//! Conditional compilation stripping. use std::iter; use rustc_ast::token::{Delimiter, Token, TokenKind}; use rustc_ast::tokenstream::{ AttrTokenStream, AttrTokenTree, LazyAttrTokenStream, Spacing, TokenTree, }; use rustc_ast::{ self as ast, AttrKind, AttrStyle, Attribute, HasAttrs, HasTokens, MetaItem, MetaItemInner, NodeId, NormalAttr, }; use rustc_attr_parsing as attr; use rustc_data_structures::flat_map_in_place::FlatMapInPlace; use rustc_feature::{ ACCEPTED_LANG_FEATURES, AttributeSafety, EnabledLangFeature, EnabledLibFeature, Features, REMOVED_LANG_FEATURES, UNSTABLE_LANG_FEATURES, }; use rustc_lint_defs::BuiltinLintDiag; use rustc_parse::validate_attr; use rustc_session::Session; use rustc_session::parse::feature_err; use rustc_span::{STDLIB_STABLE_CRATES, Span, Symbol, sym}; use thin_vec::ThinVec; use tracing::instrument; use crate::errors::{ CrateNameInCfgAttr, CrateTypeInCfgAttr, FeatureNotAllowed, FeatureRemoved, FeatureRemovedReason, InvalidCfg, MalformedFeatureAttribute, MalformedFeatureAttributeHelp, RemoveExprNotSupported, }; /// A folder that strips out items that do not belong in the current configuration. pub struct StripUnconfigured<'a> { pub sess: &'a Session, pub features: Option<&'a Features>, /// If `true`, perform cfg-stripping on attached tokens. /// This is only used for the input to derive macros, /// which needs eager expansion of `cfg` and `cfg_attr` pub config_tokens: bool, pub lint_node_id: NodeId, } pub fn features(sess: &Session, krate_attrs: &[Attribute], crate_name: Symbol) -> Features { fn feature_list(attr: &Attribute) -> ThinVec { if attr.has_name(sym::feature) && let Some(list) = attr.meta_item_list() { list } else { ThinVec::new() } } let mut features = Features::default(); // Process all features enabled in the code. for attr in krate_attrs { for mi in feature_list(attr) { let name = match mi.ident() { Some(ident) if mi.is_word() => ident.name, Some(ident) => { sess.dcx().emit_err(MalformedFeatureAttribute { span: mi.span(), help: MalformedFeatureAttributeHelp::Suggestion { span: mi.span(), suggestion: ident.name, }, }); continue; } None => { sess.dcx().emit_err(MalformedFeatureAttribute { span: mi.span(), help: MalformedFeatureAttributeHelp::Label { span: mi.span() }, }); continue; } }; // If the enabled feature has been removed, issue an error. if let Some(f) = REMOVED_LANG_FEATURES.iter().find(|f| name == f.feature.name) { let pull_note = if let Some(pull) = f.pull { format!( "; see for more information", pull ) } else { "".to_owned() }; sess.dcx().emit_err(FeatureRemoved { span: mi.span(), reason: f.reason.map(|reason| FeatureRemovedReason { reason }), removed_rustc_version: f.feature.since, current_rustc_version: sess.cfg_version, pull_note, }); continue; } // If the enabled feature is stable, record it. if let Some(f) = ACCEPTED_LANG_FEATURES.iter().find(|f| name == f.name) { features.set_enabled_lang_feature(EnabledLangFeature { gate_name: name, attr_sp: mi.span(), stable_since: Some(Symbol::intern(f.since)), }); continue; } // If `-Z allow-features` is used and the enabled feature is // unstable and not also listed as one of the allowed features, // issue an error. if let Some(allowed) = sess.opts.unstable_opts.allow_features.as_ref() { if allowed.iter().all(|f| name.as_str() != f) { sess.dcx().emit_err(FeatureNotAllowed { span: mi.span(), name }); continue; } } // If the enabled feature is unstable, record it. if UNSTABLE_LANG_FEATURES.iter().find(|f| name == f.name).is_some() { // When the ICE comes a standard library crate, there's a chance that the person // hitting the ICE may be using -Zbuild-std or similar with an untested target. // The bug is probably in the standard library and not the compiler in that case, // but that doesn't really matter - we want a bug report. if features.internal(name) && !STDLIB_STABLE_CRATES.contains(&crate_name) { sess.using_internal_features.store(true, std::sync::atomic::Ordering::Relaxed); } features.set_enabled_lang_feature(EnabledLangFeature { gate_name: name, attr_sp: mi.span(), stable_since: None, }); continue; } // Otherwise, the feature is unknown. Enable it as a lib feature. // It will be checked later whether the feature really exists. features .set_enabled_lib_feature(EnabledLibFeature { gate_name: name, attr_sp: mi.span() }); // Similar to above, detect internal lib features to suppress // the ICE message that asks for a report. if features.internal(name) && !STDLIB_STABLE_CRATES.contains(&crate_name) { sess.using_internal_features.store(true, std::sync::atomic::Ordering::Relaxed); } } } features } pub fn pre_configure_attrs(sess: &Session, attrs: &[Attribute]) -> ast::AttrVec { let strip_unconfigured = StripUnconfigured { sess, features: None, config_tokens: false, lint_node_id: ast::CRATE_NODE_ID, }; attrs .iter() .flat_map(|attr| strip_unconfigured.process_cfg_attr(attr)) .take_while(|attr| !is_cfg(attr) || strip_unconfigured.cfg_true(attr).0) .collect() } pub(crate) fn attr_into_trace(mut attr: Attribute, trace_name: Symbol) -> Attribute { match &mut attr.kind { AttrKind::Normal(normal) => { let NormalAttr { item, tokens } = &mut **normal; item.path.segments[0].ident.name = trace_name; // This makes the trace attributes unobservable to token-based proc macros. *tokens = Some(LazyAttrTokenStream::new_direct(AttrTokenStream::default())); } AttrKind::DocComment(..) => unreachable!(), } attr } #[macro_export] macro_rules! configure { ($this:ident, $node:ident) => { match $this.configure($node) { Some(node) => node, None => return Default::default(), } }; } impl<'a> StripUnconfigured<'a> { pub fn configure(&self, mut node: T) -> Option { self.process_cfg_attrs(&mut node); self.in_cfg(node.attrs()).then(|| { self.try_configure_tokens(&mut node); node }) } fn try_configure_tokens(&self, node: &mut T) { if self.config_tokens { if let Some(Some(tokens)) = node.tokens_mut() { let attr_stream = tokens.to_attr_token_stream(); *tokens = LazyAttrTokenStream::new_direct(self.configure_tokens(&attr_stream)); } } } /// Performs cfg-expansion on `stream`, producing a new `AttrTokenStream`. /// This is only used during the invocation of `derive` proc-macros, /// which require that we cfg-expand their entire input. /// Normal cfg-expansion operates on parsed AST nodes via the `configure` method fn configure_tokens(&self, stream: &AttrTokenStream) -> AttrTokenStream { fn can_skip(stream: &AttrTokenStream) -> bool { stream.0.iter().all(|tree| match tree { AttrTokenTree::AttrsTarget(_) => false, AttrTokenTree::Token(..) => true, AttrTokenTree::Delimited(.., inner) => can_skip(inner), }) } if can_skip(stream) { return stream.clone(); } let trees: Vec<_> = stream .0 .iter() .filter_map(|tree| match tree.clone() { AttrTokenTree::AttrsTarget(mut target) => { // Expand any `cfg_attr` attributes. target.attrs.flat_map_in_place(|attr| self.process_cfg_attr(&attr)); if self.in_cfg(&target.attrs) { target.tokens = LazyAttrTokenStream::new_direct( self.configure_tokens(&target.tokens.to_attr_token_stream()), ); Some(AttrTokenTree::AttrsTarget(target)) } else { // Remove the target if there's a `cfg` attribute and // the condition isn't satisfied. None } } AttrTokenTree::Delimited(sp, spacing, delim, mut inner) => { inner = self.configure_tokens(&inner); Some(AttrTokenTree::Delimited(sp, spacing, delim, inner)) } AttrTokenTree::Token(Token { kind, .. }, _) if kind.is_delim() => { panic!("Should be `AttrTokenTree::Delimited`, not delim tokens: {:?}", tree); } AttrTokenTree::Token(token, spacing) => Some(AttrTokenTree::Token(token, spacing)), }) .collect(); AttrTokenStream::new(trees) } /// Parse and expand all `cfg_attr` attributes into a list of attributes /// that are within each `cfg_attr` that has a true configuration predicate. /// /// Gives compiler warnings if any `cfg_attr` does not contain any /// attributes and is in the original source code. Gives compiler errors if /// the syntax of any `cfg_attr` is incorrect. fn process_cfg_attrs(&self, node: &mut T) { node.visit_attrs(|attrs| { attrs.flat_map_in_place(|attr| self.process_cfg_attr(&attr)); }); } fn process_cfg_attr(&self, attr: &Attribute) -> Vec { if attr.has_name(sym::cfg_attr) { self.expand_cfg_attr(attr, true) } else { vec![attr.clone()] } } /// Parse and expand a single `cfg_attr` attribute into a list of attributes /// when the configuration predicate is true, or otherwise expand into an /// empty list of attributes. /// /// Gives a compiler warning when the `cfg_attr` contains no attributes and /// is in the original source file. Gives a compiler error if the syntax of /// the attribute is incorrect. pub(crate) fn expand_cfg_attr(&self, cfg_attr: &Attribute, recursive: bool) -> Vec { validate_attr::check_attribute_safety( &self.sess.psess, Some(AttributeSafety::Normal), &cfg_attr, ast::CRATE_NODE_ID, ); // A trace attribute left in AST in place of the original `cfg_attr` attribute. // It can later be used by lints or other diagnostics. let trace_attr = attr_into_trace(cfg_attr.clone(), sym::cfg_attr_trace); let Some((cfg_predicate, expanded_attrs)) = rustc_parse::parse_cfg_attr(cfg_attr, &self.sess.psess) else { return vec![trace_attr]; }; // Lint on zero attributes in source. if expanded_attrs.is_empty() { self.sess.psess.buffer_lint( rustc_lint_defs::builtin::UNUSED_ATTRIBUTES, cfg_attr.span, ast::CRATE_NODE_ID, BuiltinLintDiag::CfgAttrNoAttributes, ); } if !attr::cfg_matches(&cfg_predicate, &self.sess, self.lint_node_id, self.features) { return vec![trace_attr]; } if recursive { // We call `process_cfg_attr` recursively in case there's a // `cfg_attr` inside of another `cfg_attr`. E.g. // `#[cfg_attr(false, cfg_attr(true, some_attr))]`. let expanded_attrs = expanded_attrs .into_iter() .flat_map(|item| self.process_cfg_attr(&self.expand_cfg_attr_item(cfg_attr, item))); iter::once(trace_attr).chain(expanded_attrs).collect() } else { let expanded_attrs = expanded_attrs.into_iter().map(|item| self.expand_cfg_attr_item(cfg_attr, item)); iter::once(trace_attr).chain(expanded_attrs).collect() } } fn expand_cfg_attr_item( &self, cfg_attr: &Attribute, (item, item_span): (ast::AttrItem, Span), ) -> Attribute { // Convert `#[cfg_attr(pred, attr)]` to `#[attr]`. // Use the `#` from `#[cfg_attr(pred, attr)]` in the result `#[attr]`. let mut orig_trees = cfg_attr.token_trees().into_iter(); let Some(TokenTree::Token(pound_token @ Token { kind: TokenKind::Pound, .. }, _)) = orig_trees.next() else { panic!("Bad tokens for attribute {cfg_attr:?}"); }; // For inner attributes, we do the same thing for the `!` in `#![attr]`. let mut trees = if cfg_attr.style == AttrStyle::Inner { let Some(TokenTree::Token(bang_token @ Token { kind: TokenKind::Bang, .. }, _)) = orig_trees.next() else { panic!("Bad tokens for attribute {cfg_attr:?}"); }; vec![ AttrTokenTree::Token(pound_token, Spacing::Joint), AttrTokenTree::Token(bang_token, Spacing::JointHidden), ] } else { vec![AttrTokenTree::Token(pound_token, Spacing::JointHidden)] }; // And the same thing for the `[`/`]` delimiters in `#[attr]`. let Some(TokenTree::Delimited(delim_span, delim_spacing, Delimiter::Bracket, _)) = orig_trees.next() else { panic!("Bad tokens for attribute {cfg_attr:?}"); }; trees.push(AttrTokenTree::Delimited( delim_span, delim_spacing, Delimiter::Bracket, item.tokens .as_ref() .unwrap_or_else(|| panic!("Missing tokens for {item:?}")) .to_attr_token_stream(), )); let tokens = Some(LazyAttrTokenStream::new_direct(AttrTokenStream::new(trees))); let attr = ast::attr::mk_attr_from_item( &self.sess.psess.attr_id_generator, item, tokens, cfg_attr.style, item_span, ); if attr.has_name(sym::crate_type) { self.sess.dcx().emit_err(CrateTypeInCfgAttr { span: attr.span }); } if attr.has_name(sym::crate_name) { self.sess.dcx().emit_err(CrateNameInCfgAttr { span: attr.span }); } attr } /// Determines if a node with the given attributes should be included in this configuration. fn in_cfg(&self, attrs: &[Attribute]) -> bool { attrs.iter().all(|attr| !is_cfg(attr) || self.cfg_true(attr).0) } pub(crate) fn cfg_true(&self, attr: &Attribute) -> (bool, Option) { let meta_item = match validate_attr::parse_meta(&self.sess.psess, attr) { Ok(meta_item) => meta_item, Err(err) => { err.emit(); return (true, None); } }; validate_attr::deny_builtin_meta_unsafety(&self.sess.psess, &meta_item); ( parse_cfg(&meta_item, self.sess).is_none_or(|meta_item| { attr::cfg_matches(meta_item, &self.sess, self.lint_node_id, self.features) }), Some(meta_item), ) } /// If attributes are not allowed on expressions, emit an error for `attr` #[instrument(level = "trace", skip(self))] pub(crate) fn maybe_emit_expr_attr_err(&self, attr: &Attribute) { if self.features.is_some_and(|features| !features.stmt_expr_attributes()) && !attr.span.allows_unstable(sym::stmt_expr_attributes) { let mut err = feature_err( &self.sess, sym::stmt_expr_attributes, attr.span, crate::fluent_generated::expand_attributes_on_expressions_experimental, ); if attr.is_doc_comment() { err.help(if attr.style == AttrStyle::Outer { crate::fluent_generated::expand_help_outer_doc } else { crate::fluent_generated::expand_help_inner_doc }); } err.emit(); } } #[instrument(level = "trace", skip(self))] pub fn configure_expr(&self, expr: &mut ast::Expr, method_receiver: bool) { if !method_receiver { for attr in expr.attrs.iter() { self.maybe_emit_expr_attr_err(attr); } } // If an expr is valid to cfg away it will have been removed by the // outer stmt or expression folder before descending in here. // Anything else is always required, and thus has to error out // in case of a cfg attr. // // N.B., this is intentionally not part of the visit_expr() function // in order for filter_map_expr() to be able to avoid this check if let Some(attr) = expr.attrs().iter().find(|a| is_cfg(a)) { self.sess.dcx().emit_err(RemoveExprNotSupported { span: attr.span }); } self.process_cfg_attrs(expr); self.try_configure_tokens(&mut *expr); } } pub fn parse_cfg<'a>(meta_item: &'a MetaItem, sess: &Session) -> Option<&'a MetaItemInner> { let span = meta_item.span; match meta_item.meta_item_list() { None => { sess.dcx().emit_err(InvalidCfg::NotFollowedByParens { span }); None } Some([]) => { sess.dcx().emit_err(InvalidCfg::NoPredicate { span }); None } Some([_, .., l]) => { sess.dcx().emit_err(InvalidCfg::MultiplePredicates { span: l.span() }); None } Some([single]) => match single.meta_item_or_bool() { Some(meta_item) => Some(meta_item), None => { sess.dcx().emit_err(InvalidCfg::PredicateLiteral { span: single.span() }); None } }, } } fn is_cfg(attr: &Attribute) -> bool { attr.has_name(sym::cfg) }