rust/compiler/rustc_index/src/interval.rs

261 lines
8.2 KiB
Rust
Raw Normal View History

use std::iter::Step;
use std::marker::PhantomData;
use std::ops::Bound;
use std::ops::RangeBounds;
use crate::vec::Idx;
use crate::vec::IndexVec;
use smallvec::SmallVec;
#[cfg(test)]
mod tests;
/// Stores a set of intervals on the indices.
#[derive(Debug, Clone)]
pub struct IntervalSet<I> {
// Start, end
map: SmallVec<[(u32, u32); 4]>,
domain: usize,
_data: PhantomData<I>,
}
#[inline]
fn inclusive_start<T: Idx>(range: impl RangeBounds<T>) -> u32 {
match range.start_bound() {
Bound::Included(start) => start.index() as u32,
Bound::Excluded(start) => start.index() as u32 + 1,
Bound::Unbounded => 0,
}
}
#[inline]
fn inclusive_end<T: Idx>(domain: usize, range: impl RangeBounds<T>) -> Option<u32> {
let end = match range.end_bound() {
Bound::Included(end) => end.index() as u32,
Bound::Excluded(end) => end.index().checked_sub(1)? as u32,
Bound::Unbounded => domain.checked_sub(1)? as u32,
};
Some(end)
}
impl<I: Idx> IntervalSet<I> {
pub fn new(domain: usize) -> IntervalSet<I> {
IntervalSet { map: SmallVec::new(), domain, _data: PhantomData }
}
pub fn clear(&mut self) {
self.map.clear();
}
pub fn iter(&self) -> impl Iterator<Item = I> + '_
where
I: Step,
{
self.iter_intervals().flatten()
}
/// Iterates through intervals stored in the set, in order.
pub fn iter_intervals(&self) -> impl Iterator<Item = std::ops::Range<I>> + '_
where
I: Step,
{
self.map.iter().map(|&(start, end)| I::new(start as usize)..I::new(end as usize + 1))
}
/// Returns true if we increased the number of elements present.
pub fn insert(&mut self, point: I) -> bool {
self.insert_range(point..=point)
}
/// Returns true if we increased the number of elements present.
pub fn insert_range(&mut self, range: impl RangeBounds<I> + Clone) -> bool {
let start = inclusive_start(range.clone());
let Some(end) = inclusive_end(self.domain, range) else {
// empty range
return false;
};
if start > end {
return false;
}
// This condition looks a bit weird, but actually makes sense.
//
// if r.0 == end + 1, then we're actually adjacent, so we want to
// continue to the next range. We're looking here for the first
// range which starts *non-adjacently* to our end.
let next = self.map.partition_point(|r| r.0 <= end + 1);
if let Some(right) = next.checked_sub(1) {
let (prev_start, prev_end) = self.map[right];
if prev_end + 1 >= start {
// If the start for the inserted range is adjacent to the
// end of the previous, we can extend the previous range.
if start < prev_start {
// The first range which ends *non-adjacently* to our start.
// And we can ensure that left <= right.
let left = self.map.partition_point(|l| l.1 + 1 < start);
let min = std::cmp::min(self.map[left].0, start);
let max = std::cmp::max(prev_end, end);
self.map[right] = (min, max);
if left != right {
self.map.drain(left..right);
}
return true;
} else {
// We overlap with the previous range, increase it to
// include us.
//
// Make sure we're actually going to *increase* it though --
// it may be that end is just inside the previously existing
// set.
return if end > prev_end {
self.map[right].1 = end;
true
} else {
false
};
}
} else {
// Otherwise, we don't overlap, so just insert
self.map.insert(right + 1, (start, end));
return true;
}
} else {
if self.map.is_empty() {
// Quite common in practice, and expensive to call memcpy
// with length zero.
self.map.push((start, end));
} else {
self.map.insert(next, (start, end));
}
return true;
}
}
pub fn contains(&self, needle: I) -> bool {
let needle = needle.index() as u32;
2022-02-18 23:48:49 +00:00
let Some(last) = self.map.partition_point(|r| r.0 <= needle).checked_sub(1) else {
// All ranges in the map start after the new range's end
return false;
};
let (_, prev_end) = &self.map[last];
needle <= *prev_end
}
pub fn superset(&self, other: &IntervalSet<I>) -> bool
where
I: Step,
{
// FIXME: Performance here is probably not great. We will be doing a lot
// of pointless tree traversals.
other.iter().all(|elem| self.contains(elem))
}
pub fn is_empty(&self) -> bool {
self.map.is_empty()
}
/// Returns the maximum (last) element present in the set from `range`.
pub fn last_set_in(&self, range: impl RangeBounds<I> + Clone) -> Option<I> {
let start = inclusive_start(range.clone());
let Some(end) = inclusive_end(self.domain, range) else {
// empty range
return None;
};
if start > end {
return None;
}
2022-02-18 23:48:49 +00:00
let Some(last) = self.map.partition_point(|r| r.0 <= end).checked_sub(1) else {
// All ranges in the map start after the new range's end
return None;
};
let (_, prev_end) = &self.map[last];
if start <= *prev_end { Some(I::new(std::cmp::min(*prev_end, end) as usize)) } else { None }
}
pub fn insert_all(&mut self) {
self.clear();
self.map.push((0, self.domain.try_into().unwrap()));
}
pub fn union(&mut self, other: &IntervalSet<I>) -> bool
where
I: Step,
{
assert_eq!(self.domain, other.domain);
let mut did_insert = false;
for range in other.iter_intervals() {
did_insert |= self.insert_range(range);
}
did_insert
}
}
/// This data structure optimizes for cases where the stored bits in each row
/// are expected to be highly contiguous (long ranges of 1s or 0s), in contrast
/// to BitMatrix and SparseBitMatrix which are optimized for
/// "random"/non-contiguous bits and cheap(er) point queries at the expense of
/// memory usage.
#[derive(Clone)]
pub struct SparseIntervalMatrix<R, C>
where
R: Idx,
C: Idx,
{
rows: IndexVec<R, IntervalSet<C>>,
column_size: usize,
}
impl<R: Idx, C: Step + Idx> SparseIntervalMatrix<R, C> {
pub fn new(column_size: usize) -> SparseIntervalMatrix<R, C> {
SparseIntervalMatrix { rows: IndexVec::new(), column_size }
}
pub fn rows(&self) -> impl Iterator<Item = R> {
self.rows.indices()
}
pub fn row(&self, row: R) -> Option<&IntervalSet<C>> {
self.rows.get(row)
}
fn ensure_row(&mut self, row: R) -> &mut IntervalSet<C> {
self.rows.ensure_contains_elem(row, || IntervalSet::new(self.column_size));
&mut self.rows[row]
}
pub fn union_row(&mut self, row: R, from: &IntervalSet<C>) -> bool
where
C: Step,
{
self.ensure_row(row).union(from)
}
pub fn union_rows(&mut self, read: R, write: R) -> bool
where
C: Step,
{
if read == write || self.rows.get(read).is_none() {
return false;
}
self.ensure_row(write);
let (read_row, write_row) = self.rows.pick2_mut(read, write);
write_row.union(read_row)
}
pub fn insert_all_into_row(&mut self, row: R) {
self.ensure_row(row).insert_all();
}
pub fn insert_range(&mut self, row: R, range: impl RangeBounds<C> + Clone) {
self.ensure_row(row).insert_range(range);
}
pub fn insert(&mut self, row: R, point: C) -> bool {
self.ensure_row(row).insert(point)
}
pub fn contains(&self, row: R, point: C) -> bool {
self.row(row).map_or(false, |r| r.contains(point))
}
}