess.dcx().emit_err(RemoveExprNotSupported { span: attr.span });
2016-06-11 01:37:24 +00:00
}
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 23:33:17 +00:00
self.process_cfg_attrs(expr);
self.try_configure_tokens(&mut *expr);
}
}
2024-10-04 12:59:04 +00:00
pub fn parse_cfg<'a>(meta_item: &'a MetaItem, sess: &Session) -> Option<&'a MetaItemInner> {
let span = meta_item.span;
match meta_item.meta_item_list() {
None => {
sess.dcx().emit_err(InvalidCfg::NotFollowedByParens { span });
None
}
Some([]) => {
sess.dcx().emit_err(InvalidCfg::NoPredicate { span });
None
}
Some([_, .., l]) => {
sess.dcx().emit_err(InvalidCfg::MultiplePredicates { span: l.span() });
None
}
Some([single]) => match single.meta_item_or_bool() {
Some(meta_item) => Some(meta_item),
None => {
sess.dcx().emit_err(InvalidCfg::PredicateLiteral { span: single.span() });
None
}
},
}
}
fn is_cfg(attr: &Attribute) -> bool {
attr.has_name(sym::cfg)
}