Add std::process

Per [RFC 579](https://github.com/rust-lang/rfcs/pull/579), this commit
adds a new `std::process` module. This module is largely based on the
existing `std::old_io::process` module, but refactors the API to use
`OsStr` and other new standards set out by IO reform.

The existing module is not yet deprecated, to allow for the new API to
get a bit of testing before a mass migration to it.
This commit is contained in:
Aaron Turon 2015-02-06 09:42:57 -08:00
parent 39b463f153
commit 4175f1ce2f
16 changed files with 2051 additions and 36 deletions

View File

@ -258,6 +258,7 @@ pub mod os;
pub mod env;
pub mod path;
pub mod old_path;
pub mod process;
pub mod rand;
pub mod time;

View File

@ -942,6 +942,11 @@ impl PathBuf {
true
}
/// Consume the `PathBuf`, yielding its internal `OsString` storage
pub fn into_os_string(self) -> OsString {
self.inner
}
}
impl<'a, P: ?Sized + 'a> iter::FromIterator<&'a P> for PathBuf where P: AsPath {

834
src/libstd/process.rs Normal file
View File

@ -0,0 +1,834 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Working with processes.
#![unstable(feature = "process", reason = "recently added via RFC 579")]
#![allow(non_upper_case_globals)]
use prelude::v1::*;
use io::prelude::*;
use ffi::AsOsStr;
use fmt;
use io::{self, Error, ErrorKind};
use path::AsPath;
use libc;
use sync::mpsc::{channel, Receiver};
use sys::pipe2::{self, AnonPipe};
use sys::process2::Process as ProcessImp;
use sys::process2::Command as CommandImp;
use sys::process2::ExitStatus as ExitStatusImp;
use sys_common::{AsInner, AsInnerMut};
use thread::Thread;
/// Representation of a running or exited child process.
///
/// This structure is used to represent and manage child processes. A child
/// process is created via the `Command` struct, which configures the spawning
/// process and can itself be constructed using a builder-style interface.
///
/// # Example
///
/// ```should_fail
/// # #![feature(process)]
///
/// use std::process::Command;
///
/// let output = Command::new("/bin/cat").arg("file.txt").output().unwrap_or_else(|e| {
/// panic!("failed to execute child: {}", e)
/// });
/// let contents = output.stdout;
/// assert!(output.status.success());
/// ```
pub struct Child {
handle: ProcessImp,
/// None until wait() or wait_with_output() is called.
status: Option<ExitStatusImp>,
/// The handle for writing to the child's stdin, if it has been captured
pub stdin: Option<ChildStdin>,
/// The handle for reading from the child's stdout, if it has been captured
pub stdout: Option<ChildStdout>,
/// The handle for reading from the child's stderr, if it has been captured
pub stderr: Option<ChildStderr>,
}
/// A handle to a child procesess's stdin
pub struct ChildStdin {
inner: AnonPipe
}
impl Write for ChildStdin {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.inner.write(buf)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
/// A handle to a child procesess's stdout
pub struct ChildStdout {
inner: AnonPipe
}
impl Read for ChildStdout {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.read(buf)
}
}
/// A handle to a child procesess's stderr
pub struct ChildStderr {
inner: AnonPipe
}
impl Read for ChildStderr {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.read(buf)
}
}
/// The `Command` type acts as a process builder, providing fine-grained control
/// over how a new process should be spawned. A default configuration can be
/// generated using `Command::new(program)`, where `program` gives a path to the
/// program to be executed. Additional builder methods allow the configuration
/// to be changed (for example, by adding arguments) prior to spawning:
///
/// ```
/// # #![feature(process)]
///
/// use std::process::Command;
///
/// let output = Command::new("sh").arg("-c").arg("echo hello").output().unwrap_or_else(|e| {
/// panic!("failed to execute process: {}", e)
/// });
/// let hello = output.stdout;
/// ```
pub struct Command {
inner: CommandImp,
// Details explained in the builder methods
stdin: Option<StdioImp>,
stdout: Option<StdioImp>,
stderr: Option<StdioImp>,
}
impl Command {
/// Constructs a new `Command` for launching the program at
/// path `program`, with the following default configuration:
///
/// * No arguments to the program
/// * Inherit the current process's environment
/// * Inherit the current process's working directory
/// * Inherit stdin/stdout/stderr for `run` or `status`, but create pipes for `output`
///
/// Builder methods are provided to change these defaults and
/// otherwise configure the process.
pub fn new<S: AsOsStr + ?Sized>(program: &S) -> Command {
Command {
inner: CommandImp::new(program.as_os_str()),
stdin: None,
stdout: None,
stderr: None,
}
}
/// Add an argument to pass to the program.
pub fn arg<S: AsOsStr + ?Sized>(&mut self, arg: &S) -> &mut Command {
self.inner.arg(arg.as_os_str());
self
}
/// Add multiple arguments to pass to the program.
pub fn args<S: AsOsStr>(&mut self, args: &[S]) -> &mut Command {
self.inner.args(args.iter().map(AsOsStr::as_os_str));
self
}
/// Inserts or updates an environment variable mapping.
///
/// Note that environment variable names are case-insensitive (but case-preserving) on Windows,
/// and case-sensitive on all other platforms.
pub fn env<S: ?Sized, T: ?Sized>(&mut self, key: &S, val: &T) -> &mut Command where
S: AsOsStr, T: AsOsStr
{
self.inner.env(key.as_os_str(), val.as_os_str());
self
}
/// Removes an environment variable mapping.
pub fn env_remove<S: ?Sized + AsOsStr>(&mut self, key: &S) -> &mut Command {
self.inner.env_remove(key.as_os_str());
self
}
/// Clears the entire environment map for the child process.
pub fn env_clear(&mut self) -> &mut Command {
self.inner.env_clear();
self
}
/// Set the working directory for the child process.
pub fn current_dir<P: AsPath + ?Sized>(&mut self, dir: &P) -> &mut Command {
self.inner.cwd(dir.as_path().as_os_str());
self
}
/// Configuration for the child process's stdin handle (file descriptor 0).
/// Defaults to `CreatePipe(true, false)` so the input can be written to.
pub fn stdin(&mut self, cfg: Stdio) -> &mut Command {
self.stdin = Some(cfg.0);
self
}
/// Configuration for the child process's stdout handle (file descriptor 1).
/// Defaults to `CreatePipe(false, true)` so the output can be collected.
pub fn stdout(&mut self, cfg: Stdio) -> &mut Command {
self.stdout = Some(cfg.0);
self
}
/// Configuration for the child process's stderr handle (file descriptor 2).
/// Defaults to `CreatePipe(false, true)` so the output can be collected.
pub fn stderr(&mut self, cfg: Stdio) -> &mut Command {
self.stderr = Some(cfg.0);
self
}
fn spawn_inner(&self, default_io: StdioImp) -> io::Result<Child> {
let (their_stdin, our_stdin) = try!(
setup_io(self.stdin.as_ref().unwrap_or(&default_io), 0, true)
);
let (their_stdout, our_stdout) = try!(
setup_io(self.stdout.as_ref().unwrap_or(&default_io), 1, false)
);
let (their_stderr, our_stderr) = try!(
setup_io(self.stderr.as_ref().unwrap_or(&default_io), 2, false)
);
match ProcessImp::spawn(&self.inner, their_stdin, their_stdout, their_stderr) {
Err(e) => Err(e),
Ok(handle) => Ok(Child {
handle: handle,
status: None,
stdin: our_stdin.map(|fd| ChildStdin { inner: fd }),
stdout: our_stdout.map(|fd| ChildStdout { inner: fd }),
stderr: our_stderr.map(|fd| ChildStderr { inner: fd }),
})
}
}
/// Executes the command as a child process, returning a handle to it.
///
/// By default, stdin, stdout and stderr are inherited by the parent.
pub fn spawn(&mut self) -> io::Result<Child> {
self.spawn_inner(StdioImp::Inherit)
}
/// Executes the command as a child process, waiting for it to finish and
/// collecting all of its output.
///
/// By default, stdin, stdout and stderr are captured (and used to
/// provide the resulting output).
///
/// # Example
///
/// ```
/// # #![feature(process)]
/// use std::process::Command;
///
/// let output = Command::new("cat").arg("foot.txt").output().unwrap_or_else(|e| {
/// panic!("failed to execute process: {}", e)
/// });
///
/// println!("status: {}", output.status);
/// println!("stdout: {}", String::from_utf8_lossy(output.stdout.as_slice()));
/// println!("stderr: {}", String::from_utf8_lossy(output.stderr.as_slice()));
/// ```
pub fn output(&mut self) -> io::Result<Output> {
self.spawn_inner(StdioImp::Capture).and_then(|p| p.wait_with_output())
}
/// Executes a command as a child process, waiting for it to finish and
/// collecting its exit status.
///
/// By default, stdin, stdout and stderr are inherited by the parent.
///
/// # Example
///
/// ```
/// # #![feature(process)]
/// use std::process::Command;
///
/// let status = Command::new("ls").status().unwrap_or_else(|e| {
/// panic!("failed to execute process: {}", e)
/// });
///
/// println!("process exited with: {}", status);
/// ```
pub fn status(&mut self) -> io::Result<ExitStatus> {
self.spawn().and_then(|mut p| p.wait())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for Command {
/// Format the program and arguments of a Command for display. Any
/// non-utf8 data is lossily converted using the utf8 replacement
/// character.
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "{:?}", self.inner.program));
for arg in &self.inner.args {
try!(write!(f, " {:?}", arg));
}
Ok(())
}
}
impl AsInner<CommandImp> for Command {
fn as_inner(&self) -> &CommandImp { &self.inner }
}
impl AsInnerMut<CommandImp> for Command {
fn as_inner_mut(&mut self) -> &mut CommandImp { &mut self.inner }
}
fn setup_io(io: &StdioImp, fd: libc::c_int, readable: bool)
-> io::Result<(Option<AnonPipe>, Option<AnonPipe>)>
{
use self::StdioImp::*;
Ok(match *io {
Null => {
(None, None)
}
Inherit => {
(Some(AnonPipe::from_fd(fd)), None)
}
Capture => {
let (reader, writer) = try!(unsafe { pipe2::anon_pipe() });
if readable {
(Some(reader), Some(writer))
} else {
(Some(writer), Some(reader))
}
}
})
}
/// The output of a finished process.
#[derive(PartialEq, Eq, Clone)]
pub struct Output {
/// The status (exit code) of the process.
pub status: ExitStatus,
/// The data that the process wrote to stdout.
pub stdout: Vec<u8>,
/// The data that the process wrote to stderr.
pub stderr: Vec<u8>,
}
/// Describes what to do with a standard io stream for a child process.
pub struct Stdio(StdioImp);
// The internal enum for stdio setup; see below for descriptions.
#[derive(Clone)]
enum StdioImp {
Capture,
Inherit,
Null,
}
impl Stdio {
/// A new pipe should be arranged to connect the parent and child processes.
pub fn capture() -> Stdio { Stdio(StdioImp::Capture) }
/// The child inherits from the corresponding parent descriptor.
pub fn inherit() -> Stdio { Stdio(StdioImp::Capture) }
/// This stream will be ignored. This is the equivalent of attaching the
/// stream to `/dev/null`
pub fn null() -> Stdio { Stdio(StdioImp::Capture) }
}
/// Describes the result of a process after it has terminated.
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct ExitStatus(ExitStatusImp);
impl ExitStatus {
/// Was termination successful? Signal termination not considered a success,
/// and success is defined as a zero exit status.
pub fn success(&self) -> bool {
self.0.success()
}
/// Return the exit code of the process, if any.
///
/// On Unix, this will return `None` if the process was terminated
/// by a signal; `std::os::unix` provides an extension trait for
/// extracting the signal and other details from the `ExitStatus`.
pub fn code(&self) -> Option<i32> {
self.0.code()
}
}
impl AsInner<ExitStatusImp> for ExitStatus {
fn as_inner(&self) -> &ExitStatusImp { &self.0 }
}
impl fmt::Display for ExitStatus {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
impl Child {
/// Forces the child to exit. This is equivalent to sending a
/// SIGKILL on unix platforms.
pub fn kill(&mut self) -> io::Result<()> {
#[cfg(unix)] fn collect_status(p: &mut Child) {
// On Linux (and possibly other unices), a process that has exited will
// continue to accept signals because it is "defunct". The delivery of
// signals will only fail once the child has been reaped. For this
// reason, if the process hasn't exited yet, then we attempt to collect
// their status with WNOHANG.
if p.status.is_none() {
match p.handle.try_wait() {
Some(status) => { p.status = Some(status); }
None => {}
}
}
}
#[cfg(windows)] fn collect_status(_p: &mut Child) {}
collect_status(self);
// if the process has finished, and therefore had waitpid called,
// and we kill it, then on unix we might ending up killing a
// newer process that happens to have the same (re-used) id
if self.status.is_some() {
return Err(Error::new(
ErrorKind::InvalidInput,
"invalid argument: can't kill an exited process",
None
))
}
unsafe { self.handle.kill() }
}
/// Wait for the child to exit completely, returning the status that it
/// exited with. This function will continue to have the same return value
/// after it has been called at least once.
///
/// The stdin handle to the child process, if any, will be closed
/// before waiting. This helps avoid deadlock: it ensures that the
/// child does not block waiting for input from the parent, while
/// the parent waits for the child to exit.
pub fn wait(&mut self) -> io::Result<ExitStatus> {
drop(self.stdin.take());
match self.status {
Some(code) => Ok(ExitStatus(code)),
None => {
let status = try!(self.handle.wait());
self.status = Some(status);
Ok(ExitStatus(status))
}
}
}
/// Simultaneously wait for the child to exit and collect all remaining
/// output on the stdout/stderr handles, returning a `Output`
/// instance.
///
/// The stdin handle to the child process, if any, will be closed
/// before waiting. This helps avoid deadlock: it ensures that the
/// child does not block waiting for input from the parent, while
/// the parent waits for the child to exit.
pub fn wait_with_output(mut self) -> io::Result<Output> {
drop(self.stdin.take());
fn read<T: Read + Send>(stream: Option<T>) -> Receiver<io::Result<Vec<u8>>> {
let (tx, rx) = channel();
match stream {
Some(stream) => {
Thread::spawn(move || {
let mut stream = stream;
let mut ret = Vec::new();
let res = stream.read_to_end(&mut ret);
tx.send(res.map(|_| ret)).unwrap();
});
}
None => tx.send(Ok(Vec::new())).unwrap()
}
rx
}
let stdout = read(self.stdout.take());
let stderr = read(self.stderr.take());
let status = try!(self.wait());
Ok(Output {
status: status,
stdout: stdout.recv().unwrap().unwrap_or(Vec::new()),
stderr: stderr.recv().unwrap().unwrap_or(Vec::new()),
})
}
}
#[cfg(test)]
mod tests {
use io::ErrorKind;
use io::prelude::*;
use prelude::v1::{Ok, Err, range, drop, Some, None, Vec};
use prelude::v1::{String, Clone};
use prelude::v1::{SliceExt, Str, StrExt, AsSlice, ToString, GenericPath};
use path::Path;
use old_path;
use old_io::fs::PathExtensions;
use rt::running_on_valgrind;
use str;
use super::{Child, Command, Output, ExitStatus, Stdio};
use sync::mpsc::channel;
use thread::Thread;
use time::Duration;
// FIXME(#10380) these tests should not all be ignored on android.
#[cfg(not(target_os="android"))]
#[test]
fn smoke() {
let p = Command::new("true").spawn();
assert!(p.is_ok());
let mut p = p.unwrap();
assert!(p.wait().unwrap().success());
}
#[cfg(not(target_os="android"))]
#[test]
fn smoke_failure() {
match Command::new("if-this-is-a-binary-then-the-world-has-ended").spawn() {
Ok(..) => panic!(),
Err(..) => {}
}
}
#[cfg(not(target_os="android"))]
#[test]
fn exit_reported_right() {
let p = Command::new("false").spawn();
assert!(p.is_ok());
let mut p = p.unwrap();
assert!(p.wait().unwrap().code() == Some(1));
drop(p.wait().clone());
}
#[cfg(all(unix, not(target_os="android")))]
#[test]
fn signal_reported_right() {
use os::unix::ExitStatusExt;
let p = Command::new("/bin/sh").arg("-c").arg("kill -1 $$").spawn();
assert!(p.is_ok());
let mut p = p.unwrap();
match p.wait().unwrap().signal() {
Some(1) => {},
result => panic!("not terminated by signal 1 (instead, {:?})", result),
}
}
pub fn run_output(mut cmd: Command) -> String {
let p = cmd.spawn();
assert!(p.is_ok());
let mut p = p.unwrap();
assert!(p.stdout.is_some());
let mut ret = String::new();
p.stdout.as_mut().unwrap().read_to_string(&mut ret).unwrap();
assert!(p.wait().unwrap().success());
return ret;
}
#[cfg(not(target_os="android"))]
#[test]
fn stdout_works() {
let mut cmd = Command::new("echo");
cmd.arg("foobar").stdout(Stdio::capture());
assert_eq!(run_output(cmd), "foobar\n");
}
#[cfg(all(unix, not(target_os="android")))]
#[test]
fn set_current_dir_works() {
let mut cmd = Command::new("/bin/sh");
cmd.arg("-c").arg("pwd")
.current_dir("/")
.stdout(Stdio::capture());
assert_eq!(run_output(cmd), "/\n");
}
#[cfg(all(unix, not(target_os="android")))]
#[test]
fn stdin_works() {
let mut p = Command::new("/bin/sh")
.arg("-c").arg("read line; echo $line")
.stdin(Stdio::capture())
.stdout(Stdio::capture())
.spawn().unwrap();
p.stdin.as_mut().unwrap().write("foobar".as_bytes()).unwrap();
drop(p.stdin.take());
let mut out = String::new();
p.stdout.as_mut().unwrap().read_to_string(&mut out).unwrap();
assert!(p.wait().unwrap().success());
assert_eq!(out, "foobar\n");
}
#[cfg(all(unix, not(target_os="android")))]
#[test]
fn uid_works() {
use os::unix::*;
use libc;
let mut p = Command::new("/bin/sh")
.arg("-c").arg("true")
.uid(unsafe { libc::getuid() })
.gid(unsafe { libc::getgid() })
.spawn().unwrap();
assert!(p.wait().unwrap().success());
}
#[cfg(all(unix, not(target_os="android")))]
#[test]
fn uid_to_root_fails() {
use os::unix::*;
use libc;
// if we're already root, this isn't a valid test. Most of the bots run
// as non-root though (android is an exception).
if unsafe { libc::getuid() == 0 } { return }
assert!(Command::new("/bin/ls").uid(0).gid(0).spawn().is_err());
}
#[cfg(not(target_os="android"))]
#[test]
fn test_process_status() {
let mut status = Command::new("false").status().unwrap();
assert!(status.code() == Some(1));
status = Command::new("true").status().unwrap();
assert!(status.success());
}
#[test]
fn test_process_output_fail_to_start() {
match Command::new("/no-binary-by-this-name-should-exist").output() {
Err(e) => assert_eq!(e.kind(), ErrorKind::FileNotFound),
Ok(..) => panic!()
}
}
#[cfg(not(target_os="android"))]
#[test]
fn test_process_output_output() {
let Output {status, stdout, stderr}
= Command::new("echo").arg("hello").output().unwrap();
let output_str = str::from_utf8(stdout.as_slice()).unwrap();
assert!(status.success());
assert_eq!(output_str.trim().to_string(), "hello");
// FIXME #7224
if !running_on_valgrind() {
assert_eq!(stderr, Vec::new());
}
}
#[cfg(not(target_os="android"))]
#[test]
fn test_process_output_error() {
let Output {status, stdout, stderr}
= Command::new("mkdir").arg(".").output().unwrap();
assert!(status.code() == Some(1));
assert_eq!(stdout, Vec::new());
assert!(!stderr.is_empty());
}
#[cfg(not(target_os="android"))]
#[test]
fn test_finish_once() {
let mut prog = Command::new("false").spawn().unwrap();
assert!(prog.wait().unwrap().code() == Some(1));
}
#[cfg(not(target_os="android"))]
#[test]
fn test_finish_twice() {
let mut prog = Command::new("false").spawn().unwrap();
assert!(prog.wait().unwrap().code() == Some(1));
assert!(prog.wait().unwrap().code() == Some(1));
}
#[cfg(not(target_os="android"))]
#[test]
fn test_wait_with_output_once() {
let prog = Command::new("echo").arg("hello").stdout(Stdio::capture())
.spawn().unwrap();
let Output {status, stdout, stderr} = prog.wait_with_output().unwrap();
let output_str = str::from_utf8(stdout.as_slice()).unwrap();
assert!(status.success());
assert_eq!(output_str.trim().to_string(), "hello");
// FIXME #7224
if !running_on_valgrind() {
assert_eq!(stderr, Vec::new());
}
}
#[cfg(all(unix, not(target_os="android")))]
pub fn pwd_cmd() -> Command {
Command::new("pwd")
}
#[cfg(target_os="android")]
pub fn pwd_cmd() -> Command {
let mut cmd = Command::new("/system/bin/sh");
cmd.arg("-c").arg("pwd");
cmd
}
#[cfg(windows)]
pub fn pwd_cmd() -> Command {
let mut cmd = Command::new("cmd");
cmd.arg("/c").arg("cd");
cmd
}
#[test]
fn test_keep_current_working_dir() {
use os;
let prog = pwd_cmd().spawn().unwrap();
let output = String::from_utf8(prog.wait_with_output().unwrap().stdout).unwrap();
let parent_dir = os::getcwd().unwrap();
let child_dir = old_path::Path::new(output.trim());
let parent_stat = parent_dir.stat().unwrap();
let child_stat = child_dir.stat().unwrap();
assert_eq!(parent_stat.unstable.device, child_stat.unstable.device);
assert_eq!(parent_stat.unstable.inode, child_stat.unstable.inode);
}
#[test]
fn test_change_working_directory() {
use os;
// test changing to the parent of os::getcwd() because we know
// the path exists (and os::getcwd() is not expected to be root)
let parent_dir = os::getcwd().unwrap().dir_path();
let result = pwd_cmd().current_dir(&parent_dir).output().unwrap();
let output = String::from_utf8(result.stdout).unwrap();
let child_dir = old_path::Path::new(output.trim());
let parent_stat = parent_dir.stat().unwrap();
let child_stat = child_dir.stat().unwrap();
assert_eq!(parent_stat.unstable.device, child_stat.unstable.device);
assert_eq!(parent_stat.unstable.inode, child_stat.unstable.inode);
}
#[cfg(all(unix, not(target_os="android")))]
pub fn env_cmd() -> Command {
Command::new("env")
}
#[cfg(target_os="android")]
pub fn env_cmd() -> Command {
let mut cmd = Command::new("/system/bin/sh");
cmd.arg("-c").arg("set");
cmd
}
#[cfg(windows)]
pub fn env_cmd() -> Command {
let mut cmd = Command::new("cmd");
cmd.arg("/c").arg("set");
cmd
}
#[cfg(not(target_os="android"))]
#[test]
fn test_inherit_env() {
use os;
if running_on_valgrind() { return; }
let result = env_cmd().output().unwrap();
let output = String::from_utf8(result.stdout).unwrap();
let r = os::env();
for &(ref k, ref v) in &r {
// don't check windows magical empty-named variables
assert!(k.is_empty() ||
output.contains(format!("{}={}", *k, *v).as_slice()),
"output doesn't contain `{}={}`\n{}",
k, v, output);
}
}
#[cfg(target_os="android")]
#[test]
fn test_inherit_env() {
use os;
if running_on_valgrind() { return; }
let mut result = env_cmd().output().unwrap();
let output = String::from_utf8(result.stdout).unwrap();
let r = os::env();
for &(ref k, ref v) in &r {
// don't check android RANDOM variables
if *k != "RANDOM".to_string() {
assert!(output.contains(format!("{}={}",
*k,
*v).as_slice()) ||
output.contains(format!("{}=\'{}\'",
*k,
*v).as_slice()));
}
}
}
#[test]
fn test_override_env() {
use env;
// In some build environments (such as chrooted Nix builds), `env` can
// only be found in the explicitly-provided PATH env variable, not in
// default places such as /bin or /usr/bin. So we need to pass through
// PATH to our sub-process.
let mut cmd = env_cmd();
cmd.env_clear().env("RUN_TEST_NEW_ENV", "123");
if let Some(p) = env::var_os("PATH") {
cmd.env("PATH", &p);
}
let result = cmd.output().unwrap();
let output = String::from_utf8_lossy(result.stdout.as_slice()).to_string();
assert!(output.contains("RUN_TEST_NEW_ENV=123"),
"didn't find RUN_TEST_NEW_ENV inside of:\n\n{}", output);
}
#[test]
fn test_add_to_env() {
let result = env_cmd().env("RUN_TEST_NEW_ENV", "123").output().unwrap();
let output = String::from_utf8_lossy(result.stdout.as_slice()).to_string();
assert!(output.contains("RUN_TEST_NEW_ENV=123"),
"didn't find RUN_TEST_NEW_ENV inside of:\n\n{}", output);
}
}

View File

@ -27,6 +27,7 @@ use core::char::{encode_utf8_raw, encode_utf16_raw};
use core::str::{char_range_at_raw, next_code_point};
use core::raw::Slice as RawSlice;
use ascii::*;
use borrow::Cow;
use cmp;
use fmt;
@ -38,6 +39,7 @@ use ops;
use slice;
use str;
use string::{String, CowString};
use sys_common::AsInner;
use unicode::str::{Utf16Item, utf16_items};
use vec::Vec;
@ -384,6 +386,10 @@ pub struct Wtf8 {
bytes: [u8]
}
impl AsInner<[u8]> for Wtf8 {
fn as_inner(&self) -> &[u8] { &self.bytes }
}
// FIXME: https://github.com/rust-lang/rust/issues/18805
impl PartialEq for Wtf8 {
fn eq(&self, other: &Wtf8) -> bool { self.bytes.eq(&other.bytes) }
@ -811,6 +817,21 @@ impl<'a, S: Writer + Hasher> Hash<S> for Wtf8 {
}
}
impl AsciiExt<Wtf8Buf> for Wtf8 {
fn is_ascii(&self) -> bool {
self.bytes.is_ascii()
}
fn to_ascii_uppercase(&self) -> Wtf8Buf {
Wtf8Buf { bytes: self.bytes.to_ascii_uppercase() }
}
fn to_ascii_lowercase(&self) -> Wtf8Buf {
Wtf8Buf { bytes: self.bytes.to_ascii_lowercase() }
}
fn eq_ignore_ascii_case(&self, other: &Wtf8) -> bool {
self.bytes.eq_ignore_ascii_case(&other.bytes)
}
}
#[cfg(test)]
mod tests {
use prelude::v1::*;

View File

@ -31,14 +31,17 @@
#![unstable(feature = "std_misc")]
use ffi::{OsStr, OsString};
use prelude::v1::*;
use ffi::{CString, OsStr, OsString};
use fs::{self, Permissions, OpenOptions};
use net;
use libc;
use mem;
use process;
use sys;
use sys::os_str::Buf;
use sys_common::{AsInner, AsInnerMut, IntoInner, FromInner};
use vec::Vec;
use libc::{self, gid_t, uid_t};
use old_io;
@ -121,7 +124,11 @@ impl AsRawFd for net::UdpSocket {
fn as_raw_fd(&self) -> Fd { *self.as_inner().socket().as_inner() }
}
// Unix-specific extensions to `OsString`.
////////////////////////////////////////////////////////////////////////////////
// OsString and OsStr
////////////////////////////////////////////////////////////////////////////////
/// Unix-specific extensions to `OsString`.
pub trait OsStringExt {
/// Create an `OsString` from a byte vector.
fn from_vec(vec: Vec<u8>) -> Self;
@ -140,19 +147,28 @@ impl OsStringExt for OsString {
}
}
// Unix-specific extensions to `OsStr`.
/// Unix-specific extensions to `OsStr`.
pub trait OsStrExt {
fn from_byte_slice(slice: &[u8]) -> &OsStr;
fn as_byte_slice(&self) -> &[u8];
fn from_bytes(slice: &[u8]) -> &OsStr;
/// Get the underlying byte view of the `OsStr` slice.
fn as_bytes(&self) -> &[u8];
/// Convert the `OsStr` slice into a `CString`.
fn to_cstring(&self) -> CString;
}
impl OsStrExt for OsStr {
fn from_byte_slice(slice: &[u8]) -> &OsStr {
fn from_bytes(slice: &[u8]) -> &OsStr {
unsafe { mem::transmute(slice) }
}
fn as_byte_slice(&self) -> &[u8] {
fn as_bytes(&self) -> &[u8] {
&self.as_inner().inner
}
fn to_cstring(&self) -> CString {
CString::from_slice(self.as_bytes())
}
}
// Unix-specific extensions to `Permissions`
@ -181,10 +197,57 @@ impl OpenOptionsExt for OpenOptions {
}
}
////////////////////////////////////////////////////////////////////////////////
// Process and Command
////////////////////////////////////////////////////////////////////////////////
/// Unix-specific extensions to the `std::process::Command` builder
pub trait CommandExt {
/// Sets the child process's user id. This translates to a
/// `setuid` call in the child process. Failure in the `setuid`
/// call will cause the spawn to fail.
fn uid(&mut self, id: uid_t) -> &mut process::Command;
/// Similar to `uid`, but sets the group id of the child process. This has
/// the same semantics as the `uid` field.
fn gid(&mut self, id: gid_t) -> &mut process::Command;
}
impl CommandExt for process::Command {
fn uid(&mut self, id: uid_t) -> &mut process::Command {
self.as_inner_mut().uid = Some(id);
self
}
fn gid(&mut self, id: gid_t) -> &mut process::Command {
self.as_inner_mut().gid = Some(id);
self
}
}
/// Unix-specific extensions to `std::process::ExitStatus`
pub trait ExitStatusExt {
/// If the process was terminated by a signal, returns that signal.
fn signal(&self) -> Option<i32>;
}
impl ExitStatusExt for process::ExitStatus {
fn signal(&self) -> Option<i32> {
match *self.as_inner() {
sys::process2::ExitStatus::Signal(s) => Some(s),
_ => None
}
}
}
////////////////////////////////////////////////////////////////////////////////
// Prelude
////////////////////////////////////////////////////////////////////////////////
/// A prelude for conveniently writing platform-specific code.
///
/// Includes all extension traits, and some important type definitions.
pub mod prelude {
#[doc(no_inline)]
pub use super::{Fd, AsRawFd, OsStrExt, OsStringExt, PermissionsExt};
pub use super::{Fd, AsRawFd, OsStrExt, OsStringExt, PermissionsExt, CommandExt, ExitStatusExt};
}

View File

@ -139,7 +139,7 @@ impl Drop for ReadDir {
impl DirEntry {
pub fn path(&self) -> PathBuf {
self.root.join(<OsStr as OsStrExt>::from_byte_slice(self.name_bytes()))
self.root.join(<OsStr as OsStrExt>::from_bytes(self.name_bytes()))
}
fn name_bytes(&self) -> &[u8] {
@ -269,7 +269,7 @@ impl File {
}
fn cstr(path: &Path) -> CString {
CString::from_slice(path.as_os_str().as_byte_slice())
CString::from_slice(path.as_os_str().as_bytes())
}
pub fn mkdir(p: &Path) -> io::Result<()> {

View File

@ -50,7 +50,9 @@ pub mod net;
pub mod os;
pub mod os_str;
pub mod pipe;
pub mod pipe2;
pub mod process;
pub mod process2;
pub mod rwlock;
pub mod stack_overflow;
pub mod sync;

View File

@ -19,11 +19,13 @@ use fmt;
use iter;
use libc::{self, c_int, c_char, c_void};
use mem;
use io;
use old_io::{IoResult, IoError, fs};
use ptr;
use slice;
use str;
use sys::c;
use sys::fd;
use sys::fs::FileDesc;
use vec;
@ -118,7 +120,7 @@ pub struct SplitPaths<'a> {
pub fn split_paths<'a>(unparsed: &'a OsStr) -> SplitPaths<'a> {
fn is_colon(b: &u8) -> bool { *b == b':' }
let unparsed = unparsed.as_byte_slice();
let unparsed = unparsed.as_bytes();
SplitPaths {
iter: unparsed.split(is_colon as fn(&u8) -> bool)
.map(Path::new as fn(&'a [u8]) -> Path)
@ -141,7 +143,7 @@ pub fn join_paths<I, T>(paths: I) -> Result<OsString, JoinPathsError>
let sep = b':';
for (i, path) in paths.enumerate() {
let path = path.as_os_str().as_byte_slice();
let path = path.as_os_str().as_bytes();
if i > 0 { joined.push(sep) }
if path.contains(&sep) {
return Err(JoinPathsError)
@ -391,7 +393,7 @@ pub fn env() -> Env {
pub fn getenv(k: &OsStr) -> Option<OsString> {
unsafe {
let s = CString::from_slice(k.as_byte_slice());
let s = CString::from_slice(k.as_bytes());
let s = libc::getenv(s.as_ptr()) as *const _;
if s.is_null() {
None
@ -403,8 +405,8 @@ pub fn getenv(k: &OsStr) -> Option<OsString> {
pub fn setenv(k: &OsStr, v: &OsStr) {
unsafe {
let k = CString::from_slice(k.as_byte_slice());
let v = CString::from_slice(v.as_byte_slice());
let k = CString::from_slice(k.as_bytes());
let v = CString::from_slice(v.as_bytes());
if libc::funcs::posix01::unistd::setenv(k.as_ptr(), v.as_ptr(), 1) != 0 {
panic!("failed setenv: {}", IoError::last_error());
}
@ -413,7 +415,7 @@ pub fn setenv(k: &OsStr, v: &OsStr) {
pub fn unsetenv(n: &OsStr) {
unsafe {
let nbuf = CString::from_slice(n.as_byte_slice());
let nbuf = CString::from_slice(n.as_bytes());
if libc::funcs::posix01::unistd::unsetenv(nbuf.as_ptr()) != 0 {
panic!("failed unsetenv: {}", IoError::last_error());
}

View File

@ -0,0 +1,49 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
use sys::fd::FileDesc;
use io;
use libc;
////////////////////////////////////////////////////////////////////////////////
// Anonymous pipes
////////////////////////////////////////////////////////////////////////////////
pub struct AnonPipe(FileDesc);
pub unsafe fn anon_pipe() -> io::Result<(AnonPipe, AnonPipe)> {
let mut fds = [0; 2];
if libc::pipe(fds.as_mut_ptr()) == 0 {
Ok((AnonPipe::from_fd(fds[0]),
AnonPipe::from_fd(fds[1])))
} else {
Err(io::Error::last_os_error())
}
}
impl AnonPipe {
pub fn from_fd(fd: libc::c_int) -> AnonPipe {
AnonPipe(FileDesc::new(fd))
}
pub fn read(&self, buf: &mut [u8]) -> io::Result<usize> {
self.0.read(buf)
}
pub fn write(&self, buf: &[u8]) -> io::Result<usize> {
self.0.write(buf)
}
pub fn raw(&self) -> libc::c_int {
self.0.raw()
}
}

View File

@ -32,6 +32,12 @@ pub use sys_common::ProcessConfig;
helper_init! { static HELPER: Helper<Req> }
/// Unix-specific extensions to the Command builder
pub struct CommandExt {
uid: Option<u32>,
gid: Option<u32>,
}
/// The unique id of the process (this should never be negative).
pub struct Process {
pub pid: pid_t

View File

@ -0,0 +1,446 @@
// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
use collections::HashMap;
use collections::hash_map::Hasher;
use env;
use ffi::{OsString, OsStr, CString};
use fmt;
use hash::Hash;
use io::{self, Error, ErrorKind};
use libc::{self, pid_t, c_void, c_int, gid_t, uid_t};
use mem;
use old_io;
use os;
use os::unix::OsStrExt;
use ptr;
use sync::mpsc::{channel, Sender, Receiver};
use sys::pipe2::AnonPipe;
use sys::{self, retry, c, wouldblock, set_nonblocking, ms_to_timeval, cvt};
use sys_common::AsInner;
////////////////////////////////////////////////////////////////////////////////
// Command
////////////////////////////////////////////////////////////////////////////////
#[derive(Clone)]
pub struct Command {
pub program: CString,
pub args: Vec<CString>,
pub env: Option<HashMap<OsString, OsString>>,
pub cwd: Option<CString>,
pub uid: Option<uid_t>,
pub gid: Option<gid_t>,
pub detach: bool, // not currently exposed in std::process
}
impl Command {
pub fn new(program: &OsStr) -> Command {
Command {
program: program.to_cstring(),
args: Vec::new(),
env: None,
cwd: None,
uid: None,
gid: None,
detach: false,
}
}
pub fn arg(&mut self, arg: &OsStr) {
self.args.push(arg.to_cstring())
}
pub fn args<'a, I: Iterator<Item = &'a OsStr>>(&mut self, args: I) {
self.args.extend(args.map(OsStrExt::to_cstring))
}
fn init_env_map(&mut self) {
if self.env.is_none() {
self.env = Some(env::vars_os().collect());
}
}
pub fn env(&mut self, key: &OsStr, val: &OsStr) {
self.init_env_map();
self.env.as_mut().unwrap().insert(key.to_os_string(), val.to_os_string());
}
pub fn env_remove(&mut self, key: &OsStr) {
self.init_env_map();
self.env.as_mut().unwrap().remove(&key.to_os_string());
}
pub fn env_clear(&mut self) {
self.env = Some(HashMap::new())
}
pub fn cwd(&mut self, dir: &OsStr) {
self.cwd = Some(dir.to_cstring())
}
}
////////////////////////////////////////////////////////////////////////////////
// Processes
////////////////////////////////////////////////////////////////////////////////
/// Unix exit statuses
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub enum ExitStatus {
/// Normal termination with an exit code.
Code(i32),
/// Termination by signal, with the signal number.
///
/// Never generated on Windows.
Signal(i32),
}
impl ExitStatus {
pub fn success(&self) -> bool {
*self == ExitStatus::Code(0)
}
pub fn code(&self) -> Option<i32> {
match *self {
ExitStatus::Code(c) => Some(c),
_ => None
}
}
}
impl fmt::Display for ExitStatus {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
ExitStatus::Code(code) => write!(f, "exit code: {}", code),
ExitStatus::Signal(code) => write!(f, "signal: {}", code),
}
}
}
/// The unique id of the process (this should never be negative).
pub struct Process {
pid: pid_t
}
const CLOEXEC_MSG_FOOTER: &'static [u8] = b"NOEX";
impl Process {
pub fn id(&self) -> pid_t {
self.pid
}
pub unsafe fn kill(&self) -> io::Result<()> {
try!(cvt(libc::funcs::posix88::signal::kill(self.pid, libc::SIGKILL)));
Ok(())
}
pub fn spawn(cfg: &Command,
in_fd: Option<AnonPipe>, out_fd: Option<AnonPipe>, err_fd: Option<AnonPipe>)
-> io::Result<Process>
{
use libc::funcs::posix88::unistd::{fork, dup2, close, chdir, execvp};
use libc::funcs::bsd44::getdtablesize;
mod rustrt {
extern {
pub fn rust_unset_sigprocmask();
}
}
unsafe fn set_cloexec(fd: c_int) {
let ret = c::ioctl(fd, c::FIOCLEX);
assert_eq!(ret, 0);
}
let dirp = cfg.cwd.as_ref().map(|c| c.as_ptr()).unwrap_or(ptr::null());
with_envp(cfg.env.as_ref(), |envp: *const c_void| {
with_argv(&cfg.program, &cfg.args, |argv: *const *const libc::c_char| unsafe {
let (input, mut output) = try!(sys::pipe2::anon_pipe());
// We may use this in the child, so perform allocations before the
// fork
let devnull = b"/dev/null\0";
set_cloexec(output.raw());
let pid = fork();
if pid < 0 {
return Err(Error::last_os_error())
} else if pid > 0 {
#[inline]
fn combine(arr: &[u8]) -> i32 {
let a = arr[0] as u32;
let b = arr[1] as u32;
let c = arr[2] as u32;
let d = arr[3] as u32;
((a << 24) | (b << 16) | (c << 8) | (d << 0)) as i32
}
let p = Process{ pid: pid };
drop(output);
let mut bytes = [0; 8];
// loop to handle EINTER
loop {
match input.read(&mut bytes) {
Ok(8) => {
assert!(combine(CLOEXEC_MSG_FOOTER) == combine(&bytes[4.. 8]),
"Validation on the CLOEXEC pipe failed: {:?}", bytes);
let errno = combine(&bytes[0.. 4]);
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
return Err(Error::from_os_error(errno))
}
Ok(0) => return Ok(p),
Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
Err(e) => {
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
panic!("the CLOEXEC pipe failed: {:?}", e)
},
Ok(..) => { // pipe I/O up to PIPE_BUF bytes should be atomic
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
panic!("short read on the CLOEXEC pipe")
}
}
}
}
// And at this point we've reached a special time in the life of the
// child. The child must now be considered hamstrung and unable to
// do anything other than syscalls really. Consider the following
// scenario:
//
// 1. Thread A of process 1 grabs the malloc() mutex
// 2. Thread B of process 1 forks(), creating thread C
// 3. Thread C of process 2 then attempts to malloc()
// 4. The memory of process 2 is the same as the memory of
// process 1, so the mutex is locked.
//
// This situation looks a lot like deadlock, right? It turns out
// that this is what pthread_atfork() takes care of, which is
// presumably implemented across platforms. The first thing that
// threads to *before* forking is to do things like grab the malloc
// mutex, and then after the fork they unlock it.
//
// Despite this information, libnative's spawn has been witnessed to
// deadlock on both OSX and FreeBSD. I'm not entirely sure why, but
// all collected backtraces point at malloc/free traffic in the
// child spawned process.
//
// For this reason, the block of code below should contain 0
// invocations of either malloc of free (or their related friends).
//
// As an example of not having malloc/free traffic, we don't close
// this file descriptor by dropping the FileDesc (which contains an
// allocation). Instead we just close it manually. This will never
// have the drop glue anyway because this code never returns (the
// child will either exec() or invoke libc::exit)
let _ = libc::close(input.raw());
fn fail(output: &mut AnonPipe) -> ! {
let errno = sys::os::errno() as u32;
let bytes = [
(errno >> 24) as u8,
(errno >> 16) as u8,
(errno >> 8) as u8,
(errno >> 0) as u8,
CLOEXEC_MSG_FOOTER[0], CLOEXEC_MSG_FOOTER[1],
CLOEXEC_MSG_FOOTER[2], CLOEXEC_MSG_FOOTER[3]
];
// pipe I/O up to PIPE_BUF bytes should be atomic
assert!(output.write(&bytes).is_ok());
unsafe { libc::_exit(1) }
}
rustrt::rust_unset_sigprocmask();
// If a stdio file descriptor is set to be ignored, we don't
// actually close it, but rather open up /dev/null into that
// file descriptor. Otherwise, the first file descriptor opened
// up in the child would be numbered as one of the stdio file
// descriptors, which is likely to wreak havoc.
let setup = |&: src: Option<AnonPipe>, dst: c_int| {
let src = match src {
None => {
let flags = if dst == libc::STDIN_FILENO {
libc::O_RDONLY
} else {
libc::O_RDWR
};
libc::open(devnull.as_ptr() as *const _, flags, 0)
}
Some(obj) => {
let fd = obj.raw();
// Leak the memory and the file descriptor. We're in the
// child now an all our resources are going to be
// cleaned up very soon
mem::forget(obj);
fd
}
};
src != -1 && retry(|| dup2(src, dst)) != -1
};
if !setup(in_fd, libc::STDIN_FILENO) { fail(&mut output) }
if !setup(out_fd, libc::STDOUT_FILENO) { fail(&mut output) }
if !setup(err_fd, libc::STDERR_FILENO) { fail(&mut output) }
// close all other fds
for fd in (3..getdtablesize()).rev() {
if fd != output.raw() {
let _ = close(fd as c_int);
}
}
match cfg.gid {
Some(u) => {
if libc::setgid(u as libc::gid_t) != 0 {
fail(&mut output);
}
}
None => {}
}
match cfg.uid {
Some(u) => {
// When dropping privileges from root, the `setgroups` call
// will remove any extraneous groups. If we don't call this,
// then even though our uid has dropped, we may still have
// groups that enable us to do super-user things. This will
// fail if we aren't root, so don't bother checking the
// return value, this is just done as an optimistic
// privilege dropping function.
extern {
fn setgroups(ngroups: libc::c_int,
ptr: *const libc::c_void) -> libc::c_int;
}
let _ = setgroups(0, ptr::null());
if libc::setuid(u as libc::uid_t) != 0 {
fail(&mut output);
}
}
None => {}
}
if cfg.detach {
// Don't check the error of setsid because it fails if we're the
// process leader already. We just forked so it shouldn't return
// error, but ignore it anyway.
let _ = libc::setsid();
}
if !dirp.is_null() && chdir(dirp) == -1 {
fail(&mut output);
}
if !envp.is_null() {
*sys::os::environ() = envp as *const _;
}
let _ = execvp(*argv, argv as *mut _);
fail(&mut output);
})
})
}
pub fn wait(&self) -> io::Result<ExitStatus> {
let mut status = 0 as c_int;
try!(cvt(retry(|| unsafe { c::waitpid(self.pid, &mut status, 0) })));
Ok(translate_status(status))
}
pub fn try_wait(&self) -> Option<ExitStatus> {
let mut status = 0 as c_int;
match retry(|| unsafe {
c::waitpid(self.pid, &mut status, c::WNOHANG)
}) {
n if n == self.pid => Some(translate_status(status)),
0 => None,
n => panic!("unknown waitpid error `{:?}`: {:?}", n,
super::last_error()),
}
}
}
fn with_argv<T,F>(prog: &CString, args: &[CString], cb: F) -> T
where F : FnOnce(*const *const libc::c_char) -> T
{
let mut ptrs: Vec<*const libc::c_char> = Vec::with_capacity(args.len()+1);
// Convert the CStrings into an array of pointers. Note: the
// lifetime of the various CStrings involved is guaranteed to be
// larger than the lifetime of our invocation of cb, but this is
// technically unsafe as the callback could leak these pointers
// out of our scope.
ptrs.push(prog.as_ptr());
ptrs.extend(args.iter().map(|tmp| tmp.as_ptr()));
// Add a terminating null pointer (required by libc).
ptrs.push(ptr::null());
cb(ptrs.as_ptr())
}
fn with_envp<T, F>(env: Option<&HashMap<OsString, OsString>>, cb: F) -> T
where F : FnOnce(*const c_void) -> T
{
// On posixy systems we can pass a char** for envp, which is a
// null-terminated array of "k=v\0" strings. Since we must create
// these strings locally, yet expose a raw pointer to them, we
// create a temporary vector to own the CStrings that outlives the
// call to cb.
match env {
Some(env) => {
let mut tmps = Vec::with_capacity(env.len());
for pair in env {
let mut kv = Vec::new();
kv.push_all(pair.0.as_bytes());
kv.push('=' as u8);
kv.push_all(pair.1.as_bytes());
kv.push(0); // terminating null
tmps.push(kv);
}
// As with `with_argv`, this is unsafe, since cb could leak the pointers.
let mut ptrs: Vec<*const libc::c_char> =
tmps.iter()
.map(|tmp| tmp.as_ptr() as *const libc::c_char)
.collect();
ptrs.push(ptr::null());
cb(ptrs.as_ptr() as *const c_void)
}
_ => cb(ptr::null())
}
}
fn translate_status(status: c_int) -> ExitStatus {
#![allow(non_snake_case)]
#[cfg(any(target_os = "linux", target_os = "android"))]
mod imp {
pub fn WIFEXITED(status: i32) -> bool { (status & 0xff) == 0 }
pub fn WEXITSTATUS(status: i32) -> i32 { (status >> 8) & 0xff }
pub fn WTERMSIG(status: i32) -> i32 { status & 0x7f }
}
#[cfg(any(target_os = "macos",
target_os = "ios",
target_os = "freebsd",
target_os = "dragonfly",
target_os = "openbsd"))]
mod imp {
pub fn WIFEXITED(status: i32) -> bool { (status & 0x7f) == 0 }
pub fn WEXITSTATUS(status: i32) -> i32 { status >> 8 }
pub fn WTERMSIG(status: i32) -> i32 { status & 0o177 }
}
if imp::WIFEXITED(status) {
ExitStatus::Code(imp::WEXITSTATUS(status))
} else {
ExitStatus::Signal(imp::WTERMSIG(status))
}
}

View File

@ -225,27 +225,11 @@ impl File {
}
pub fn read(&self, buf: &mut [u8]) -> io::Result<usize> {
let mut read = 0;
try!(cvt(unsafe {
libc::ReadFile(self.handle.raw(),
buf.as_ptr() as libc::LPVOID,
buf.len() as libc::DWORD,
&mut read,
ptr::null_mut())
}));
Ok(read as usize)
self.handle.read(buf)
}
pub fn write(&self, buf: &[u8]) -> io::Result<usize> {
let mut amt = 0;
try!(cvt(unsafe {
libc::WriteFile(self.handle.raw(),
buf.as_ptr() as libc::LPVOID,
buf.len() as libc::DWORD,
&mut amt,
ptr::null_mut())
}));
Ok(amt as usize)
self.handle.write(buf)
}
pub fn flush(&self) -> io::Result<()> { Ok(()) }

View File

@ -11,6 +11,10 @@
use prelude::v1::*;
use libc::{self, HANDLE};
use io;
use io::ErrorKind;
use ptr;
use sys::cvt;
pub struct Handle(HANDLE);
@ -21,7 +25,16 @@ impl Handle {
pub fn new(handle: HANDLE) -> Handle {
Handle(handle)
}
pub fn raw(&self) -> HANDLE { self.0 }
pub fn read(&self, buf: &mut [u8]) -> io::Result<usize> {
read(self.0, buf)
}
pub fn write(&self, buf: &[u8]) -> io::Result<usize> {
write(self.0, buf)
}
}
impl Drop for Handle {
@ -30,3 +43,34 @@ impl Drop for Handle {
}
}
pub fn read(h: HANDLE, buf: &mut [u8]) -> io::Result<usize> {
let mut read = 0;
let res = cvt(unsafe {
libc::ReadFile(h, buf.as_ptr() as libc::LPVOID,
buf.len() as libc::DWORD, &mut read,
ptr::null_mut())
});
match res {
Ok(_) => Ok(read as usize),
// The special treatment of BrokenPipe is to deal with Windows
// pipe semantics, which yields this error when *reading* from
// a pipe after the other end has closed; we interpret that as
// EOF on the pipe.
Err(ref e) if e.kind() == ErrorKind::BrokenPipe => Ok(0),
Err(e) => Err(e)
}
}
pub fn write(h: HANDLE, buf: &[u8]) -> io::Result<usize> {
let mut amt = 0;
try!(cvt(unsafe {
libc::WriteFile(h, buf.as_ptr() as libc::LPVOID,
buf.len() as libc::DWORD, &mut amt,
ptr::null_mut())
}));
Ok(amt as usize)
}

View File

@ -47,7 +47,9 @@ pub mod net;
pub mod os;
pub mod os_str;
pub mod pipe;
pub mod pipe2;
pub mod process;
pub mod process2;
pub mod rwlock;
pub mod stack_overflow;
pub mod sync;

View File

@ -0,0 +1,77 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
use sys::handle;
use io;
use libc::{self, c_int, HANDLE};
////////////////////////////////////////////////////////////////////////////////
// Anonymous pipes
////////////////////////////////////////////////////////////////////////////////
pub struct AnonPipe {
fd: c_int
}
pub unsafe fn anon_pipe() -> io::Result<(AnonPipe, AnonPipe)> {
// Windows pipes work subtly differently than unix pipes, and their
// inheritance has to be handled in a different way that I do not
// fully understand. Here we explicitly make the pipe non-inheritable,
// which means to pass it to a subprocess they need to be duplicated
// first, as in std::run.
let mut fds = [0; 2];
match libc::pipe(fds.as_mut_ptr(), 1024 as ::libc::c_uint,
(libc::O_BINARY | libc::O_NOINHERIT) as c_int) {
0 => {
assert!(fds[0] != -1 && fds[0] != 0);
assert!(fds[1] != -1 && fds[1] != 0);
Ok((AnonPipe::from_fd(fds[0]), AnonPipe::from_fd(fds[1])))
}
_ => Err(io::Error::last_os_error()),
}
}
impl AnonPipe {
pub fn from_fd(fd: libc::c_int) -> AnonPipe {
AnonPipe { fd: fd }
}
pub fn raw(&self) -> HANDLE {
unsafe { libc::get_osfhandle(self.fd) as libc::HANDLE }
}
pub fn read(&self, buf: &mut [u8]) -> io::Result<usize> {
handle::read(self.raw(), buf)
}
pub fn write(&self, buf: &[u8]) -> io::Result<usize> {
handle::write(self.raw(), buf)
}
}
impl Drop for AnonPipe {
fn drop(&mut self) {
// closing stdio file handles makes no sense, so never do it. Also, note
// that errors are ignored when closing a file descriptor. The reason
// for this is that if an error occurs we don't actually know if the
// file descriptor was closed or not, and if we retried (for something
// like EINTR), we might close another valid file descriptor (opened
// after we closed ours.
if self.fd > libc::STDERR_FILENO {
let n = unsafe { libc::close(self.fd) };
if n != 0 {
println!("error {} when closing file descriptor {}", n, self.fd);
}
}
}
}

View File

@ -0,0 +1,479 @@
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
use ascii::*;
use collections::HashMap;
use collections;
use env;
use ffi::{OsString, OsStr};
use fmt;
use io::{self, Error};
use libc::{self, c_void};
use old_io::fs;
use old_path;
use os::windows::OsStrExt;
use ptr;
use sync::{StaticMutex, MUTEX_INIT};
use sys::pipe2::AnonPipe;
use sys::{self, cvt};
use sys::handle::Handle;
use sys_common::{AsInner, FromInner};
////////////////////////////////////////////////////////////////////////////////
// Command
////////////////////////////////////////////////////////////////////////////////
fn mk_key(s: &OsStr) -> OsString {
FromInner::from_inner(sys::os_str::Buf {
inner: s.as_inner().inner.to_ascii_uppercase()
})
}
#[derive(Clone)]
pub struct Command {
pub program: OsString,
pub args: Vec<OsString>,
pub env: Option<HashMap<OsString, OsString>>,
pub cwd: Option<OsString>,
pub detach: bool, // not currently exposed in std::process
}
impl Command {
pub fn new(program: &OsStr) -> Command {
Command {
program: program.to_os_string(),
args: Vec::new(),
env: None,
cwd: None,
detach: false,
}
}
pub fn arg(&mut self, arg: &OsStr) {
self.args.push(arg.to_os_string())
}
pub fn args<'a, I: Iterator<Item = &'a OsStr>>(&mut self, args: I) {
self.args.extend(args.map(OsStr::to_os_string))
}
fn init_env_map(&mut self){
if self.env.is_none() {
self.env = Some(env::vars_os().map(|(key, val)| {
(mk_key(&key), val)
}).collect());
}
}
pub fn env(&mut self, key: &OsStr, val: &OsStr) {
self.init_env_map();
self.env.as_mut().unwrap().insert(mk_key(key), val.to_os_string());
}
pub fn env_remove(&mut self, key: &OsStr) {
self.init_env_map();
self.env.as_mut().unwrap().remove(&mk_key(key));
}
pub fn env_clear(&mut self) {
self.env = Some(HashMap::new())
}
pub fn cwd(&mut self, dir: &OsStr) {
self.cwd = Some(dir.to_os_string())
}
}
////////////////////////////////////////////////////////////////////////////////
// Processes
////////////////////////////////////////////////////////////////////////////////
// `CreateProcess` is racy!
// http://support.microsoft.com/kb/315939
static CREATE_PROCESS_LOCK: StaticMutex = MUTEX_INIT;
/// A value representing a child process.
///
/// The lifetime of this value is linked to the lifetime of the actual
/// process - the Process destructor calls self.finish() which waits
/// for the process to terminate.
pub struct Process {
/// A HANDLE to the process, which will prevent the pid being
/// re-used until the handle is closed.
handle: Handle,
}
impl Process {
#[allow(deprecated)]
pub fn spawn(cfg: &Command,
in_fd: Option<AnonPipe>, out_fd: Option<AnonPipe>, err_fd: Option<AnonPipe>)
-> io::Result<Process>
{
use libc::types::os::arch::extra::{DWORD, HANDLE, STARTUPINFO};
use libc::consts::os::extra::{
TRUE, FALSE,
STARTF_USESTDHANDLES,
INVALID_HANDLE_VALUE,
DUPLICATE_SAME_ACCESS
};
use libc::funcs::extra::kernel32::{
GetCurrentProcess,
DuplicateHandle,
CloseHandle,
CreateProcessW
};
use env::split_paths;
use mem;
use iter::IteratorExt;
use str::StrExt;
// To have the spawning semantics of unix/windows stay the same, we need to
// read the *child's* PATH if one is provided. See #15149 for more details.
let program = cfg.env.as_ref().and_then(|env| {
for (key, v) in env {
if OsStr::from_str("PATH") != &**key { continue }
// Split the value and test each path to see if the
// program exists.
for path in split_paths(&v) {
let path = path.join(cfg.program.to_str().unwrap())
.with_extension(env::consts::EXE_EXTENSION);
// FIXME: update with new fs module once it lands
if fs::stat(&old_path::Path::new(&path)).is_ok() {
return Some(OsString::from_str(path.as_str().unwrap()))
}
}
break
}
None
});
unsafe {
let mut si = zeroed_startupinfo();
si.cb = mem::size_of::<STARTUPINFO>() as DWORD;
si.dwFlags = STARTF_USESTDHANDLES;
let cur_proc = GetCurrentProcess();
// Similarly to unix, we don't actually leave holes for the stdio file
// descriptors, but rather open up /dev/null equivalents. These
// equivalents are drawn from libuv's windows process spawning.
let set_fd = |&: fd: &Option<AnonPipe>, slot: &mut HANDLE,
is_stdin: bool| {
match *fd {
None => {
let access = if is_stdin {
libc::FILE_GENERIC_READ
} else {
libc::FILE_GENERIC_WRITE | libc::FILE_READ_ATTRIBUTES
};
let size = mem::size_of::<libc::SECURITY_ATTRIBUTES>();
let mut sa = libc::SECURITY_ATTRIBUTES {
nLength: size as libc::DWORD,
lpSecurityDescriptor: ptr::null_mut(),
bInheritHandle: 1,
};
let mut filename: Vec<u16> = "NUL".utf16_units().collect();
filename.push(0);
*slot = libc::CreateFileW(filename.as_ptr(),
access,
libc::FILE_SHARE_READ |
libc::FILE_SHARE_WRITE,
&mut sa,
libc::OPEN_EXISTING,
0,
ptr::null_mut());
if *slot == INVALID_HANDLE_VALUE {
return Err(Error::last_os_error())
}
}
Some(ref pipe) => {
let orig = pipe.raw();
if orig == INVALID_HANDLE_VALUE {
return Err(Error::last_os_error())
}
if DuplicateHandle(cur_proc, orig, cur_proc, slot,
0, TRUE, DUPLICATE_SAME_ACCESS) == FALSE {
return Err(Error::last_os_error())
}
}
}
Ok(())
};
try!(set_fd(&in_fd, &mut si.hStdInput, true));
try!(set_fd(&out_fd, &mut si.hStdOutput, false));
try!(set_fd(&err_fd, &mut si.hStdError, false));
let mut cmd_str = make_command_line(program.as_ref().unwrap_or(&cfg.program),
&cfg.args);
cmd_str.push(0); // add null terminator
let mut pi = zeroed_process_information();
let mut create_err = None;
// stolen from the libuv code.
let mut flags = libc::CREATE_UNICODE_ENVIRONMENT;
if cfg.detach {
flags |= libc::DETACHED_PROCESS | libc::CREATE_NEW_PROCESS_GROUP;
}
with_envp(cfg.env.as_ref(), |envp| {
with_dirp(cfg.cwd.as_ref(), |dirp| {
let _lock = CREATE_PROCESS_LOCK.lock().unwrap();
let created = CreateProcessW(ptr::null(),
cmd_str.as_mut_ptr(),
ptr::null_mut(),
ptr::null_mut(),
TRUE,
flags, envp, dirp,
&mut si, &mut pi);
if created == FALSE {
create_err = Some(Error::last_os_error());
}
})
});
assert!(CloseHandle(si.hStdInput) != 0);
assert!(CloseHandle(si.hStdOutput) != 0);
assert!(CloseHandle(si.hStdError) != 0);
match create_err {
Some(err) => return Err(err),
None => {}
}
// We close the thread handle because we don't care about keeping the
// thread id valid, and we aren't keeping the thread handle around to be
// able to close it later. We don't close the process handle however
// because std::we want the process id to stay valid at least until the
// calling code closes the process handle.
assert!(CloseHandle(pi.hThread) != 0);
Ok(Process {
handle: Handle::new(pi.hProcess)
})
}
}
pub unsafe fn kill(&self) -> io::Result<()> {
try!(cvt(libc::TerminateProcess(self.handle.raw(), 1)));
Ok(())
}
pub fn wait(&self) -> io::Result<ExitStatus> {
use libc::consts::os::extra::{
FALSE,
STILL_ACTIVE,
INFINITE,
WAIT_OBJECT_0,
};
use libc::funcs::extra::kernel32::{
GetExitCodeProcess,
WaitForSingleObject,
};
unsafe {
loop {
let mut status = 0;
if GetExitCodeProcess(self.handle.raw(), &mut status) == FALSE {
let err = Err(Error::last_os_error());
return err;
}
if status != STILL_ACTIVE {
return Ok(ExitStatus(status as i32));
}
match WaitForSingleObject(self.handle.raw(), INFINITE) {
WAIT_OBJECT_0 => {}
_ => {
let err = Err(Error::last_os_error());
return err
}
}
}
}
}
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct ExitStatus(i32);
impl ExitStatus {
pub fn success(&self) -> bool {
self.0 == 0
}
pub fn code(&self) -> Option<i32> {
Some(self.0)
}
}
impl fmt::Display for ExitStatus {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "exit code: {}", self.0)
}
}
fn zeroed_startupinfo() -> libc::types::os::arch::extra::STARTUPINFO {
libc::types::os::arch::extra::STARTUPINFO {
cb: 0,
lpReserved: ptr::null_mut(),
lpDesktop: ptr::null_mut(),
lpTitle: ptr::null_mut(),
dwX: 0,
dwY: 0,
dwXSize: 0,
dwYSize: 0,
dwXCountChars: 0,
dwYCountCharts: 0,
dwFillAttribute: 0,
dwFlags: 0,
wShowWindow: 0,
cbReserved2: 0,
lpReserved2: ptr::null_mut(),
hStdInput: libc::INVALID_HANDLE_VALUE,
hStdOutput: libc::INVALID_HANDLE_VALUE,
hStdError: libc::INVALID_HANDLE_VALUE,
}
}
fn zeroed_process_information() -> libc::types::os::arch::extra::PROCESS_INFORMATION {
libc::types::os::arch::extra::PROCESS_INFORMATION {
hProcess: ptr::null_mut(),
hThread: ptr::null_mut(),
dwProcessId: 0,
dwThreadId: 0
}
}
// Produces a wide string *without terminating null*
fn make_command_line(prog: &OsStr, args: &[OsString]) -> Vec<u16> {
let mut cmd: Vec<u16> = Vec::new();
append_arg(&mut cmd, prog);
for arg in args {
cmd.push(' ' as u16);
append_arg(&mut cmd, arg);
}
return cmd;
fn append_arg(cmd: &mut Vec<u16>, arg: &OsStr) {
// If an argument has 0 characters then we need to quote it to ensure
// that it actually gets passed through on the command line or otherwise
// it will be dropped entirely when parsed on the other end.
let arg_bytes = &arg.as_inner().inner.as_inner();
let quote = arg_bytes.iter().any(|c| *c == b' ' || *c == b'\t')
|| arg_bytes.len() == 0;
if quote {
cmd.push('"' as u16);
}
let mut iter = arg.encode_wide();
while let Some(x) = iter.next() {
if x == '"' as u16 {
// escape quotes
cmd.push('\\' as u16);
cmd.push('"' as u16);
} else if x == '\\' as u16 {
// is this a run of backslashes followed by a " ?
if iter.clone().skip_while(|y| *y == '\\' as u16).next() == Some('"' as u16) {
// Double it ... NOTE: this behavior is being
// preserved as it's been part of Rust for a long
// time, but no one seems to know exactly why this
// is the right thing to do.
cmd.push('\\' as u16);
cmd.push('\\' as u16);
} else {
// Push it through unescaped
cmd.push('\\' as u16);
}
} else {
cmd.push(x)
}
}
if quote {
cmd.push('"' as u16);
}
}
}
fn with_envp<F, T>(env: Option<&collections::HashMap<OsString, OsString>>, cb: F) -> T
where F: FnOnce(*mut c_void) -> T,
{
// On Windows we pass an "environment block" which is not a char**, but
// rather a concatenation of null-terminated k=v\0 sequences, with a final
// \0 to terminate.
match env {
Some(env) => {
let mut blk = Vec::new();
for pair in env {
blk.extend(pair.0.encode_wide());
blk.push('=' as u16);
blk.extend(pair.1.encode_wide());
blk.push(0);
}
blk.push(0);
cb(blk.as_mut_ptr() as *mut c_void)
}
_ => cb(ptr::null_mut())
}
}
fn with_dirp<T, F>(d: Option<&OsString>, cb: F) -> T where
F: FnOnce(*const u16) -> T,
{
match d {
Some(dir) => {
let mut dir_str: Vec<u16> = dir.encode_wide().collect();
dir_str.push(0);
cb(dir_str.as_ptr())
},
None => cb(ptr::null())
}
}
#[cfg(test)]
mod tests {
use prelude::v1::*;
use str;
use ffi::{OsStr, OsString};
use super::make_command_line;
#[test]
fn test_make_command_line() {
fn test_wrapper(prog: &str, args: &[&str]) -> String {
String::from_utf16(
&make_command_line(OsStr::from_str(prog),
args.iter()
.map(|a| OsString::from_str(a))
.collect::<Vec<OsString>>()
.as_slice())).unwrap()
}
assert_eq!(
test_wrapper("prog", &["aaa", "bbb", "ccc"]),
"prog aaa bbb ccc"
);
assert_eq!(
test_wrapper("C:\\Program Files\\blah\\blah.exe", &["aaa"]),
"\"C:\\Program Files\\blah\\blah.exe\" aaa"
);
assert_eq!(
test_wrapper("C:\\Program Files\\test", &["aa\"bb"]),
"\"C:\\Program Files\\test\" aa\\\"bb"
);
assert_eq!(
test_wrapper("echo", &["a b c"]),
"echo \"a b c\""
);
assert_eq!(
test_wrapper("\u{03c0}\u{042f}\u{97f3}\u{00e6}\u{221e}", &[]),
"\u{03c0}\u{042f}\u{97f3}\u{00e6}\u{221e}"
);
}
}