rust/compiler/rustc_pattern_analysis/src/usefulness.rs

1328 lines
52 KiB
Rust
Raw Normal View History

//! # Match exhaustiveness and redundancy algorithm
//!
//! This file contains the logic for exhaustiveness and usefulness checking for pattern-matching.
//! Specifically, given a list of patterns in a match, we can tell whether:
//! (a) a given pattern is redundant
//! (b) the patterns cover every possible value for the type (exhaustiveness)
//!
//! The algorithm implemented here is inspired from the one described in [this
//! paper](http://moscova.inria.fr/~maranget/papers/warn/index.html). We have however changed it in
//! various ways to accommodate the variety of patterns that Rust supports. We thus explain our
//! version here, without being as precise.
//!
//! Fun fact: computing exhaustiveness is NP-complete, because we can encode a SAT problem as an
//! exhaustiveness problem. See [here](https://niedzejkob.p4.team/rust-np) for the fun details.
//!
//!
//! # Summary
//!
//! The algorithm is given as input a list of patterns, one for each arm of a match, and computes
//! the following:
//! - a set of values that match none of the patterns (if any),
//! - for each subpattern (taking into account or-patterns), whether removing it would change
//! anything about how the match executes, i.e. whether it is useful/not redundant.
//!
//! To a first approximation, the algorithm works by exploring all possible values for the type
//! being matched on, and determining which arm(s) catch which value. To make this tractable we
//! cleverly group together values, as we'll see below.
//!
//! The entrypoint of this file is the [`compute_match_usefulness`] function, which computes
//! usefulness for each subpattern and exhaustiveness for the whole match.
//!
//! In this page we explain the necessary concepts to understand how the algorithm works.
//!
//!
//! # Usefulness
//!
//! The central concept of this file is the notion of "usefulness". Given some patterns `p_1 ..
//! p_n`, a pattern `q` is said to be *useful* if there is a value that is matched by `q` and by
//! none of the `p_i`. We write `usefulness(p_1 .. p_n, q)` for a function that returns a list of
//! such values. The aim of this file is to compute it efficiently.
//!
//! This is enough to compute usefulness: a pattern in a `match` expression is redundant iff it is
//! not useful w.r.t. the patterns above it:
//! ```compile_fail,E0004
//! # #![feature(exclusive_range_pattern)]
//! # fn foo() {
//! match Some(0u32) {
//! Some(0..100) => {},
//! Some(90..190) => {}, // useful: `Some(150)` is matched by this but not the branch above
//! Some(50..150) => {}, // redundant: all the values this matches are already matched by
//! // the branches above
//! None => {}, // useful: `None` is matched by this but not the branches above
//! }
2022-04-15 22:04:34 +00:00
//! # }
//! ```
//!
//! This is also enough to compute exhaustiveness: a match is exhaustive iff the wildcard `_`
//! pattern is _not_ useful w.r.t. the patterns in the match. The values returned by `usefulness`
//! are used to tell the user which values are missing.
2022-04-15 22:04:34 +00:00
//! ```compile_fail,E0004
//! # fn foo(x: Option<u32>) {
//! match x {
2022-04-15 22:04:34 +00:00
//! None => {},
//! Some(0) => {},
//! // not exhaustive: `_` is useful because it matches `Some(1)`
//! }
2022-04-15 22:04:34 +00:00
//! # }
//! ```
//!
//!
//! # Constructors and fields
//!
//! In the value `Pair(Some(0), true)`, `Pair` is called the constructor of the value, and `Some(0)`
//! and `true` are its fields. Every matcheable value can be decomposed in this way. Examples of
//! constructors are: `Some`, `None`, `(,)` (the 2-tuple constructor), `Foo {..}` (the constructor
//! for a struct `Foo`), and `2` (the constructor for the number `2`).
//!
//! Each constructor takes a fixed number of fields; this is called its arity. `Pair` and `(,)` have
//! arity 2, `Some` has arity 1, `None` and `42` have arity 0. Each type has a known set of
//! constructors. Some types have many constructors (like `u64`) or even an infinitely many (like
//! `&str` and `&[T]`).
//!
//! Patterns are similar: `Pair(Some(_), _)` has constructor `Pair` and two fields. The difference
//! is that we get some extra pattern-only constructors, namely: the wildcard `_`, variable
//! bindings, integer ranges like `0..=10`, and variable-length slices like `[_, .., _]`. We treat
//! or-patterns separately, see the dedicated section below.
//!
//! Now to check if a value `v` matches a pattern `p`, we check if `v`'s constructor matches `p`'s
//! constructor, then recursively compare their fields if necessary. A few representative examples:
//!
//! - `matches!(v, _) := true`
//! - `matches!((v0, v1), (p0, p1)) := matches!(v0, p0) && matches!(v1, p1)`
//! - `matches!(Foo { bar: v0, baz: v1 }, Foo { bar: p0, baz: p1 }) := matches!(v0, p0) && matches!(v1, p1)`
//! - `matches!(Ok(v0), Ok(p0)) := matches!(v0, p0)`
//! - `matches!(Ok(v0), Err(p0)) := false` (incompatible variants)
//! - `matches!(v, 1..=100) := matches!(v, 1) || ... || matches!(v, 100)`
//! - `matches!([v0], [p0, .., p1]) := false` (incompatible lengths)
//! - `matches!([v0, v1, v2], [p0, .., p1]) := matches!(v0, p0) && matches!(v2, p1)`
//!
2023-12-11 11:53:01 +00:00
//! Constructors and relevant operations are defined in the [`crate::constructor`] module. A
//! representation of patterns that uses constructors is available in [`crate::pat`]. The question
//! of whether a constructor is matched by another one is answered by
//! [`Constructor::is_covered_by`].
//!
//! Note 1: variable bindings (like the `x` in `Some(x)`) match anything, so we treat them as wildcards.
//! Note 2: this only applies to matcheable values. For example a value of type `Rc<u64>` can't be
//! deconstructed that way.
//!
//!
//!
//! # Specialization
//!
//! The examples in the previous section motivate the operation at the heart of the algorithm:
//! "specialization". It captures this idea of "removing one layer of constructor".
//!
//! `specialize(c, p)` takes a value-only constructor `c` and a pattern `p`, and returns a
//! pattern-tuple or nothing. It works as follows:
//!
//! - Specializing for the wrong constructor returns nothing
//!
//! - `specialize(None, Some(p0)) := <nothing>`
//! - `specialize([,,,], [p0]) := <nothing>`
//!
//! - Specializing for the correct constructor returns a tuple of the fields
//!
//! - `specialize(Variant1, Variant1(p0, p1, p2)) := (p0, p1, p2)`
//! - `specialize(Foo{ bar, baz, quz }, Foo { bar: p0, baz: p1, .. }) := (p0, p1, _)`
//! - `specialize([,,,], [p0, .., p1]) := (p0, _, _, p1)`
//!
//! We get the following property: for any values `v_1, .., v_n` of appropriate types, we have:
//! ```text
//! matches!(c(v_1, .., v_n), p)
//! <=> specialize(c, p) returns something
//! && matches!((v_1, .., v_n), specialize(c, p))
//! ```
//!
//! We also extend specialization to pattern-tuples by applying it to the first pattern:
//! `specialize(c, (p_0, .., p_n)) := specialize(c, p_0) ++ (p_1, .., p_m)`
//! where `++` is concatenation of tuples.
//!
//!
//! The previous property extends to pattern-tuples:
//! ```text
//! matches!((c(v_1, .., v_n), w_1, .., w_m), (p_0, p_1, .., p_m))
//! <=> specialize(c, p_0) does not error
//! && matches!((v_1, .., v_n, w_1, .., w_m), specialize(c, (p_0, p_1, .., p_m)))
//! ```
//!
//! Whether specialization returns something or not is given by [`Constructor::is_covered_by`].
//! Specialization of a pattern is computed in [`DeconstructedPat::specialize`]. Specialization for
//! a pattern-tuple is computed in [`PatStack::pop_head_constructor`]. Finally, specialization for a
//! set of pattern-tuples is computed in [`Matrix::specialize_constructor`].
//!
//!
//!
//! # Undoing specialization
//!
//! To construct witnesses we will need an inverse of specialization. If `c` is a constructor of
//! arity `n`, we define `unspecialize` as:
//! `unspecialize(c, (p_1, .., p_n, q_1, .., q_m)) := (c(p_1, .., p_n), q_1, .., q_m)`.
//!
//! This is done for a single witness-tuple in [`WitnessStack::apply_constructor`], and for a set of
//! witness-tuples in [`WitnessMatrix::apply_constructor`].
//!
//!
//!
//! # Computing usefulness
//!
//! We now present a naive version of the algorithm for computing usefulness. From now on we operate
//! on pattern-tuples.
//!
//! Let `pt_1, .., pt_n` and `qt` be length-m tuples of patterns for the same type `(T_1, .., T_m)`.
//! We compute `usefulness(tp_1, .., tp_n, tq)` as follows:
//!
//! - Base case: `m == 0`.
//! The pattern-tuples are all empty, i.e. they're all `()`. Thus `tq` is useful iff there are
//! no rows above it, i.e. if `n == 0`. In that case we return `()` as a witness-tuple of
//! usefulness of `tq`.
//!
//! - Inductive case: `m > 0`.
//! In this naive version, we list all the possible constructors for values of type `T1` (we
//! will be more clever in the next section).
//!
//! - For each such constructor `c` for which `specialize(c, tq)` is not nothing:
//! - We recursively compute `usefulness(specialize(c, tp_1) ... specialize(c, tp_n), specialize(c, tq))`,
//! where we discard any `specialize(c, p_i)` that returns nothing.
//! - For each witness-tuple `w` found, we apply `unspecialize(c, w)` to it.
//!
//! - We return the all the witnesses found, if any.
//!
//!
//! Let's take the following example:
2022-04-15 22:04:34 +00:00
//! ```compile_fail,E0004
//! # enum Enum { Variant1(()), Variant2(Option<bool>, u32)}
//! # use Enum::*;
2022-04-15 22:04:34 +00:00
//! # fn foo(x: Enum) {
//! match x {
//! Variant1(_) => {} // `p1`
//! Variant2(None, 0) => {} // `p2`
//! Variant2(Some(_), 0) => {} // `q`
//! }
2022-04-15 22:04:34 +00:00
//! # }
//! ```
//!
//! To compute the usefulness of `q`, we would proceed as follows:
//! ```text
//! Start:
//! `tp1 = [Variant1(_)]`
//! `tp2 = [Variant2(None, 0)]`
//! `tq = [Variant2(Some(true), 0)]`
//!
//! Constructors are `Variant1` and `Variant2`. Only `Variant2` can specialize `tq`.
//! Specialize with `Variant2`:
//! `tp2 = [None, 0]`
//! `tq = [Some(true), 0]`
//!
//! Constructors are `None` and `Some`. Only `Some` can specialize `tq`.
//! Specialize with `Some`:
//! `tq = [true, 0]`
//!
//! Constructors are `false` and `true`. Only `true` can specialize `tq`.
//! Specialize with `true`:
//! `tq = [0]`
//!
//! Constructors are `0`, `1`, .. up to infinity. Only `0` can specialize `tq`.
//! Specialize with `0`:
//! `tq = []`
//!
//! m == 0 and n == 0, so `tq` is useful with witness `[]`.
//! `witness = []`
//!
//! Unspecialize with `0`:
//! `witness = [0]`
//! Unspecialize with `true`:
//! `witness = [true, 0]`
//! Unspecialize with `Some`:
//! `witness = [Some(true), 0]`
//! Unspecialize with `Variant2`:
//! `witness = [Variant2(Some(true), 0)]`
//! ```
//!
//! Therefore `usefulness(tp_1, tp_2, tq)` returns the single witness-tuple `[Variant2(Some(true), 0)]`.
//!
2020-06-30 08:56:10 +00:00
//!
2023-12-11 19:01:02 +00:00
//! Computing the set of constructors for a type is done in [`MatchCx::ctors_for_ty`]. See
2023-12-11 11:53:01 +00:00
//! the following sections for more accurate versions of the algorithm and corresponding links.
2020-06-30 08:56:10 +00:00
//!
//!
//!
//! # Computing usefulness and exhaustiveness in one go
//!
//! The algorithm we have described so far computes usefulness of each pattern in turn, and ends by
//! checking if `_` is useful to determine exhaustiveness of the whole match. In practice, instead
//! of doing "for each pattern { for each constructor { ... } }", we do "for each constructor { for
//! each pattern { ... } }". This allows us to compute everything in one go.
//!
//! [`Matrix`] stores the set of pattern-tuples under consideration. We track usefulness of each
//! row mutably in the matrix as we go along. We ignore witnesses of usefulness of the match rows.
//! We gather witnesses of the usefulness of `_` in [`WitnessMatrix`]. The algorithm that computes
//! all this is in [`compute_exhaustiveness_and_usefulness`].
//!
//! See the full example at the bottom of this documentation.
2020-06-30 08:56:10 +00:00
//!
//!
//!
//! # Making usefulness tractable: constructor splitting
//!
//! We're missing one last detail: which constructors do we list? Naively listing all value
//! constructors cannot work for types like `u64` or `&str`, so we need to be more clever. The final
//! clever idea for this algorithm is that we can group together constructors that behave the same.
//!
//! Examples:
//! ```compile_fail,E0004
//! match (0, false) {
//! (0 ..=100, true) => {}
//! (50..=150, false) => {}
//! (0 ..=200, _) => {}
//! }
//! ```
//!
//! In this example, trying any of `0`, `1`, .., `49` will give the same specialized matrix, and
//! thus the same usefulness/exhaustiveness results. We can thus accelerate the algorithm by
//! trying them all at once. Here in fact, the only cases we need to consider are: `0..50`,
//! `50..=100`, `101..=150`,`151..=200` and `201..`.
//!
//! ```
//! enum Direction { North, South, East, West }
//! # let wind = (Direction::North, 0u8);
//! match wind {
//! (Direction::North, 50..) => {}
//! (_, _) => {}
//! }
//! ```
//!
//! In this example, trying any of `South`, `East`, `West` will give the same specialized matrix. By
//! the same reasoning, we only need to try two cases: `North`, and "everything else".
2020-06-30 08:56:10 +00:00
//!
//! We call _constructor splitting_ the operation that computes such a minimal set of cases to try.
2023-12-11 11:53:01 +00:00
//! This is done in [`ConstructorSet::split`] and explained in [`crate::constructor`].
//!
//!
//!
//! # Or-patterns
//!
//! What we have described so far works well if there are no or-patterns. To handle them, if the
//! first pattern of a row in the matrix is an or-pattern, we expand it by duplicating the rest of
//! the row as necessary. This is handled automatically in [`Matrix`].
//!
//! This makes usefulness tracking subtle, because we also want to compute whether an alternative
//! of an or-pattern is redundant, e.g. in `Some(_) | Some(0)`. We track usefulness of each
//! subpattern by interior mutability in [`DeconstructedPat`] with `set_useful`/`is_useful`.
2020-06-30 08:56:10 +00:00
//!
//! It's unfortunate that we have to use interior mutability, but believe me (Nadrieril), I have
//! tried [other](https://github.com/rust-lang/rust/pull/80104)
//! [solutions](https://github.com/rust-lang/rust/pull/80632) and nothing is remotely as simple.
//!
//!
//!
//! # Constants and opaques
//!
//! There are two kinds of constants in patterns:
//!
//! * literals (`1`, `true`, `"foo"`)
//! * named or inline consts (`FOO`, `const { 5 + 6 }`)
//!
//! The latter are converted into the corresponding patterns by a previous phase. For example
//! `const_to_pat(const { [1, 2, 3] })` becomes an `Array(vec![Const(1), Const(2), Const(3)])`
//! pattern. This gets problematic when comparing the constant via `==` would behave differently
//! from matching on the constant converted to a pattern. The situation around this is currently
//! unclear and the lang team is working on clarifying what we want to do there. In any case, there
//! are constants we will not turn into patterns. We capture these with `Constructor::Opaque`. These
//! `Opaque` patterns do not participate in exhaustiveness, specialization or overlap checking.
//!
//!
//!
//! # Usefulness vs reachability, validity, and empty patterns
//!
//! This is likely the subtlest aspect of the algorithm. To be fully precise, a match doesn't
//! operate on a value, it operates on a place. In certain unsafe circumstances, it is possible for
//! a place to not contain valid data for its type. This has subtle consequences for empty types.
//! Take the following:
//!
//! ```rust
//! enum Void {}
//! let x: u8 = 0;
//! let ptr: *const Void = &x as *const u8 as *const Void;
//! unsafe {
//! match *ptr {
//! _ => println!("Reachable!"),
//! }
//! }
//! ```
//!
//! In this example, `ptr` is a valid pointer pointing to a place with invalid data. The `_` pattern
//! does not look at the contents of `*ptr`, so this is ok and the arm is taken. In other words,
//! despite the place we are inspecting being of type `Void`, there is a reachable arm. If the
//! arm had a binding however:
//!
//! ```rust
//! # #[derive(Copy, Clone)]
//! # enum Void {}
//! # let x: u8 = 0;
//! # let ptr: *const Void = &x as *const u8 as *const Void;
//! # unsafe {
//! match *ptr {
//! _a => println!("Unreachable!"),
//! }
//! # }
//! ```
//!
//! Here the binding loads the value of type `Void` from the `*ptr` place. In this example, this
//! causes UB since the data is not valid. In the general case, this asserts validity of the data at
//! `*ptr`. Either way, this arm will never be taken.
//!
//! Finally, let's consider the empty match `match *ptr {}`. If we consider this exhaustive, then
//! having invalid data at `*ptr` is invalid. In other words, the empty match is semantically
//! equivalent to the `_a => ...` match. In the interest of explicitness, we prefer the case with an
//! arm, hence we won't tell the user to remove the `_a` arm. In other words, the `_a` arm is
//! unreachable yet not redundant. This is why we lint on redundant arms rather than unreachable
//! arms, despite the fact that the lint says "unreachable".
//!
//! These considerations only affects certain places, namely those that can contain non-valid data
//! without UB. These are: pointer dereferences, reference dereferences, and union field accesses.
//! We track in the algorithm whether a given place is known to contain valid data. This is done
//! first by inspecting the scrutinee syntactically (which gives us `cx.known_valid_scrutinee`), and
//! then by tracking validity of each column of the matrix (which correspond to places) as we
//! recurse into subpatterns. That second part is done through [`ValidityConstraint`], most notably
//! [`ValidityConstraint::specialize`].
//!
//! Having said all that, in practice we don't fully follow what's been presented in this section.
//! Under `exhaustive_patterns`, we allow omitting empty arms even in `!known_valid` places, for
//! backwards-compatibility until we have a better alternative. Without `exhaustive_patterns`, we
//! mostly treat empty types as inhabited, except specifically a non-nested `!` or empty enum. In
//! this specific case we also allow the empty match regardless of place validity, for
//! backwards-compatibility. Hopefully we can eventually deprecate this.
//!
//!
//!
//! # Full example
//!
//! We illustrate a full run of the algorithm on the following match.
//!
//! ```compile_fail,E0004
//! # struct Pair(Option<u32>, bool);
//! # fn foo(x: Pair) -> u32 {
//! match x {
//! Pair(Some(0), _) => 1,
//! Pair(_, false) => 2,
//! Pair(Some(0), false) => 3,
//! }
//! # }
//! ```
//!
//! We keep track of the original row for illustration purposes, this is not what the algorithm
//! actually does (it tracks usefulness as a boolean on each row).
//!
//! ```text
//! ┐ Patterns:
//! │ 1. `[Pair(Some(0), _)]`
//! │ 2. `[Pair(_, false)]`
//! │ 3. `[Pair(Some(0), false)]`
//! │
//! │ Specialize with `Pair`:
//! ├─┐ Patterns:
//! │ │ 1. `[Some(0), _]`
//! │ │ 2. `[_, false]`
//! │ │ 3. `[Some(0), false]`
//! │ │
//! │ │ Specialize with `Some`:
//! │ ├─┐ Patterns:
//! │ │ │ 1. `[0, _]`
//! │ │ │ 2. `[_, false]`
//! │ │ │ 3. `[0, false]`
//! │ │ │
//! │ │ │ Specialize with `0`:
//! │ │ ├─┐ Patterns:
//! │ │ │ │ 1. `[_]`
//! │ │ │ │ 3. `[false]`
//! │ │ │ │
//! │ │ │ │ Specialize with `true`:
//! │ │ │ ├─┐ Patterns:
//! │ │ │ │ │ 1. `[]`
//! │ │ │ │ │
//! │ │ │ │ │ We note arm 1 is useful (by `Pair(Some(0), true)`).
//! │ │ │ ├─┘
//! │ │ │ │
//! │ │ │ │ Specialize with `false`:
//! │ │ │ ├─┐ Patterns:
//! │ │ │ │ │ 1. `[]`
//! │ │ │ │ │ 3. `[]`
//! │ │ │ │ │
//! │ │ │ │ │ We note arm 1 is useful (by `Pair(Some(0), false)`).
//! │ │ │ ├─┘
//! │ │ ├─┘
//! │ │ │
//! │ │ │ Specialize with `1..`:
//! │ │ ├─┐ Patterns:
//! │ │ │ │ 2. `[false]`
//! │ │ │ │
//! │ │ │ │ Specialize with `true`:
//! │ │ │ ├─┐ Patterns:
//! │ │ │ │ │ // no rows left
//! │ │ │ │ │
//! │ │ │ │ │ We have found an unmatched value (`Pair(Some(1..), true)`)! This gives us a witness.
//! │ │ │ │ │ New witnesses:
//! │ │ │ │ │ `[]`
//! │ │ │ ├─┘
//! │ │ │ │ Unspecialize new witnesses with `true`:
//! │ │ │ │ `[true]`
//! │ │ │ │
//! │ │ │ │ Specialize with `false`:
//! │ │ │ ├─┐ Patterns:
//! │ │ │ │ │ 2. `[]`
//! │ │ │ │ │
//! │ │ │ │ │ We note arm 2 is useful (by `Pair(Some(1..), false)`).
//! │ │ │ ├─┘
//! │ │ │ │
//! │ │ │ │ Total witnesses for `1..`:
//! │ │ │ │ `[true]`
//! │ │ ├─┘
//! │ │ │ Unspecialize new witnesses with `1..`:
//! │ │ │ `[1.., true]`
//! │ │ │
//! │ │ │ Total witnesses for `Some`:
//! │ │ │ `[1.., true]`
//! │ ├─┘
//! │ │ Unspecialize new witnesses with `Some`:
//! │ │ `[Some(1..), true]`
//! │ │
//! │ │ Specialize with `None`:
//! │ ├─┐ Patterns:
//! │ │ │ 2. `[false]`
//! │ │ │
//! │ │ │ Specialize with `true`:
//! │ │ ├─┐ Patterns:
//! │ │ │ │ // no rows left
//! │ │ │ │
//! │ │ │ │ We have found an unmatched value (`Pair(None, true)`)! This gives us a witness.
//! │ │ │ │ New witnesses:
//! │ │ │ │ `[]`
//! │ │ ├─┘
//! │ │ │ Unspecialize new witnesses with `true`:
//! │ │ │ `[true]`
//! │ │ │
//! │ │ │ Specialize with `false`:
//! │ │ ├─┐ Patterns:
//! │ │ │ │ 2. `[]`
//! │ │ │ │
//! │ │ │ │ We note arm 2 is useful (by `Pair(None, false)`).
//! │ │ ├─┘
//! │ │ │
//! │ │ │ Total witnesses for `None`:
//! │ │ │ `[true]`
//! │ ├─┘
//! │ │ Unspecialize new witnesses with `None`:
//! │ │ `[None, true]`
//! │ │
//! │ │ Total witnesses for `Pair`:
//! │ │ `[Some(1..), true]`
//! │ │ `[None, true]`
//! ├─┘
//! │ Unspecialize new witnesses with `Pair`:
//! │ `[Pair(Some(1..), true)]`
//! │ `[Pair(None, true)]`
//! │
//! │ Final witnesses:
//! │ `[Pair(Some(1..), true)]`
//! │ `[Pair(None, true)]`
//! ┘
//! ```
//!
//! We conclude:
//! - Arm 3 is redundant (it was never marked as useful);
//! - The match is not exhaustive;
//! - Adding arms with `Pair(Some(1..), true)` and `Pair(None, true)` would make the match exhaustive.
//!
//! Note that when we're deep in the algorithm, we don't know what specialization steps got us here.
//! We can only figure out what our witnesses correspond to by unspecializing back up the stack.
//!
//!
//! # Tests
//!
//! Note: tests specific to this file can be found in:
//!
//! - `ui/pattern/usefulness`
//! - `ui/or-patterns`
//! - `ui/consts/const_in_pattern`
//! - `ui/rfc-2008-non-exhaustive`
//! - `ui/half-open-range-patterns`
//! - probably many others
//!
//! I (Nadrieril) prefer to put new tests in `ui/pattern/usefulness` unless there's a specific
//! reason not to, for example if they crucially depend on a particular feature like `or_patterns`.
use smallvec::{smallvec, SmallVec};
use std::fmt;
use rustc_arena::TypedArena;
use rustc_data_structures::{captures::Captures, stack::ensure_sufficient_stack};
2023-12-11 09:40:31 +00:00
use crate::constructor::{Constructor, ConstructorSet};
use crate::pat::{DeconstructedPat, WitnessPat};
2023-12-11 19:01:02 +00:00
use crate::{MatchArm, MatchCx};
use self::ValidityConstraint::*;
2023-12-11 19:01:02 +00:00
#[derive(Clone)]
pub(crate) struct PatCtxt<'a, 'p, Cx: MatchCx> {
pub(crate) cx: &'a Cx,
/// Type of the current column under investigation.
2023-12-11 19:01:02 +00:00
pub(crate) ty: Cx::Ty,
/// Whether the current pattern is the whole pattern as found in a match arm, or if it's a
/// subpattern.
2023-12-11 09:40:31 +00:00
pub(crate) is_top_level: bool,
/// An arena to store the wildcards we produce during analysis.
2023-12-11 19:01:02 +00:00
pub(crate) wildcard_arena: &'a TypedArena<DeconstructedPat<'p, Cx>>,
}
2023-12-11 19:01:02 +00:00
impl<'a, 'p, Cx: MatchCx> PatCtxt<'a, 'p, Cx> {
2023-11-18 02:52:54 +00:00
/// A `PatCtxt` when code other than `is_useful` needs one.
#[cfg_attr(not(feature = "rustc"), allow(dead_code))]
pub(crate) fn new_dummy(
2023-12-11 19:01:02 +00:00
cx: &'a Cx,
ty: Cx::Ty,
wildcard_arena: &'a TypedArena<DeconstructedPat<'p, Cx>>,
) -> Self {
PatCtxt { cx, ty, is_top_level: false, wildcard_arena }
2023-11-18 02:52:54 +00:00
}
}
2023-12-11 19:01:02 +00:00
impl<'a, 'p, Cx: MatchCx> Copy for PatCtxt<'a, 'p, Cx> {}
impl<'a, 'p, Cx: MatchCx> fmt::Debug for PatCtxt<'a, 'p, Cx> {
2020-12-31 18:48:08 +00:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("PatCtxt").field("ty", &self.ty).finish()
}
}
/// Serves two purposes:
/// - in a wildcard, tracks whether the wildcard matches only valid values (i.e. is a binding `_a`)
/// or also invalid values (i.e. is a true `_` pattern).
/// - in the matrix, track whether a given place (aka column) is known to contain a valid value or
/// not.
2023-11-18 02:52:54 +00:00
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum ValidityConstraint {
2023-11-18 02:52:54 +00:00
ValidOnly,
MaybeInvalid,
/// Option for backwards compatibility: the place is not known to be valid but we allow omitting
/// `useful && !reachable` arms anyway.
MaybeInvalidButAllowOmittingArms,
2023-11-18 02:52:54 +00:00
}
impl ValidityConstraint {
pub fn from_bool(is_valid_only: bool) -> Self {
2023-11-18 02:52:54 +00:00
if is_valid_only { ValidOnly } else { MaybeInvalid }
}
fn allow_omitting_side_effecting_arms(self) -> Self {
match self {
MaybeInvalid | MaybeInvalidButAllowOmittingArms => MaybeInvalidButAllowOmittingArms,
// There are no side-effecting empty arms here, nothing to do.
ValidOnly => ValidOnly,
}
}
2023-12-11 09:56:21 +00:00
fn is_known_valid(self) -> bool {
matches!(self, ValidOnly)
}
2023-12-11 09:56:21 +00:00
fn allows_omitting_empty_arms(self) -> bool {
matches!(self, ValidOnly | MaybeInvalidButAllowOmittingArms)
}
2023-11-18 02:52:54 +00:00
/// If the place has validity given by `self` and we read that the value at the place has
/// constructor `ctor`, this computes what we can assume about the validity of the constructor
/// fields.
///
/// Pending further opsem decisions, the current behavior is: validity is preserved, except
/// inside `&` and union fields where validity is reset to `MaybeInvalid`.
2023-12-11 19:01:02 +00:00
fn specialize<Cx: MatchCx>(self, ctor: &Constructor<Cx>) -> Self {
// We preserve validity except when we go inside a reference or a union field.
if matches!(ctor, Constructor::Ref | Constructor::UnionField) {
2023-11-18 02:52:54 +00:00
// Validity of `x: &T` does not imply validity of `*x: T`.
MaybeInvalid
} else {
self
}
}
}
impl fmt::Display for ValidityConstraint {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let s = match self {
ValidOnly => "",
MaybeInvalid | MaybeInvalidButAllowOmittingArms => "?",
2023-11-18 02:52:54 +00:00
};
write!(f, "{s}")
}
}
/// Represents a pattern-tuple under investigation.
// The three lifetimes are:
// - 'a allocated by us
// - 'p coming from the input
2023-12-11 19:01:02 +00:00
// - Cx global compilation context
2020-12-31 18:48:08 +00:00
#[derive(Clone)]
2023-12-11 19:01:02 +00:00
struct PatStack<'a, 'p, Cx: MatchCx> {
// Rows of len 1 are very common, which is why `SmallVec[_; 2]` works well.
2023-12-11 19:01:02 +00:00
pats: SmallVec<[&'a DeconstructedPat<'p, Cx>; 2]>,
}
2023-12-11 19:01:02 +00:00
impl<'a, 'p, Cx: MatchCx> PatStack<'a, 'p, Cx> {
fn from_pattern(pat: &'a DeconstructedPat<'p, Cx>) -> Self {
PatStack { pats: smallvec![pat] }
}
fn is_empty(&self) -> bool {
self.pats.is_empty()
}
fn len(&self) -> usize {
self.pats.len()
}
2023-12-11 19:01:02 +00:00
fn head(&self) -> &'a DeconstructedPat<'p, Cx> {
self.pats[0]
}
2023-12-11 19:01:02 +00:00
fn iter<'b>(&'b self) -> impl Iterator<Item = &'a DeconstructedPat<'p, Cx>> + Captures<'b> {
self.pats.iter().copied()
}
// Recursively expand the first or-pattern into its subpatterns. Only useful if the pattern is
// an or-pattern. Panics if `self` is empty.
2023-12-11 19:01:02 +00:00
fn expand_or_pat<'b>(&'b self) -> impl Iterator<Item = PatStack<'a, 'p, Cx>> + Captures<'b> {
self.head().flatten_or_pat().into_iter().map(move |pat| {
2023-12-01 00:14:35 +00:00
let mut new = self.clone();
new.pats[0] = pat;
new
2021-01-01 22:14:22 +00:00
})
}
/// This computes `specialize(ctor, self)`. See top of the file for explanations.
/// Only call if `ctor.is_covered_by(self.head().ctor())` is true.
fn pop_head_constructor(
&self,
2023-12-11 19:01:02 +00:00
pcx: &PatCtxt<'a, 'p, Cx>,
ctor: &Constructor<Cx>,
) -> PatStack<'a, 'p, Cx> {
2020-10-25 23:03:15 +00:00
// We pop the head pattern and push the new fields extracted from the arguments of
// `self.head()`.
let mut new_pats = self.head().specialize(pcx, ctor);
new_pats.extend_from_slice(&self.pats[1..]);
PatStack { pats: new_pats }
}
}
2023-12-11 19:01:02 +00:00
impl<'a, 'p, Cx: MatchCx> fmt::Debug for PatStack<'a, 'p, Cx> {
2020-12-31 18:48:08 +00:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// We pretty-print similarly to the `Debug` impl of `Matrix`.
2020-12-31 18:48:08 +00:00
write!(f, "+")?;
for pat in self.iter() {
write!(f, " {pat:?} +")?;
2020-12-31 18:48:08 +00:00
}
Ok(())
}
}
/// A row of the matrix.
#[derive(Clone)]
2023-12-11 19:01:02 +00:00
struct MatrixRow<'a, 'p, Cx: MatchCx> {
// The patterns in the row.
2023-12-11 19:01:02 +00:00
pats: PatStack<'a, 'p, Cx>,
/// Whether the original arm had a guard. This is inherited when specializing.
is_under_guard: bool,
/// When we specialize, we remember which row of the original matrix produced a given row of the
/// specialized matrix. When we unspecialize, we use this to propagate usefulness back up the
/// callstack.
parent_row: usize,
/// False when the matrix is just built. This is set to `true` by
/// [`compute_exhaustiveness_and_usefulness`] if the arm is found to be useful.
/// This is reset to `false` when specializing.
useful: bool,
}
2023-12-11 19:01:02 +00:00
impl<'a, 'p, Cx: MatchCx> MatrixRow<'a, 'p, Cx> {
fn is_empty(&self) -> bool {
self.pats.is_empty()
}
fn len(&self) -> usize {
self.pats.len()
}
2023-12-11 19:01:02 +00:00
fn head(&self) -> &'a DeconstructedPat<'p, Cx> {
self.pats.head()
}
2023-12-11 19:01:02 +00:00
fn iter<'b>(&'b self) -> impl Iterator<Item = &'a DeconstructedPat<'p, Cx>> + Captures<'b> {
self.pats.iter()
}
// Recursively expand the first or-pattern into its subpatterns. Only useful if the pattern is
// an or-pattern. Panics if `self` is empty.
2023-12-11 19:01:02 +00:00
fn expand_or_pat<'b>(&'b self) -> impl Iterator<Item = MatrixRow<'a, 'p, Cx>> + Captures<'b> {
self.pats.expand_or_pat().map(|patstack| MatrixRow {
pats: patstack,
parent_row: self.parent_row,
is_under_guard: self.is_under_guard,
useful: false,
})
}
/// This computes `specialize(ctor, self)`. See top of the file for explanations.
/// Only call if `ctor.is_covered_by(self.head().ctor())` is true.
fn pop_head_constructor(
&self,
2023-12-11 19:01:02 +00:00
pcx: &PatCtxt<'a, 'p, Cx>,
ctor: &Constructor<Cx>,
parent_row: usize,
2023-12-11 19:01:02 +00:00
) -> MatrixRow<'a, 'p, Cx> {
MatrixRow {
pats: self.pats.pop_head_constructor(pcx, ctor),
parent_row,
is_under_guard: self.is_under_guard,
useful: false,
}
}
}
2023-12-11 19:01:02 +00:00
impl<'a, 'p, Cx: MatchCx> fmt::Debug for MatrixRow<'a, 'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.pats.fmt(f)
}
}
/// A 2D matrix. Represents a list of pattern-tuples under investigation.
///
/// Invariant: each row must have the same length, and each column must have the same type.
///
/// Invariant: the first column must not contain or-patterns. This is handled by
/// [`Matrix::expand_and_push`].
///
/// In fact each column corresponds to a place inside the scrutinee of the match. E.g. after
/// specializing `(,)` and `Some` on a pattern of type `(Option<u32>, bool)`, the first column of
/// the matrix will correspond to `scrutinee.0.Some.0` and the second column to `scrutinee.1`.
#[derive(Clone)]
2023-12-11 19:01:02 +00:00
struct Matrix<'a, 'p, Cx: MatchCx> {
2023-11-18 02:52:54 +00:00
/// Vector of rows. The rows must form a rectangular 2D array. Moreover, all the patterns of
/// each column must have the same type. Each column corresponds to a place within the
/// scrutinee.
2023-12-11 19:01:02 +00:00
rows: Vec<MatrixRow<'a, 'p, Cx>>,
2023-11-05 13:52:26 +00:00
/// Stores an extra fictitious row full of wildcards. Mostly used to keep track of the type of
/// each column. This must obey the same invariants as the real rows.
2023-12-11 19:01:02 +00:00
wildcard_row: PatStack<'a, 'p, Cx>,
2023-11-18 02:52:54 +00:00
/// Track for each column/place whether it contains a known valid value.
place_validity: SmallVec<[ValidityConstraint; 2]>,
2020-09-19 13:00:10 +00:00
}
2023-12-11 19:01:02 +00:00
impl<'a, 'p, Cx: MatchCx> Matrix<'a, 'p, Cx> {
2021-01-01 22:14:22 +00:00
/// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
/// expands it. Internal method, prefer [`Matrix::new`].
2023-12-11 19:01:02 +00:00
fn expand_and_push(&mut self, row: MatrixRow<'a, 'p, Cx>) {
if !row.is_empty() && row.head().is_or_pat() {
// Expand nested or-patterns.
for new_row in row.expand_or_pat() {
self.rows.push(new_row);
}
} else {
2023-10-15 15:36:36 +00:00
self.rows.push(row);
}
}
/// Build a new matrix from an iterator of `MatchArm`s.
fn new(
2023-12-11 19:01:02 +00:00
wildcard_arena: &'a TypedArena<DeconstructedPat<'p, Cx>>,
arms: &'a [MatchArm<'p, Cx>],
scrut_ty: Cx::Ty,
2023-11-18 02:52:54 +00:00
scrut_validity: ValidityConstraint,
) -> Self {
let wild_pattern =
2023-12-11 19:01:02 +00:00
wildcard_arena.alloc(DeconstructedPat::wildcard(scrut_ty, Cx::Span::default()));
let wildcard_row = PatStack::from_pattern(wild_pattern);
2023-11-18 02:52:54 +00:00
let mut matrix = Matrix {
rows: Vec::with_capacity(arms.len()),
wildcard_row,
place_validity: smallvec![scrut_validity],
};
2023-12-01 00:14:35 +00:00
for (row_id, arm) in arms.iter().enumerate() {
let v = MatrixRow {
pats: PatStack::from_pattern(arm.pat),
parent_row: row_id, // dummy, we won't read it
is_under_guard: arm.has_guard,
useful: false,
};
2023-11-05 13:52:26 +00:00
matrix.expand_and_push(v);
}
matrix
}
2023-12-11 19:01:02 +00:00
fn head_ty(&self) -> Option<Cx::Ty> {
2023-11-05 13:52:26 +00:00
if self.column_count() == 0 {
return None;
}
let mut ty = self.wildcard_row.head().ty();
// If the type is opaque and it is revealed anywhere in the column, we take the revealed
// version. Otherwise we could encounter constructors for the revealed type and crash.
2023-12-11 19:01:02 +00:00
if Cx::is_opaque_ty(ty) {
2023-11-05 13:52:26 +00:00
for pat in self.heads() {
let pat_ty = pat.ty();
2023-12-11 19:01:02 +00:00
if !Cx::is_opaque_ty(pat_ty) {
2023-11-05 13:52:26 +00:00
ty = pat_ty;
break;
}
}
}
Some(ty)
}
fn column_count(&self) -> usize {
self.wildcard_row.len()
}
fn rows<'b>(
&'b self,
2023-12-11 19:01:02 +00:00
) -> impl Iterator<Item = &'b MatrixRow<'a, 'p, Cx>> + Clone + DoubleEndedIterator + ExactSizeIterator
{
2023-10-15 15:36:36 +00:00
self.rows.iter()
}
fn rows_mut<'b>(
&'b mut self,
2023-12-11 19:01:02 +00:00
) -> impl Iterator<Item = &'b mut MatrixRow<'a, 'p, Cx>> + DoubleEndedIterator + ExactSizeIterator
{
self.rows.iter_mut()
}
2023-10-15 15:36:36 +00:00
/// Iterate over the first pattern of each row.
fn heads<'b>(
&'b self,
2023-12-11 19:01:02 +00:00
) -> impl Iterator<Item = &'b DeconstructedPat<'p, Cx>> + Clone + Captures<'a> {
2023-10-15 15:36:36 +00:00
self.rows().map(|r| r.head())
}
/// This computes `specialize(ctor, self)`. See top of the file for explanations.
fn specialize_constructor(
&self,
2023-12-11 19:01:02 +00:00
pcx: &PatCtxt<'a, 'p, Cx>,
ctor: &Constructor<Cx>,
) -> Matrix<'a, 'p, Cx> {
let wildcard_row = self.wildcard_row.pop_head_constructor(pcx, ctor);
let new_validity = self.place_validity[0].specialize(ctor);
2023-11-18 02:52:54 +00:00
let new_place_validity = std::iter::repeat(new_validity)
.take(ctor.arity(pcx))
.chain(self.place_validity[1..].iter().copied())
.collect();
let mut matrix =
Matrix { rows: Vec::new(), wildcard_row, place_validity: new_place_validity };
for (i, row) in self.rows().enumerate() {
if ctor.is_covered_by(pcx, row.head().ctor()) {
let new_row = row.pop_head_constructor(pcx, ctor, i);
2023-11-05 13:52:26 +00:00
matrix.expand_and_push(new_row);
2021-09-22 23:36:49 +00:00
}
}
matrix
}
}
/// Pretty-printer for matrices of patterns, example:
2020-05-01 20:28:15 +00:00
///
/// ```text
/// + _ + [] +
/// + true + [First] +
/// + true + [Second(true)] +
/// + false + [_] +
/// + _ + [_, _, tail @ ..] +
2023-11-18 02:52:54 +00:00
/// | ✓ | ? | // column validity
2020-10-17 19:11:30 +00:00
/// ```
2023-12-11 19:01:02 +00:00
impl<'a, 'p, Cx: MatchCx> fmt::Debug for Matrix<'a, 'p, Cx> {
2019-02-07 21:28:15 +00:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "\n")?;
2023-11-18 02:52:54 +00:00
let mut pretty_printed_matrix: Vec<Vec<String>> = self
.rows
.iter()
.map(|row| row.iter().map(|pat| format!("{pat:?}")).collect())
.collect();
pretty_printed_matrix
.push(self.place_validity.iter().map(|validity| format!("{validity}")).collect());
2023-11-18 02:52:54 +00:00
let column_count = self.column_count();
assert!(self.rows.iter().all(|row| row.len() == column_count));
assert!(self.place_validity.len() == column_count);
2019-09-21 11:49:14 +00:00
let column_widths: Vec<usize> = (0..column_count)
.map(|col| pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0))
.collect();
2023-11-18 02:52:54 +00:00
for (row_i, row) in pretty_printed_matrix.into_iter().enumerate() {
let is_validity_row = row_i == self.rows.len();
let sep = if is_validity_row { "|" } else { "+" };
write!(f, "{sep}")?;
for (column, pat_str) in row.into_iter().enumerate() {
write!(f, " ")?;
write!(f, "{:1$}", pat_str, column_widths[column])?;
2023-11-18 02:52:54 +00:00
write!(f, " {sep}")?;
}
if is_validity_row {
write!(f, " // column validity")?;
}
write!(f, "\n")?;
}
Ok(())
}
}
/// A witness-tuple of non-exhaustiveness for error reporting, represented as a list of patterns (in
/// reverse order of construction).
///
/// This mirrors `PatStack`: they function similarly, except `PatStack` contains user patterns we
/// are inspecting, and `WitnessStack` contains witnesses we are constructing.
/// FIXME(Nadrieril): use the same order of patterns for both.
2018-08-12 10:43:42 +00:00
///
/// A `WitnessStack` should have the same types and length as the `PatStack`s we are inspecting
/// (except we store the patterns in reverse order). The same way `PatStack` starts with length 1,
/// at the end of the algorithm this will have length 1. In the middle of the algorithm, it can
/// contain multiple patterns.
2018-08-12 10:43:42 +00:00
///
/// For example, if we are constructing a witness for the match against
///
2022-04-15 22:04:34 +00:00
/// ```compile_fail,E0004
2018-08-12 10:43:42 +00:00
/// struct Pair(Option<(u32, u32)>, bool);
2022-04-15 22:04:34 +00:00
/// # fn foo(p: Pair) {
/// match p {
2018-08-12 10:43:42 +00:00
/// Pair(None, _) => {}
/// Pair(_, false) => {}
/// }
2022-04-15 22:04:34 +00:00
/// # }
2018-08-12 10:43:42 +00:00
/// ```
///
/// We'll perform the following steps (among others):
/// ```text
/// - Start with a matrix representing the match
/// `PatStack(vec![Pair(None, _)])`
/// `PatStack(vec![Pair(_, false)])`
/// - Specialize with `Pair`
/// `PatStack(vec![None, _])`
/// `PatStack(vec![_, false])`
/// - Specialize with `Some`
/// `PatStack(vec![_, false])`
/// - Specialize with `_`
/// `PatStack(vec![false])`
/// - Specialize with `true`
/// // no patstacks left
/// - This is a non-exhaustive match: we have the empty witness stack as a witness.
/// `WitnessStack(vec![])`
/// - Apply `true`
/// `WitnessStack(vec![true])`
/// - Apply `_`
/// `WitnessStack(vec![true, _])`
/// - Apply `Some`
/// `WitnessStack(vec![true, Some(_)])`
/// - Apply `Pair`
/// `WitnessStack(vec![Pair(Some(_), true)])`
/// ```
2018-08-12 10:43:42 +00:00
///
/// The final `Pair(Some(_), true)` is then the resulting witness.
///
/// See the top of the file for more detailed explanations and examples.
#[derive(Debug, Clone)]
2023-12-11 19:01:02 +00:00
struct WitnessStack<Cx: MatchCx>(Vec<WitnessPat<Cx>>);
2023-12-11 19:01:02 +00:00
impl<Cx: MatchCx> WitnessStack<Cx> {
/// Asserts that the witness contains a single pattern, and returns it.
2023-12-11 19:01:02 +00:00
fn single_pattern(self) -> WitnessPat<Cx> {
assert_eq!(self.0.len(), 1);
self.0.into_iter().next().unwrap()
}
/// Reverses specialization by the `Missing` constructor by pushing a whole new pattern.
2023-12-11 19:01:02 +00:00
fn push_pattern(&mut self, pat: WitnessPat<Cx>) {
self.0.push(pat);
}
/// Reverses specialization. Given a witness obtained after specialization, this constructs a
/// new witness valid for before specialization. See the section on `unspecialize` at the top of
/// the file.
///
/// Examples:
/// ```text
/// ctor: tuple of 2 elements
/// pats: [false, "foo", _, true]
/// result: [(false, "foo"), _, true]
///
/// ctor: Enum::Variant { a: (bool, &'static str), b: usize}
/// pats: [(false, "foo"), _, true]
/// result: [Enum::Variant { a: (false, "foo"), b: _ }, true]
/// ```
2023-12-11 19:01:02 +00:00
fn apply_constructor(&mut self, pcx: &PatCtxt<'_, '_, Cx>, ctor: &Constructor<Cx>) {
let len = self.0.len();
let arity = ctor.arity(pcx);
let fields = self.0.drain((len - arity)..).rev().collect();
let pat = WitnessPat::new(ctor.clone(), fields, pcx.ty);
self.0.push(pat);
}
}
/// Represents a set of pattern-tuples that are witnesses of non-exhaustiveness for error
/// reporting. This has similar invariants as `Matrix` does.
///
/// The `WitnessMatrix` returned by [`compute_exhaustiveness_and_usefulness`] obeys the invariant
/// that the union of the input `Matrix` and the output `WitnessMatrix` together matches the type
/// exhaustively.
///
/// Just as the `Matrix` starts with a single column, by the end of the algorithm, this has a single
/// column, which contains the patterns that are missing for the match to be exhaustive.
#[derive(Debug, Clone)]
2023-12-11 19:01:02 +00:00
struct WitnessMatrix<Cx: MatchCx>(Vec<WitnessStack<Cx>>);
2023-12-11 19:01:02 +00:00
impl<Cx: MatchCx> WitnessMatrix<Cx> {
/// New matrix with no witnesses.
fn empty() -> Self {
WitnessMatrix(vec![])
}
/// New matrix with one `()` witness, i.e. with no columns.
fn unit_witness() -> Self {
WitnessMatrix(vec![WitnessStack(vec![])])
}
/// Whether this has any witnesses.
fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Asserts that there is a single column and returns the patterns in it.
2023-12-11 19:01:02 +00:00
fn single_column(self) -> Vec<WitnessPat<Cx>> {
self.0.into_iter().map(|w| w.single_pattern()).collect()
}
/// Reverses specialization by the `Missing` constructor by pushing a whole new pattern.
2023-12-11 19:01:02 +00:00
fn push_pattern(&mut self, pat: WitnessPat<Cx>) {
for witness in self.0.iter_mut() {
witness.push_pattern(pat.clone())
}
}
/// Reverses specialization by `ctor`. See the section on `unspecialize` at the top of the file.
fn apply_constructor(
&mut self,
2023-12-11 19:01:02 +00:00
pcx: &PatCtxt<'_, '_, Cx>,
missing_ctors: &[Constructor<Cx>],
ctor: &Constructor<Cx>,
report_individual_missing_ctors: bool,
) {
if self.is_empty() {
return;
}
if matches!(ctor, Constructor::Missing) {
// We got the special `Missing` constructor that stands for the constructors not present
// in the match.
if !report_individual_missing_ctors {
// Report `_` as missing.
let pat = WitnessPat::wild_from_ctor(pcx, Constructor::Wildcard);
self.push_pattern(pat);
} else if missing_ctors.iter().any(|c| c.is_non_exhaustive()) {
// We need to report a `_` anyway, so listing other constructors would be redundant.
// `NonExhaustive` is displayed as `_` just like `Wildcard`, but it will be picked
// up by diagnostics to add a note about why `_` is required here.
let pat = WitnessPat::wild_from_ctor(pcx, Constructor::NonExhaustive);
self.push_pattern(pat);
} else {
// For each missing constructor `c`, we add a `c(_, _, _)` witness appropriately
// filled with wildcards.
let mut ret = Self::empty();
for ctor in missing_ctors {
let pat = WitnessPat::wild_from_ctor(pcx, ctor.clone());
// Clone `self` and add `c(_, _, _)` to each of its witnesses.
let mut wit_matrix = self.clone();
wit_matrix.push_pattern(pat);
ret.extend(wit_matrix);
}
*self = ret;
}
} else {
// Any other constructor we unspecialize as expected.
for witness in self.0.iter_mut() {
witness.apply_constructor(pcx, ctor)
}
}
}
/// Merges the witnesses of two matrices. Their column types must match.
fn extend(&mut self, other: Self) {
self.0.extend(other.0)
}
}
/// The core of the algorithm.
///
/// This recursively computes witnesses of the non-exhaustiveness of `matrix` (if any). Also tracks
/// usefulness of each row in the matrix (in `row.useful`). We track usefulness of each
/// subpattern using interior mutability in `DeconstructedPat`.
///
/// The input `Matrix` and the output `WitnessMatrix` together match the type exhaustively.
///
/// The key steps are:
/// - specialization, where we dig into the rows that have a specific constructor and call ourselves
/// recursively;
/// - unspecialization, where we lift the results from the previous step into results for this step
/// (using `apply_constructor` and by updating `row.useful` for each parent row).
/// This is all explained at the top of the file.
#[instrument(level = "debug", skip(cx, is_top_level, wildcard_arena), ret)]
2023-12-11 19:01:02 +00:00
fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: MatchCx>(
cx: &'a Cx,
matrix: &mut Matrix<'a, 'p, Cx>,
wildcard_arena: &'a TypedArena<DeconstructedPat<'p, Cx>>,
is_top_level: bool,
2023-12-11 19:01:02 +00:00
) -> WitnessMatrix<Cx> {
2023-11-05 13:52:26 +00:00
debug_assert!(matrix.rows().all(|r| r.len() == matrix.column_count()));
2023-11-05 13:52:26 +00:00
let Some(ty) = matrix.head_ty() else {
// The base case: there are no columns in the matrix. We are morally pattern-matching on ().
// A row is useful iff it has no (unguarded) rows above it.
for row in matrix.rows_mut() {
// All rows are useful until they're not.
row.useful = true;
// When there's an unguarded row, the match is exhaustive and any subsequent row is not
// useful.
if !row.is_under_guard {
return WitnessMatrix::empty();
}
2021-08-26 07:55:57 +00:00
}
// No (unguarded) rows, so the match is not exhaustive. We return a new witness.
return WitnessMatrix::unit_witness();
2023-11-05 13:52:26 +00:00
};
debug!("ty: {ty:?}");
let pcx = &PatCtxt { cx, ty, is_top_level, wildcard_arena };
// Whether the place/column we are inspecting is known to contain valid data.
let place_validity = matrix.place_validity[0];
// For backwards compability we allow omitting some empty arms that we ideally shouldn't.
let place_validity = place_validity.allow_omitting_side_effecting_arms();
// Analyze the constructors present in this column.
let ctors = matrix.heads().map(|p| p.ctor());
let ctors_for_ty = &cx.ctors_for_ty(ty);
let is_integers = matches!(ctors_for_ty, ConstructorSet::Integers { .. }); // For diagnostics.
let split_set = ctors_for_ty.split(pcx, ctors);
let all_missing = split_set.present.is_empty();
// Build the set of constructors we will specialize with. It must cover the whole type.
let mut split_ctors = split_set.present;
if !split_set.missing.is_empty() {
// We need to iterate over a full set of constructors, so we add `Missing` to represent the
// missing ones. This is explained under "Constructor Splitting" at the top of this file.
split_ctors.push(Constructor::Missing);
} else if !split_set.missing_empty.is_empty() && !place_validity.is_known_valid() {
// The missing empty constructors are reachable if the place can contain invalid data.
split_ctors.push(Constructor::Missing);
}
// Decide what constructors to report.
let always_report_all = is_top_level && !is_integers;
// Whether we should report "Enum::A and Enum::C are missing" or "_ is missing".
let report_individual_missing_ctors = always_report_all || !all_missing;
// Which constructors are considered missing. We ensure that `!missing_ctors.is_empty() =>
// split_ctors.contains(Missing)`. The converse usually holds except in the
// `MaybeInvalidButAllowOmittingArms` backwards-compatibility case.
let mut missing_ctors = split_set.missing;
if !place_validity.allows_omitting_empty_arms() {
missing_ctors.extend(split_set.missing_empty);
}
let mut ret = WitnessMatrix::empty();
for ctor in split_ctors {
debug!("specialize({:?})", ctor);
// Dig into rows that match `ctor`.
let mut spec_matrix = matrix.specialize_constructor(pcx, &ctor);
let mut witnesses = ensure_sufficient_stack(|| {
compute_exhaustiveness_and_usefulness(cx, &mut spec_matrix, wildcard_arena, false)
});
let counts_for_exhaustiveness = match ctor {
Constructor::Missing => !missing_ctors.is_empty(),
// If there are missing constructors we'll report those instead. Since `Missing` matches
// only the wildcard rows, it matches fewer rows than this constructor, and is therefore
// guaranteed to result in the same or more witnesses. So skipping this does not
// jeopardize correctness.
_ => missing_ctors.is_empty(),
};
if counts_for_exhaustiveness {
// Transform witnesses for `spec_matrix` into witnesses for `matrix`.
witnesses.apply_constructor(
pcx,
&missing_ctors,
&ctor,
report_individual_missing_ctors,
);
// Accumulate the found witnesses.
ret.extend(witnesses);
}
// A parent row is useful if any of its children is.
for child_row in spec_matrix.rows() {
let parent_row = &mut matrix.rows[child_row.parent_row];
parent_row.useful = parent_row.useful || child_row.useful;
}
}
// Record usefulness in the patterns.
for row in matrix.rows() {
if row.useful {
row.head().set_useful();
}
}
2020-05-23 12:11:28 +00:00
ret
}
/// Indicates whether or not a given arm is useful.
2020-12-22 11:21:34 +00:00
#[derive(Clone, Debug)]
2023-12-11 19:01:02 +00:00
pub enum Usefulness<Span> {
/// The arm is useful. This additionally carries a set of or-pattern branches that have been
/// found to be redundant despite the overall arm being useful. Used only in the presence of
/// or-patterns, otherwise it stays empty.
Useful(Vec<Span>),
/// The arm is redundant and can be removed without changing the behavior of the match
/// expression.
Redundant,
2020-12-22 11:21:34 +00:00
}
/// The output of checking a match for exhaustiveness and arm usefulness.
2023-12-11 19:01:02 +00:00
pub struct UsefulnessReport<'p, Cx: MatchCx> {
/// For each arm of the input, whether that arm is useful after the arms above it.
2023-12-11 19:01:02 +00:00
pub arm_usefulness: Vec<(MatchArm<'p, Cx>, Usefulness<Cx::Span>)>,
/// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
/// exhaustiveness.
2023-12-11 19:01:02 +00:00
pub non_exhaustiveness_witnesses: Vec<WitnessPat<Cx>>,
}
2023-12-11 09:40:31 +00:00
/// Computes whether a match is exhaustive and which of its arms are useful.
#[instrument(skip(cx, arms, wildcard_arena), level = "debug")]
pub fn compute_match_usefulness<'p, Cx: MatchCx>(
2023-12-11 19:01:02 +00:00
cx: &Cx,
arms: &[MatchArm<'p, Cx>],
scrut_ty: Cx::Ty,
scrut_validity: ValidityConstraint,
wildcard_arena: &TypedArena<DeconstructedPat<'p, Cx>>,
) -> UsefulnessReport<'p, Cx> {
let mut matrix = Matrix::new(wildcard_arena, arms, scrut_ty, scrut_validity);
let non_exhaustiveness_witnesses =
compute_exhaustiveness_and_usefulness(cx, &mut matrix, wildcard_arena, true);
let non_exhaustiveness_witnesses: Vec<_> = non_exhaustiveness_witnesses.single_column();
let arm_usefulness: Vec<_> = arms
.iter()
.copied()
.map(|arm| {
debug!(?arm);
// We warn when a pattern is not useful.
let usefulness = if arm.pat.is_useful() {
Usefulness::Useful(arm.pat.redundant_spans())
} else {
Usefulness::Redundant
2020-12-22 11:21:34 +00:00
};
(arm, usefulness)
})
.collect();
2023-12-11 09:40:31 +00:00
UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses }
}