rust/src/libstd/sys/unix/fs.rs

560 lines
16 KiB
Rust
Raw Normal View History

// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use io::prelude::*;
use os::unix::prelude::*;
use ffi::{CString, CStr, OsString, OsStr};
use fmt;
use io::{self, Error, ErrorKind, SeekFrom};
use libc::{self, c_int, size_t, off_t, c_char, mode_t};
use mem;
use path::{Path, PathBuf};
use ptr;
use sync::Arc;
use sys::fd::FileDesc;
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
use sys::platform::raw;
use sys::{c, cvt, cvt_r};
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
use sys_common::{AsInner, FromInner};
use vec::Vec;
pub struct File(FileDesc);
#[derive(Clone)]
pub struct FileAttr {
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
stat: raw::stat,
}
pub struct ReadDir {
dirp: Dir,
root: Arc<PathBuf>,
}
struct Dir(*mut libc::DIR);
unsafe impl Send for Dir {}
unsafe impl Sync for Dir {}
pub struct DirEntry {
buf: Vec<u8>, // actually *mut libc::dirent_t
root: Arc<PathBuf>,
}
#[derive(Clone)]
pub struct OpenOptions {
flags: c_int,
read: bool,
write: bool,
mode: mode_t,
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct FilePermissions { mode: mode_t }
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct FileType { mode: mode_t }
pub struct DirBuilder { mode: mode_t }
impl FileAttr {
pub fn size(&self) -> u64 { self.stat.st_size as u64 }
pub fn perm(&self) -> FilePermissions {
FilePermissions { mode: (self.stat.st_mode as mode_t) & 0o777 }
}
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
pub fn file_type(&self) -> FileType {
FileType { mode: self.stat.st_mode as mode_t }
}
}
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
impl AsInner<raw::stat> for FileAttr {
fn as_inner(&self) -> &raw::stat { &self.stat }
}
std: Stabilize a number of new fs features This commit stabilizes the following APIs, slating them all to be cherry-picked into the 1.1 release. * fs::FileType (and transitively the derived trait implementations) * fs::Metadata::file_type * fs::FileType::is_dir * fs::FileType::is_file * fs::FileType::is_symlink * fs::DirEntry::metadata * fs::DirEntry::file_type * fs::DirEntry::file_name * fs::set_permissions * fs::symlink_metadata * os::raw::{self, *} * os::{android, bitrig, linux, ...}::raw::{self, *} * os::{android, bitrig, linux, ...}::fs::MetadataExt * os::{android, bitrig, linux, ...}::fs::MetadataExt::as_raw_stat * os::unix::fs::PermissionsExt * os::unix::fs::PermissionsExt::mode * os::unix::fs::PermissionsExt::set_mode * os::unix::fs::PermissionsExt::from_mode * os::unix::fs::OpenOptionsExt * os::unix::fs::OpenOptionsExt::mode * os::unix::fs::DirEntryExt * os::unix::fs::DirEntryExt::ino * os::windows::fs::MetadataExt * os::windows::fs::MetadataExt::file_attributes * os::windows::fs::MetadataExt::creation_time * os::windows::fs::MetadataExt::last_access_time * os::windows::fs::MetadataExt::last_write_time * os::windows::fs::MetadataExt::file_size The `os::unix::fs::Metadata` structure was also removed entirely, moving all of its associated methods into the `os::unix::fs::MetadataExt` trait instead. The methods are all marked as `#[stable]` still. As some minor cleanup, some deprecated and unstable fs apis were also removed: * File::path * Metadata::accessed * Metadata::modified Features that were explicitly left unstable include: * fs::WalkDir - the semantics of this were not considered in the recent fs expansion RFC. * fs::DirBuilder - it's still not 100% clear if the naming is right here and if the set of functionality exposed is appropriate. * fs::canonicalize - the implementation on Windows here is specifically in question as it always returns a verbatim path. Additionally the Unix implementation is susceptible to buffer overflows on long paths unfortunately. * fs::PathExt - as this is just a convenience trait, it is not stabilized at this time. * fs::set_file_times - this funciton is still waiting on a time abstraction.
2015-05-27 23:29:55 +00:00
/// OS-specific extension methods for `fs::Metadata`
#[stable(feature = "metadata_ext", since = "1.1.0")]
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
pub trait MetadataExt {
std: Stabilize a number of new fs features This commit stabilizes the following APIs, slating them all to be cherry-picked into the 1.1 release. * fs::FileType (and transitively the derived trait implementations) * fs::Metadata::file_type * fs::FileType::is_dir * fs::FileType::is_file * fs::FileType::is_symlink * fs::DirEntry::metadata * fs::DirEntry::file_type * fs::DirEntry::file_name * fs::set_permissions * fs::symlink_metadata * os::raw::{self, *} * os::{android, bitrig, linux, ...}::raw::{self, *} * os::{android, bitrig, linux, ...}::fs::MetadataExt * os::{android, bitrig, linux, ...}::fs::MetadataExt::as_raw_stat * os::unix::fs::PermissionsExt * os::unix::fs::PermissionsExt::mode * os::unix::fs::PermissionsExt::set_mode * os::unix::fs::PermissionsExt::from_mode * os::unix::fs::OpenOptionsExt * os::unix::fs::OpenOptionsExt::mode * os::unix::fs::DirEntryExt * os::unix::fs::DirEntryExt::ino * os::windows::fs::MetadataExt * os::windows::fs::MetadataExt::file_attributes * os::windows::fs::MetadataExt::creation_time * os::windows::fs::MetadataExt::last_access_time * os::windows::fs::MetadataExt::last_write_time * os::windows::fs::MetadataExt::file_size The `os::unix::fs::Metadata` structure was also removed entirely, moving all of its associated methods into the `os::unix::fs::MetadataExt` trait instead. The methods are all marked as `#[stable]` still. As some minor cleanup, some deprecated and unstable fs apis were also removed: * File::path * Metadata::accessed * Metadata::modified Features that were explicitly left unstable include: * fs::WalkDir - the semantics of this were not considered in the recent fs expansion RFC. * fs::DirBuilder - it's still not 100% clear if the naming is right here and if the set of functionality exposed is appropriate. * fs::canonicalize - the implementation on Windows here is specifically in question as it always returns a verbatim path. Additionally the Unix implementation is susceptible to buffer overflows on long paths unfortunately. * fs::PathExt - as this is just a convenience trait, it is not stabilized at this time. * fs::set_file_times - this funciton is still waiting on a time abstraction.
2015-05-27 23:29:55 +00:00
/// Gain a reference to the underlying `stat` structure which contains the
/// raw information returned by the OS.
///
/// The contents of the returned `stat` are **not** consistent across Unix
/// platforms. The `os::unix::fs::MetadataExt` trait contains the cross-Unix
/// abstractions contained within the raw stat.
#[stable(feature = "metadata_ext", since = "1.1.0")]
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
fn as_raw_stat(&self) -> &raw::stat;
}
std: Stabilize a number of new fs features This commit stabilizes the following APIs, slating them all to be cherry-picked into the 1.1 release. * fs::FileType (and transitively the derived trait implementations) * fs::Metadata::file_type * fs::FileType::is_dir * fs::FileType::is_file * fs::FileType::is_symlink * fs::DirEntry::metadata * fs::DirEntry::file_type * fs::DirEntry::file_name * fs::set_permissions * fs::symlink_metadata * os::raw::{self, *} * os::{android, bitrig, linux, ...}::raw::{self, *} * os::{android, bitrig, linux, ...}::fs::MetadataExt * os::{android, bitrig, linux, ...}::fs::MetadataExt::as_raw_stat * os::unix::fs::PermissionsExt * os::unix::fs::PermissionsExt::mode * os::unix::fs::PermissionsExt::set_mode * os::unix::fs::PermissionsExt::from_mode * os::unix::fs::OpenOptionsExt * os::unix::fs::OpenOptionsExt::mode * os::unix::fs::DirEntryExt * os::unix::fs::DirEntryExt::ino * os::windows::fs::MetadataExt * os::windows::fs::MetadataExt::file_attributes * os::windows::fs::MetadataExt::creation_time * os::windows::fs::MetadataExt::last_access_time * os::windows::fs::MetadataExt::last_write_time * os::windows::fs::MetadataExt::file_size The `os::unix::fs::Metadata` structure was also removed entirely, moving all of its associated methods into the `os::unix::fs::MetadataExt` trait instead. The methods are all marked as `#[stable]` still. As some minor cleanup, some deprecated and unstable fs apis were also removed: * File::path * Metadata::accessed * Metadata::modified Features that were explicitly left unstable include: * fs::WalkDir - the semantics of this were not considered in the recent fs expansion RFC. * fs::DirBuilder - it's still not 100% clear if the naming is right here and if the set of functionality exposed is appropriate. * fs::canonicalize - the implementation on Windows here is specifically in question as it always returns a verbatim path. Additionally the Unix implementation is susceptible to buffer overflows on long paths unfortunately. * fs::PathExt - as this is just a convenience trait, it is not stabilized at this time. * fs::set_file_times - this funciton is still waiting on a time abstraction.
2015-05-27 23:29:55 +00:00
#[stable(feature = "metadata_ext", since = "1.1.0")]
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
impl MetadataExt for ::fs::Metadata {
fn as_raw_stat(&self) -> &raw::stat { &self.as_inner().stat }
}
impl FilePermissions {
pub fn readonly(&self) -> bool { self.mode & 0o222 == 0 }
pub fn set_readonly(&mut self, readonly: bool) {
if readonly {
self.mode &= !0o222;
} else {
self.mode |= 0o222;
}
}
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
pub fn mode(&self) -> raw::mode_t { self.mode }
}
impl FileType {
pub fn is_dir(&self) -> bool { self.is(libc::S_IFDIR) }
pub fn is_file(&self) -> bool { self.is(libc::S_IFREG) }
pub fn is_symlink(&self) -> bool { self.is(libc::S_IFLNK) }
pub fn is(&self, mode: mode_t) -> bool { self.mode & libc::S_IFMT == mode }
}
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
impl FromInner<raw::mode_t> for FilePermissions {
fn from_inner(mode: raw::mode_t) -> FilePermissions {
FilePermissions { mode: mode as mode_t }
}
}
impl Iterator for ReadDir {
type Item = io::Result<DirEntry>;
fn next(&mut self) -> Option<io::Result<DirEntry>> {
extern {
fn rust_dirent_t_size() -> c_int;
}
let mut buf: Vec<u8> = Vec::with_capacity(unsafe {
rust_dirent_t_size() as usize
});
let ptr = buf.as_mut_ptr() as *mut libc::dirent_t;
let mut entry_ptr = ptr::null_mut();
loop {
if unsafe { libc::readdir_r(self.dirp.0, ptr, &mut entry_ptr) != 0 } {
return Some(Err(Error::last_os_error()))
}
if entry_ptr.is_null() {
return None
}
let entry = DirEntry {
buf: buf,
root: self.root.clone()
};
if entry.name_bytes() == b"." || entry.name_bytes() == b".." {
buf = entry.buf;
} else {
return Some(Ok(entry))
}
}
}
}
impl Drop for Dir {
fn drop(&mut self) {
let r = unsafe { libc::closedir(self.0) };
debug_assert_eq!(r, 0);
}
}
impl DirEntry {
pub fn path(&self) -> PathBuf {
self.root.join(<OsStr as OsStrExt>::from_bytes(self.name_bytes()))
}
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
pub fn file_name(&self) -> OsString {
OsStr::from_bytes(self.name_bytes()).to_os_string()
}
pub fn metadata(&self) -> io::Result<FileAttr> {
lstat(&self.path())
}
pub fn file_type(&self) -> io::Result<FileType> {
extern {
fn rust_dir_get_mode(ptr: *mut libc::dirent_t) -> c_int;
}
unsafe {
match rust_dir_get_mode(self.dirent()) {
-1 => lstat(&self.path()).map(|m| m.file_type()),
n => Ok(FileType { mode: n as mode_t }),
}
}
}
pub fn ino(&self) -> raw::ino_t {
extern {
fn rust_dir_get_ino(ptr: *mut libc::dirent_t) -> raw::ino_t;
}
unsafe { rust_dir_get_ino(self.dirent()) }
}
fn name_bytes(&self) -> &[u8] {
extern {
fn rust_list_dir_val(ptr: *mut libc::dirent_t) -> *const c_char;
}
unsafe {
CStr::from_ptr(rust_list_dir_val(self.dirent())).to_bytes()
}
}
fn dirent(&self) -> *mut libc::dirent_t {
self.buf.as_ptr() as *mut _
}
}
impl OpenOptions {
pub fn new() -> OpenOptions {
OpenOptions {
flags: libc::O_CLOEXEC,
read: false,
write: false,
2015-02-11 22:40:09 +00:00
mode: 0o666,
}
}
pub fn read(&mut self, read: bool) {
self.read = read;
}
pub fn write(&mut self, write: bool) {
self.write = write;
}
pub fn append(&mut self, append: bool) {
self.flag(libc::O_APPEND, append);
}
pub fn truncate(&mut self, truncate: bool) {
self.flag(libc::O_TRUNC, truncate);
}
pub fn create(&mut self, create: bool) {
self.flag(libc::O_CREAT, create);
}
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
pub fn mode(&mut self, mode: raw::mode_t) {
self.mode = mode as mode_t;
}
fn flag(&mut self, bit: c_int, on: bool) {
if on {
self.flags |= bit;
} else {
self.flags &= !bit;
}
}
}
impl File {
pub fn open(path: &Path, opts: &OpenOptions) -> io::Result<File> {
let path = try!(cstr(path));
File::open_c(&path, opts)
}
pub fn open_c(path: &CStr, opts: &OpenOptions) -> io::Result<File> {
let flags = opts.flags | match (opts.read, opts.write) {
(true, true) => libc::O_RDWR,
(false, true) => libc::O_WRONLY,
(true, false) |
(false, false) => libc::O_RDONLY,
};
let fd = try!(cvt_r(|| unsafe {
libc::open(path.as_ptr(), flags, opts.mode)
}));
let fd = FileDesc::new(fd);
// Even though we open with the O_CLOEXEC flag, still set CLOEXEC here,
// in case the open flag is not supported (it's just ignored by the OS
// in that case).
fd.set_cloexec();
Ok(File(fd))
}
pub fn file_attr(&self) -> io::Result<FileAttr> {
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
let mut stat: raw::stat = unsafe { mem::zeroed() };
try!(cvt(unsafe {
libc::fstat(self.0.raw(), &mut stat as *mut _ as *mut _)
}));
Ok(FileAttr { stat: stat })
}
pub fn fsync(&self) -> io::Result<()> {
try!(cvt_r(|| unsafe { libc::fsync(self.0.raw()) }));
Ok(())
}
pub fn datasync(&self) -> io::Result<()> {
try!(cvt_r(|| unsafe { os_datasync(self.0.raw()) }));
return Ok(());
#[cfg(any(target_os = "macos", target_os = "ios"))]
unsafe fn os_datasync(fd: c_int) -> c_int {
libc::fcntl(fd, libc::F_FULLFSYNC)
}
#[cfg(target_os = "linux")]
unsafe fn os_datasync(fd: c_int) -> c_int { libc::fdatasync(fd) }
#[cfg(not(any(target_os = "macos",
target_os = "ios",
target_os = "linux")))]
unsafe fn os_datasync(fd: c_int) -> c_int { libc::fsync(fd) }
}
pub fn truncate(&self, size: u64) -> io::Result<()> {
try!(cvt_r(|| unsafe {
libc::ftruncate(self.0.raw(), size as libc::off_t)
}));
Ok(())
}
pub fn read(&self, buf: &mut [u8]) -> io::Result<usize> {
self.0.read(buf)
}
pub fn write(&self, buf: &[u8]) -> io::Result<usize> {
self.0.write(buf)
}
pub fn flush(&self) -> io::Result<()> { Ok(()) }
pub fn seek(&self, pos: SeekFrom) -> io::Result<u64> {
let (whence, pos) = match pos {
SeekFrom::Start(off) => (libc::SEEK_SET, off as off_t),
SeekFrom::End(off) => (libc::SEEK_END, off as off_t),
SeekFrom::Current(off) => (libc::SEEK_CUR, off as off_t),
};
let n = try!(cvt(unsafe { libc::lseek(self.0.raw(), pos, whence) }));
Ok(n as u64)
}
pub fn fd(&self) -> &FileDesc { &self.0 }
pub fn into_fd(self) -> FileDesc { self.0 }
}
impl DirBuilder {
pub fn new() -> DirBuilder {
DirBuilder { mode: 0o777 }
}
pub fn mkdir(&self, p: &Path) -> io::Result<()> {
let p = try!(cstr(p));
try!(cvt(unsafe { libc::mkdir(p.as_ptr(), self.mode) }));
Ok(())
}
pub fn set_mode(&mut self, mode: mode_t) {
self.mode = mode;
}
}
std: Implement CString-related RFCs This commit is an implementation of [RFC 592][r592] and [RFC 840][r840]. These two RFCs tweak the behavior of `CString` and add a new `CStr` unsized slice type to the module. [r592]: https://github.com/rust-lang/rfcs/blob/master/text/0592-c-str-deref.md [r840]: https://github.com/rust-lang/rfcs/blob/master/text/0840-no-panic-in-c-string.md The new `CStr` type is only constructable via two methods: 1. By `deref`'ing from a `CString` 2. Unsafely via `CStr::from_ptr` The purpose of `CStr` is to be an unsized type which is a thin pointer to a `libc::c_char` (currently it is a fat pointer slice due to implementation limitations). Strings from C can be safely represented with a `CStr` and an appropriate lifetime as well. Consumers of `&CString` should now consume `&CStr` instead to allow producers to pass in C-originating strings instead of just Rust-allocated strings. A new constructor was added to `CString`, `new`, which takes `T: IntoBytes` instead of separate `from_slice` and `from_vec` methods (both have been deprecated in favor of `new`). The `new` method returns a `Result` instead of panicking. The error variant contains the relevant information about where the error happened and bytes (if present). Conversions are provided to the `io::Error` and `old_io::IoError` types via the `FromError` trait which translate to `InvalidInput`. This is a breaking change due to the modification of existing `#[unstable]` APIs and new deprecation, and more detailed information can be found in the two RFCs. Notable breakage includes: * All construction of `CString` now needs to use `new` and handle the outgoing `Result`. * Usage of `CString` as a byte slice now explicitly needs a `.as_bytes()` call. * The `as_slice*` methods have been removed in favor of just having the `as_bytes*` methods. Closes #22469 Closes #22470 [breaking-change]
2015-02-18 06:47:40 +00:00
fn cstr(path: &Path) -> io::Result<CString> {
path.as_os_str().to_cstring().ok_or(
io::Error::new(io::ErrorKind::InvalidInput, "path contained a null"))
}
impl FromInner<c_int> for File {
fn from_inner(fd: c_int) -> File {
File(FileDesc::new(fd))
}
}
impl fmt::Debug for File {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
#[cfg(target_os = "linux")]
fn get_path(fd: c_int) -> Option<PathBuf> {
use string::ToString;
let mut p = PathBuf::from("/proc/self/fd");
p.push(&fd.to_string());
readlink(&p).ok()
}
#[cfg(target_os = "macos")]
fn get_path(fd: c_int) -> Option<PathBuf> {
Reduce the reliance on `PATH_MAX` - Rewrite `std::sys::fs::readlink` not to rely on `PATH_MAX` It currently has the following problems: 1. It uses `_PC_NAME_MAX` to query the maximum length of a file path in the underlying system. However, the meaning of the constant is the maximum length of *a path component*, not a full path. The correct constant should be `_PC_PATH_MAX`. 2. `pathconf` *may* fail if the referred file does not exist. This can be problematic if the file which the symbolic link points to does not exist, but the link itself does exist. In this case, the current implementation resorts to the hard-coded value of `1024`, which is not ideal. 3. There may exist a platform where there is no limit on file path lengths in general. That's the reaon why GNU Hurd doesn't define `PATH_MAX` at all, in addition to having `pathconf` always returning `-1`. In these platforms, the content of the symbolic link can be silently truncated if the length exceeds the hard-coded limit mentioned above. 4. The value obtained by `pathconf` may be outdated at the point of actually calling `readlink`. This is inherently racy. This commit introduces a loop that gradually increases the length of the buffer passed to `readlink`, eliminating the need of `pathconf`. - Remove the arbitrary memory limit of `std::sys::fs::realpath` As per POSIX 2013, `realpath` will return a malloc'ed buffer if the second argument is a null pointer.[1] [1] http://pubs.opengroup.org/onlinepubs/9699919799/functions/realpath.html - Comment on functions that are still using `PATH_MAX` There are some functions that only work in terms of `PATH_MAX`, such as `F_GETPATH` in OS X. Comments on them for posterity.
2015-08-19 04:11:40 +00:00
// FIXME: The use of PATH_MAX is generally not encouraged, but it
// is inevitable in this case because OS X defines `fcntl` with
// `F_GETPATH` in terms of `MAXPATHLEN`, and there are no
// alternatives. If a better method is invented, it should be used
// instead.
let mut buf = vec![0;libc::PATH_MAX as usize];
let n = unsafe { libc::fcntl(fd, libc::F_GETPATH, buf.as_ptr()) };
if n == -1 {
return None;
}
let l = buf.iter().position(|&c| c == 0).unwrap();
buf.truncate(l as usize);
Reduce the reliance on `PATH_MAX` - Rewrite `std::sys::fs::readlink` not to rely on `PATH_MAX` It currently has the following problems: 1. It uses `_PC_NAME_MAX` to query the maximum length of a file path in the underlying system. However, the meaning of the constant is the maximum length of *a path component*, not a full path. The correct constant should be `_PC_PATH_MAX`. 2. `pathconf` *may* fail if the referred file does not exist. This can be problematic if the file which the symbolic link points to does not exist, but the link itself does exist. In this case, the current implementation resorts to the hard-coded value of `1024`, which is not ideal. 3. There may exist a platform where there is no limit on file path lengths in general. That's the reaon why GNU Hurd doesn't define `PATH_MAX` at all, in addition to having `pathconf` always returning `-1`. In these platforms, the content of the symbolic link can be silently truncated if the length exceeds the hard-coded limit mentioned above. 4. The value obtained by `pathconf` may be outdated at the point of actually calling `readlink`. This is inherently racy. This commit introduces a loop that gradually increases the length of the buffer passed to `readlink`, eliminating the need of `pathconf`. - Remove the arbitrary memory limit of `std::sys::fs::realpath` As per POSIX 2013, `realpath` will return a malloc'ed buffer if the second argument is a null pointer.[1] [1] http://pubs.opengroup.org/onlinepubs/9699919799/functions/realpath.html - Comment on functions that are still using `PATH_MAX` There are some functions that only work in terms of `PATH_MAX`, such as `F_GETPATH` in OS X. Comments on them for posterity.
2015-08-19 04:11:40 +00:00
buf.shrink_to_fit();
Some(PathBuf::from(OsString::from_vec(buf)))
}
#[cfg(not(any(target_os = "linux", target_os = "macos")))]
fn get_path(_fd: c_int) -> Option<PathBuf> {
// FIXME(#24570): implement this for other Unix platforms
None
}
#[cfg(any(target_os = "linux", target_os = "macos"))]
fn get_mode(fd: c_int) -> Option<(bool, bool)> {
let mode = unsafe { libc::fcntl(fd, libc::F_GETFL) };
if mode == -1 {
return None;
}
match mode & libc::O_ACCMODE {
libc::O_RDONLY => Some((true, false)),
libc::O_RDWR => Some((true, true)),
libc::O_WRONLY => Some((false, true)),
_ => None
}
}
#[cfg(not(any(target_os = "linux", target_os = "macos")))]
fn get_mode(_fd: c_int) -> Option<(bool, bool)> {
// FIXME(#24570): implement this for other Unix platforms
None
}
let fd = self.0.raw();
let mut b = f.debug_struct("File");
b.field("fd", &fd);
if let Some(path) = get_path(fd) {
b.field("path", &path);
}
if let Some((read, write)) = get_mode(fd) {
b.field("read", &read).field("write", &write);
}
b.finish()
}
}
pub fn readdir(p: &Path) -> io::Result<ReadDir> {
let root = Arc::new(p.to_path_buf());
std: Implement CString-related RFCs This commit is an implementation of [RFC 592][r592] and [RFC 840][r840]. These two RFCs tweak the behavior of `CString` and add a new `CStr` unsized slice type to the module. [r592]: https://github.com/rust-lang/rfcs/blob/master/text/0592-c-str-deref.md [r840]: https://github.com/rust-lang/rfcs/blob/master/text/0840-no-panic-in-c-string.md The new `CStr` type is only constructable via two methods: 1. By `deref`'ing from a `CString` 2. Unsafely via `CStr::from_ptr` The purpose of `CStr` is to be an unsized type which is a thin pointer to a `libc::c_char` (currently it is a fat pointer slice due to implementation limitations). Strings from C can be safely represented with a `CStr` and an appropriate lifetime as well. Consumers of `&CString` should now consume `&CStr` instead to allow producers to pass in C-originating strings instead of just Rust-allocated strings. A new constructor was added to `CString`, `new`, which takes `T: IntoBytes` instead of separate `from_slice` and `from_vec` methods (both have been deprecated in favor of `new`). The `new` method returns a `Result` instead of panicking. The error variant contains the relevant information about where the error happened and bytes (if present). Conversions are provided to the `io::Error` and `old_io::IoError` types via the `FromError` trait which translate to `InvalidInput`. This is a breaking change due to the modification of existing `#[unstable]` APIs and new deprecation, and more detailed information can be found in the two RFCs. Notable breakage includes: * All construction of `CString` now needs to use `new` and handle the outgoing `Result`. * Usage of `CString` as a byte slice now explicitly needs a `.as_bytes()` call. * The `as_slice*` methods have been removed in favor of just having the `as_bytes*` methods. Closes #22469 Closes #22470 [breaking-change]
2015-02-18 06:47:40 +00:00
let p = try!(cstr(p));
unsafe {
let ptr = libc::opendir(p.as_ptr());
if ptr.is_null() {
Err(Error::last_os_error())
} else {
Ok(ReadDir { dirp: Dir(ptr), root: root })
}
}
}
pub fn unlink(p: &Path) -> io::Result<()> {
std: Implement CString-related RFCs This commit is an implementation of [RFC 592][r592] and [RFC 840][r840]. These two RFCs tweak the behavior of `CString` and add a new `CStr` unsized slice type to the module. [r592]: https://github.com/rust-lang/rfcs/blob/master/text/0592-c-str-deref.md [r840]: https://github.com/rust-lang/rfcs/blob/master/text/0840-no-panic-in-c-string.md The new `CStr` type is only constructable via two methods: 1. By `deref`'ing from a `CString` 2. Unsafely via `CStr::from_ptr` The purpose of `CStr` is to be an unsized type which is a thin pointer to a `libc::c_char` (currently it is a fat pointer slice due to implementation limitations). Strings from C can be safely represented with a `CStr` and an appropriate lifetime as well. Consumers of `&CString` should now consume `&CStr` instead to allow producers to pass in C-originating strings instead of just Rust-allocated strings. A new constructor was added to `CString`, `new`, which takes `T: IntoBytes` instead of separate `from_slice` and `from_vec` methods (both have been deprecated in favor of `new`). The `new` method returns a `Result` instead of panicking. The error variant contains the relevant information about where the error happened and bytes (if present). Conversions are provided to the `io::Error` and `old_io::IoError` types via the `FromError` trait which translate to `InvalidInput`. This is a breaking change due to the modification of existing `#[unstable]` APIs and new deprecation, and more detailed information can be found in the two RFCs. Notable breakage includes: * All construction of `CString` now needs to use `new` and handle the outgoing `Result`. * Usage of `CString` as a byte slice now explicitly needs a `.as_bytes()` call. * The `as_slice*` methods have been removed in favor of just having the `as_bytes*` methods. Closes #22469 Closes #22470 [breaking-change]
2015-02-18 06:47:40 +00:00
let p = try!(cstr(p));
try!(cvt(unsafe { libc::unlink(p.as_ptr()) }));
Ok(())
}
pub fn rename(old: &Path, new: &Path) -> io::Result<()> {
std: Implement CString-related RFCs This commit is an implementation of [RFC 592][r592] and [RFC 840][r840]. These two RFCs tweak the behavior of `CString` and add a new `CStr` unsized slice type to the module. [r592]: https://github.com/rust-lang/rfcs/blob/master/text/0592-c-str-deref.md [r840]: https://github.com/rust-lang/rfcs/blob/master/text/0840-no-panic-in-c-string.md The new `CStr` type is only constructable via two methods: 1. By `deref`'ing from a `CString` 2. Unsafely via `CStr::from_ptr` The purpose of `CStr` is to be an unsized type which is a thin pointer to a `libc::c_char` (currently it is a fat pointer slice due to implementation limitations). Strings from C can be safely represented with a `CStr` and an appropriate lifetime as well. Consumers of `&CString` should now consume `&CStr` instead to allow producers to pass in C-originating strings instead of just Rust-allocated strings. A new constructor was added to `CString`, `new`, which takes `T: IntoBytes` instead of separate `from_slice` and `from_vec` methods (both have been deprecated in favor of `new`). The `new` method returns a `Result` instead of panicking. The error variant contains the relevant information about where the error happened and bytes (if present). Conversions are provided to the `io::Error` and `old_io::IoError` types via the `FromError` trait which translate to `InvalidInput`. This is a breaking change due to the modification of existing `#[unstable]` APIs and new deprecation, and more detailed information can be found in the two RFCs. Notable breakage includes: * All construction of `CString` now needs to use `new` and handle the outgoing `Result`. * Usage of `CString` as a byte slice now explicitly needs a `.as_bytes()` call. * The `as_slice*` methods have been removed in favor of just having the `as_bytes*` methods. Closes #22469 Closes #22470 [breaking-change]
2015-02-18 06:47:40 +00:00
let old = try!(cstr(old));
let new = try!(cstr(new));
try!(cvt(unsafe { libc::rename(old.as_ptr(), new.as_ptr()) }));
Ok(())
}
pub fn set_perm(p: &Path, perm: FilePermissions) -> io::Result<()> {
std: Implement CString-related RFCs This commit is an implementation of [RFC 592][r592] and [RFC 840][r840]. These two RFCs tweak the behavior of `CString` and add a new `CStr` unsized slice type to the module. [r592]: https://github.com/rust-lang/rfcs/blob/master/text/0592-c-str-deref.md [r840]: https://github.com/rust-lang/rfcs/blob/master/text/0840-no-panic-in-c-string.md The new `CStr` type is only constructable via two methods: 1. By `deref`'ing from a `CString` 2. Unsafely via `CStr::from_ptr` The purpose of `CStr` is to be an unsized type which is a thin pointer to a `libc::c_char` (currently it is a fat pointer slice due to implementation limitations). Strings from C can be safely represented with a `CStr` and an appropriate lifetime as well. Consumers of `&CString` should now consume `&CStr` instead to allow producers to pass in C-originating strings instead of just Rust-allocated strings. A new constructor was added to `CString`, `new`, which takes `T: IntoBytes` instead of separate `from_slice` and `from_vec` methods (both have been deprecated in favor of `new`). The `new` method returns a `Result` instead of panicking. The error variant contains the relevant information about where the error happened and bytes (if present). Conversions are provided to the `io::Error` and `old_io::IoError` types via the `FromError` trait which translate to `InvalidInput`. This is a breaking change due to the modification of existing `#[unstable]` APIs and new deprecation, and more detailed information can be found in the two RFCs. Notable breakage includes: * All construction of `CString` now needs to use `new` and handle the outgoing `Result`. * Usage of `CString` as a byte slice now explicitly needs a `.as_bytes()` call. * The `as_slice*` methods have been removed in favor of just having the `as_bytes*` methods. Closes #22469 Closes #22470 [breaking-change]
2015-02-18 06:47:40 +00:00
let p = try!(cstr(p));
try!(cvt_r(|| unsafe { libc::chmod(p.as_ptr(), perm.mode) }));
Ok(())
}
pub fn rmdir(p: &Path) -> io::Result<()> {
std: Implement CString-related RFCs This commit is an implementation of [RFC 592][r592] and [RFC 840][r840]. These two RFCs tweak the behavior of `CString` and add a new `CStr` unsized slice type to the module. [r592]: https://github.com/rust-lang/rfcs/blob/master/text/0592-c-str-deref.md [r840]: https://github.com/rust-lang/rfcs/blob/master/text/0840-no-panic-in-c-string.md The new `CStr` type is only constructable via two methods: 1. By `deref`'ing from a `CString` 2. Unsafely via `CStr::from_ptr` The purpose of `CStr` is to be an unsized type which is a thin pointer to a `libc::c_char` (currently it is a fat pointer slice due to implementation limitations). Strings from C can be safely represented with a `CStr` and an appropriate lifetime as well. Consumers of `&CString` should now consume `&CStr` instead to allow producers to pass in C-originating strings instead of just Rust-allocated strings. A new constructor was added to `CString`, `new`, which takes `T: IntoBytes` instead of separate `from_slice` and `from_vec` methods (both have been deprecated in favor of `new`). The `new` method returns a `Result` instead of panicking. The error variant contains the relevant information about where the error happened and bytes (if present). Conversions are provided to the `io::Error` and `old_io::IoError` types via the `FromError` trait which translate to `InvalidInput`. This is a breaking change due to the modification of existing `#[unstable]` APIs and new deprecation, and more detailed information can be found in the two RFCs. Notable breakage includes: * All construction of `CString` now needs to use `new` and handle the outgoing `Result`. * Usage of `CString` as a byte slice now explicitly needs a `.as_bytes()` call. * The `as_slice*` methods have been removed in favor of just having the `as_bytes*` methods. Closes #22469 Closes #22470 [breaking-change]
2015-02-18 06:47:40 +00:00
let p = try!(cstr(p));
try!(cvt(unsafe { libc::rmdir(p.as_ptr()) }));
Ok(())
}
pub fn readlink(p: &Path) -> io::Result<PathBuf> {
std: Implement CString-related RFCs This commit is an implementation of [RFC 592][r592] and [RFC 840][r840]. These two RFCs tweak the behavior of `CString` and add a new `CStr` unsized slice type to the module. [r592]: https://github.com/rust-lang/rfcs/blob/master/text/0592-c-str-deref.md [r840]: https://github.com/rust-lang/rfcs/blob/master/text/0840-no-panic-in-c-string.md The new `CStr` type is only constructable via two methods: 1. By `deref`'ing from a `CString` 2. Unsafely via `CStr::from_ptr` The purpose of `CStr` is to be an unsized type which is a thin pointer to a `libc::c_char` (currently it is a fat pointer slice due to implementation limitations). Strings from C can be safely represented with a `CStr` and an appropriate lifetime as well. Consumers of `&CString` should now consume `&CStr` instead to allow producers to pass in C-originating strings instead of just Rust-allocated strings. A new constructor was added to `CString`, `new`, which takes `T: IntoBytes` instead of separate `from_slice` and `from_vec` methods (both have been deprecated in favor of `new`). The `new` method returns a `Result` instead of panicking. The error variant contains the relevant information about where the error happened and bytes (if present). Conversions are provided to the `io::Error` and `old_io::IoError` types via the `FromError` trait which translate to `InvalidInput`. This is a breaking change due to the modification of existing `#[unstable]` APIs and new deprecation, and more detailed information can be found in the two RFCs. Notable breakage includes: * All construction of `CString` now needs to use `new` and handle the outgoing `Result`. * Usage of `CString` as a byte slice now explicitly needs a `.as_bytes()` call. * The `as_slice*` methods have been removed in favor of just having the `as_bytes*` methods. Closes #22469 Closes #22470 [breaking-change]
2015-02-18 06:47:40 +00:00
let c_path = try!(cstr(p));
let p = c_path.as_ptr();
Reduce the reliance on `PATH_MAX` - Rewrite `std::sys::fs::readlink` not to rely on `PATH_MAX` It currently has the following problems: 1. It uses `_PC_NAME_MAX` to query the maximum length of a file path in the underlying system. However, the meaning of the constant is the maximum length of *a path component*, not a full path. The correct constant should be `_PC_PATH_MAX`. 2. `pathconf` *may* fail if the referred file does not exist. This can be problematic if the file which the symbolic link points to does not exist, but the link itself does exist. In this case, the current implementation resorts to the hard-coded value of `1024`, which is not ideal. 3. There may exist a platform where there is no limit on file path lengths in general. That's the reaon why GNU Hurd doesn't define `PATH_MAX` at all, in addition to having `pathconf` always returning `-1`. In these platforms, the content of the symbolic link can be silently truncated if the length exceeds the hard-coded limit mentioned above. 4. The value obtained by `pathconf` may be outdated at the point of actually calling `readlink`. This is inherently racy. This commit introduces a loop that gradually increases the length of the buffer passed to `readlink`, eliminating the need of `pathconf`. - Remove the arbitrary memory limit of `std::sys::fs::realpath` As per POSIX 2013, `realpath` will return a malloc'ed buffer if the second argument is a null pointer.[1] [1] http://pubs.opengroup.org/onlinepubs/9699919799/functions/realpath.html - Comment on functions that are still using `PATH_MAX` There are some functions that only work in terms of `PATH_MAX`, such as `F_GETPATH` in OS X. Comments on them for posterity.
2015-08-19 04:11:40 +00:00
let mut buf = Vec::with_capacity(256);
loop {
let buf_read = try!(cvt(unsafe {
libc::readlink(p, buf.as_mut_ptr() as *mut _, buf.capacity() as libc::size_t)
})) as usize;
unsafe { buf.set_len(buf_read); }
if buf_read != buf.capacity() {
buf.shrink_to_fit();
return Ok(PathBuf::from(OsString::from_vec(buf)));
}
// Trigger the internal buffer resizing logic of `Vec` by requiring
// more space than the current capacity. The length is guaranteed to be
// the same as the capacity due to the if statement above.
buf.reserve(1);
}
}
pub fn symlink(src: &Path, dst: &Path) -> io::Result<()> {
std: Implement CString-related RFCs This commit is an implementation of [RFC 592][r592] and [RFC 840][r840]. These two RFCs tweak the behavior of `CString` and add a new `CStr` unsized slice type to the module. [r592]: https://github.com/rust-lang/rfcs/blob/master/text/0592-c-str-deref.md [r840]: https://github.com/rust-lang/rfcs/blob/master/text/0840-no-panic-in-c-string.md The new `CStr` type is only constructable via two methods: 1. By `deref`'ing from a `CString` 2. Unsafely via `CStr::from_ptr` The purpose of `CStr` is to be an unsized type which is a thin pointer to a `libc::c_char` (currently it is a fat pointer slice due to implementation limitations). Strings from C can be safely represented with a `CStr` and an appropriate lifetime as well. Consumers of `&CString` should now consume `&CStr` instead to allow producers to pass in C-originating strings instead of just Rust-allocated strings. A new constructor was added to `CString`, `new`, which takes `T: IntoBytes` instead of separate `from_slice` and `from_vec` methods (both have been deprecated in favor of `new`). The `new` method returns a `Result` instead of panicking. The error variant contains the relevant information about where the error happened and bytes (if present). Conversions are provided to the `io::Error` and `old_io::IoError` types via the `FromError` trait which translate to `InvalidInput`. This is a breaking change due to the modification of existing `#[unstable]` APIs and new deprecation, and more detailed information can be found in the two RFCs. Notable breakage includes: * All construction of `CString` now needs to use `new` and handle the outgoing `Result`. * Usage of `CString` as a byte slice now explicitly needs a `.as_bytes()` call. * The `as_slice*` methods have been removed in favor of just having the `as_bytes*` methods. Closes #22469 Closes #22470 [breaking-change]
2015-02-18 06:47:40 +00:00
let src = try!(cstr(src));
let dst = try!(cstr(dst));
try!(cvt(unsafe { libc::symlink(src.as_ptr(), dst.as_ptr()) }));
Ok(())
}
pub fn link(src: &Path, dst: &Path) -> io::Result<()> {
std: Implement CString-related RFCs This commit is an implementation of [RFC 592][r592] and [RFC 840][r840]. These two RFCs tweak the behavior of `CString` and add a new `CStr` unsized slice type to the module. [r592]: https://github.com/rust-lang/rfcs/blob/master/text/0592-c-str-deref.md [r840]: https://github.com/rust-lang/rfcs/blob/master/text/0840-no-panic-in-c-string.md The new `CStr` type is only constructable via two methods: 1. By `deref`'ing from a `CString` 2. Unsafely via `CStr::from_ptr` The purpose of `CStr` is to be an unsized type which is a thin pointer to a `libc::c_char` (currently it is a fat pointer slice due to implementation limitations). Strings from C can be safely represented with a `CStr` and an appropriate lifetime as well. Consumers of `&CString` should now consume `&CStr` instead to allow producers to pass in C-originating strings instead of just Rust-allocated strings. A new constructor was added to `CString`, `new`, which takes `T: IntoBytes` instead of separate `from_slice` and `from_vec` methods (both have been deprecated in favor of `new`). The `new` method returns a `Result` instead of panicking. The error variant contains the relevant information about where the error happened and bytes (if present). Conversions are provided to the `io::Error` and `old_io::IoError` types via the `FromError` trait which translate to `InvalidInput`. This is a breaking change due to the modification of existing `#[unstable]` APIs and new deprecation, and more detailed information can be found in the two RFCs. Notable breakage includes: * All construction of `CString` now needs to use `new` and handle the outgoing `Result`. * Usage of `CString` as a byte slice now explicitly needs a `.as_bytes()` call. * The `as_slice*` methods have been removed in favor of just having the `as_bytes*` methods. Closes #22469 Closes #22470 [breaking-change]
2015-02-18 06:47:40 +00:00
let src = try!(cstr(src));
let dst = try!(cstr(dst));
try!(cvt(unsafe { libc::link(src.as_ptr(), dst.as_ptr()) }));
Ok(())
}
pub fn stat(p: &Path) -> io::Result<FileAttr> {
std: Implement CString-related RFCs This commit is an implementation of [RFC 592][r592] and [RFC 840][r840]. These two RFCs tweak the behavior of `CString` and add a new `CStr` unsized slice type to the module. [r592]: https://github.com/rust-lang/rfcs/blob/master/text/0592-c-str-deref.md [r840]: https://github.com/rust-lang/rfcs/blob/master/text/0840-no-panic-in-c-string.md The new `CStr` type is only constructable via two methods: 1. By `deref`'ing from a `CString` 2. Unsafely via `CStr::from_ptr` The purpose of `CStr` is to be an unsized type which is a thin pointer to a `libc::c_char` (currently it is a fat pointer slice due to implementation limitations). Strings from C can be safely represented with a `CStr` and an appropriate lifetime as well. Consumers of `&CString` should now consume `&CStr` instead to allow producers to pass in C-originating strings instead of just Rust-allocated strings. A new constructor was added to `CString`, `new`, which takes `T: IntoBytes` instead of separate `from_slice` and `from_vec` methods (both have been deprecated in favor of `new`). The `new` method returns a `Result` instead of panicking. The error variant contains the relevant information about where the error happened and bytes (if present). Conversions are provided to the `io::Error` and `old_io::IoError` types via the `FromError` trait which translate to `InvalidInput`. This is a breaking change due to the modification of existing `#[unstable]` APIs and new deprecation, and more detailed information can be found in the two RFCs. Notable breakage includes: * All construction of `CString` now needs to use `new` and handle the outgoing `Result`. * Usage of `CString` as a byte slice now explicitly needs a `.as_bytes()` call. * The `as_slice*` methods have been removed in favor of just having the `as_bytes*` methods. Closes #22469 Closes #22470 [breaking-change]
2015-02-18 06:47:40 +00:00
let p = try!(cstr(p));
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
let mut stat: raw::stat = unsafe { mem::zeroed() };
try!(cvt(unsafe {
libc::stat(p.as_ptr(), &mut stat as *mut _ as *mut _)
}));
Ok(FileAttr { stat: stat })
}
pub fn lstat(p: &Path) -> io::Result<FileAttr> {
std: Implement CString-related RFCs This commit is an implementation of [RFC 592][r592] and [RFC 840][r840]. These two RFCs tweak the behavior of `CString` and add a new `CStr` unsized slice type to the module. [r592]: https://github.com/rust-lang/rfcs/blob/master/text/0592-c-str-deref.md [r840]: https://github.com/rust-lang/rfcs/blob/master/text/0840-no-panic-in-c-string.md The new `CStr` type is only constructable via two methods: 1. By `deref`'ing from a `CString` 2. Unsafely via `CStr::from_ptr` The purpose of `CStr` is to be an unsized type which is a thin pointer to a `libc::c_char` (currently it is a fat pointer slice due to implementation limitations). Strings from C can be safely represented with a `CStr` and an appropriate lifetime as well. Consumers of `&CString` should now consume `&CStr` instead to allow producers to pass in C-originating strings instead of just Rust-allocated strings. A new constructor was added to `CString`, `new`, which takes `T: IntoBytes` instead of separate `from_slice` and `from_vec` methods (both have been deprecated in favor of `new`). The `new` method returns a `Result` instead of panicking. The error variant contains the relevant information about where the error happened and bytes (if present). Conversions are provided to the `io::Error` and `old_io::IoError` types via the `FromError` trait which translate to `InvalidInput`. This is a breaking change due to the modification of existing `#[unstable]` APIs and new deprecation, and more detailed information can be found in the two RFCs. Notable breakage includes: * All construction of `CString` now needs to use `new` and handle the outgoing `Result`. * Usage of `CString` as a byte slice now explicitly needs a `.as_bytes()` call. * The `as_slice*` methods have been removed in favor of just having the `as_bytes*` methods. Closes #22469 Closes #22470 [breaking-change]
2015-02-18 06:47:40 +00:00
let p = try!(cstr(p));
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
let mut stat: raw::stat = unsafe { mem::zeroed() };
try!(cvt(unsafe {
libc::lstat(p.as_ptr(), &mut stat as *mut _ as *mut _)
}));
Ok(FileAttr { stat: stat })
}
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
pub fn canonicalize(p: &Path) -> io::Result<PathBuf> {
let path = try!(CString::new(p.as_os_str().as_bytes()));
Reduce the reliance on `PATH_MAX` - Rewrite `std::sys::fs::readlink` not to rely on `PATH_MAX` It currently has the following problems: 1. It uses `_PC_NAME_MAX` to query the maximum length of a file path in the underlying system. However, the meaning of the constant is the maximum length of *a path component*, not a full path. The correct constant should be `_PC_PATH_MAX`. 2. `pathconf` *may* fail if the referred file does not exist. This can be problematic if the file which the symbolic link points to does not exist, but the link itself does exist. In this case, the current implementation resorts to the hard-coded value of `1024`, which is not ideal. 3. There may exist a platform where there is no limit on file path lengths in general. That's the reaon why GNU Hurd doesn't define `PATH_MAX` at all, in addition to having `pathconf` always returning `-1`. In these platforms, the content of the symbolic link can be silently truncated if the length exceeds the hard-coded limit mentioned above. 4. The value obtained by `pathconf` may be outdated at the point of actually calling `readlink`. This is inherently racy. This commit introduces a loop that gradually increases the length of the buffer passed to `readlink`, eliminating the need of `pathconf`. - Remove the arbitrary memory limit of `std::sys::fs::realpath` As per POSIX 2013, `realpath` will return a malloc'ed buffer if the second argument is a null pointer.[1] [1] http://pubs.opengroup.org/onlinepubs/9699919799/functions/realpath.html - Comment on functions that are still using `PATH_MAX` There are some functions that only work in terms of `PATH_MAX`, such as `F_GETPATH` in OS X. Comments on them for posterity.
2015-08-19 04:11:40 +00:00
let buf;
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
unsafe {
Reduce the reliance on `PATH_MAX` - Rewrite `std::sys::fs::readlink` not to rely on `PATH_MAX` It currently has the following problems: 1. It uses `_PC_NAME_MAX` to query the maximum length of a file path in the underlying system. However, the meaning of the constant is the maximum length of *a path component*, not a full path. The correct constant should be `_PC_PATH_MAX`. 2. `pathconf` *may* fail if the referred file does not exist. This can be problematic if the file which the symbolic link points to does not exist, but the link itself does exist. In this case, the current implementation resorts to the hard-coded value of `1024`, which is not ideal. 3. There may exist a platform where there is no limit on file path lengths in general. That's the reaon why GNU Hurd doesn't define `PATH_MAX` at all, in addition to having `pathconf` always returning `-1`. In these platforms, the content of the symbolic link can be silently truncated if the length exceeds the hard-coded limit mentioned above. 4. The value obtained by `pathconf` may be outdated at the point of actually calling `readlink`. This is inherently racy. This commit introduces a loop that gradually increases the length of the buffer passed to `readlink`, eliminating the need of `pathconf`. - Remove the arbitrary memory limit of `std::sys::fs::realpath` As per POSIX 2013, `realpath` will return a malloc'ed buffer if the second argument is a null pointer.[1] [1] http://pubs.opengroup.org/onlinepubs/9699919799/functions/realpath.html - Comment on functions that are still using `PATH_MAX` There are some functions that only work in terms of `PATH_MAX`, such as `F_GETPATH` in OS X. Comments on them for posterity.
2015-08-19 04:11:40 +00:00
let r = c::realpath(path.as_ptr(), ptr::null_mut());
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
if r.is_null() {
return Err(io::Error::last_os_error())
}
Reduce the reliance on `PATH_MAX` - Rewrite `std::sys::fs::readlink` not to rely on `PATH_MAX` It currently has the following problems: 1. It uses `_PC_NAME_MAX` to query the maximum length of a file path in the underlying system. However, the meaning of the constant is the maximum length of *a path component*, not a full path. The correct constant should be `_PC_PATH_MAX`. 2. `pathconf` *may* fail if the referred file does not exist. This can be problematic if the file which the symbolic link points to does not exist, but the link itself does exist. In this case, the current implementation resorts to the hard-coded value of `1024`, which is not ideal. 3. There may exist a platform where there is no limit on file path lengths in general. That's the reaon why GNU Hurd doesn't define `PATH_MAX` at all, in addition to having `pathconf` always returning `-1`. In these platforms, the content of the symbolic link can be silently truncated if the length exceeds the hard-coded limit mentioned above. 4. The value obtained by `pathconf` may be outdated at the point of actually calling `readlink`. This is inherently racy. This commit introduces a loop that gradually increases the length of the buffer passed to `readlink`, eliminating the need of `pathconf`. - Remove the arbitrary memory limit of `std::sys::fs::realpath` As per POSIX 2013, `realpath` will return a malloc'ed buffer if the second argument is a null pointer.[1] [1] http://pubs.opengroup.org/onlinepubs/9699919799/functions/realpath.html - Comment on functions that are still using `PATH_MAX` There are some functions that only work in terms of `PATH_MAX`, such as `F_GETPATH` in OS X. Comments on them for posterity.
2015-08-19 04:11:40 +00:00
buf = CStr::from_ptr(r).to_bytes().to_vec();
libc::free(r as *mut _);
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 06:21:13 +00:00
}
Ok(PathBuf::from(OsString::from_vec(buf)))
}
pub fn copy(from: &Path, to: &Path) -> io::Result<u64> {
std: Stabilize library APIs for 1.5 This commit stabilizes and deprecates library APIs whose FCP has closed in the last cycle, specifically: Stabilized APIs: * `fs::canonicalize` * `Path::{metadata, symlink_metadata, canonicalize, read_link, read_dir, exists, is_file, is_dir}` - all moved to inherent methods from the `PathExt` trait. * `Formatter::fill` * `Formatter::width` * `Formatter::precision` * `Formatter::sign_plus` * `Formatter::sign_minus` * `Formatter::alternate` * `Formatter::sign_aware_zero_pad` * `string::ParseError` * `Utf8Error::valid_up_to` * `Iterator::{cmp, partial_cmp, eq, ne, lt, le, gt, ge}` * `<[T]>::split_{first,last}{,_mut}` * `Condvar::wait_timeout` - note that `wait_timeout_ms` is not yet deprecated but will be once 1.5 is released. * `str::{R,}MatchIndices` * `str::{r,}match_indices` * `char::from_u32_unchecked` * `VecDeque::insert` * `VecDeque::shrink_to_fit` * `VecDeque::as_slices` * `VecDeque::as_mut_slices` * `VecDeque::swap_remove_front` - (renamed from `swap_front_remove`) * `VecDeque::swap_remove_back` - (renamed from `swap_back_remove`) * `Vec::resize` * `str::slice_mut_unchecked` * `FileTypeExt` * `FileTypeExt::{is_block_device, is_char_device, is_fifo, is_socket}` * `BinaryHeap::from` - `from_vec` deprecated in favor of this * `BinaryHeap::into_vec` - plus a `Into` impl * `BinaryHeap::into_sorted_vec` Deprecated APIs * `slice::ref_slice` * `slice::mut_ref_slice` * `iter::{range_inclusive, RangeInclusive}` * `std::dynamic_lib` Closes #27706 Closes #27725 cc #27726 (align not stabilized yet) Closes #27734 Closes #27737 Closes #27742 Closes #27743 Closes #27772 Closes #27774 Closes #27777 Closes #27781 cc #27788 (a few remaining methods though) Closes #27790 Closes #27793 Closes #27796 Closes #27810 cc #28147 (not all parts stabilized)
2015-10-22 23:28:45 +00:00
use fs::{File, set_permissions};
if !from.is_file() {
return Err(Error::new(ErrorKind::InvalidInput,
"the source path is not an existing regular file"))
}
let mut reader = try!(File::open(from));
let mut writer = try!(File::create(to));
let perm = try!(reader.metadata()).permissions();
let ret = try!(io::copy(&mut reader, &mut writer));
try!(set_permissions(to, perm));
Ok(ret)
}