Replace Pat with a new intermediate representation

This commit is contained in:
Nadrieril 2021-09-26 00:00:08 +01:00
parent fde45e96b8
commit 71abc9565f
6 changed files with 681 additions and 518 deletions

View File

@ -1,6 +1,6 @@
use super::deconstruct_pat::{Constructor, DeconstructedPat};
use super::usefulness::{
compute_match_usefulness, expand_pattern, is_wildcard, MatchArm, MatchCheckCtxt, Reachability,
UsefulnessReport,
compute_match_usefulness, MatchArm, MatchCheckCtxt, Reachability, UsefulnessReport,
};
use super::{PatCtxt, PatternError};
@ -12,14 +12,12 @@ use rustc_hir::def::*;
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
use rustc_hir::{HirId, Pat};
use rustc_middle::thir::PatKind;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_middle::ty::{self, AdtDef, Ty, TyCtxt};
use rustc_session::lint::builtin::{
BINDINGS_WITH_VARIANT_NAME, IRREFUTABLE_LET_PATTERNS, UNREACHABLE_PATTERNS,
};
use rustc_session::Session;
use rustc_span::{DesugaringKind, ExpnKind, Span};
use std::slice;
crate fn check_match(tcx: TyCtxt<'_>, def_id: DefId) {
let body_id = match def_id.as_local() {
@ -27,11 +25,12 @@ crate fn check_match(tcx: TyCtxt<'_>, def_id: DefId) {
Some(id) => tcx.hir().body_owned_by(tcx.hir().local_def_id_to_hir_id(id)),
};
let pattern_arena = TypedArena::default();
let mut visitor = MatchVisitor {
tcx,
typeck_results: tcx.typeck_body(body_id),
param_env: tcx.param_env(def_id),
pattern_arena: TypedArena::default(),
pattern_arena: &pattern_arena,
};
visitor.visit_body(tcx.hir().body(body_id));
}
@ -40,14 +39,14 @@ fn create_e0004(sess: &Session, sp: Span, error_message: String) -> DiagnosticBu
struct_span_err!(sess, sp, E0004, "{}", &error_message)
}
struct MatchVisitor<'a, 'tcx> {
struct MatchVisitor<'a, 'p, 'tcx> {
tcx: TyCtxt<'tcx>,
typeck_results: &'a ty::TypeckResults<'tcx>,
param_env: ty::ParamEnv<'tcx>,
pattern_arena: TypedArena<super::Pat<'tcx>>,
pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>,
}
impl<'tcx> Visitor<'tcx> for MatchVisitor<'_, 'tcx> {
impl<'tcx> Visitor<'tcx> for MatchVisitor<'_, '_, 'tcx> {
type Map = intravisit::ErasedMap<'tcx>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
@ -113,31 +112,30 @@ impl PatCtxt<'_, '_> {
}
}
impl<'tcx> MatchVisitor<'_, 'tcx> {
impl<'p, 'tcx> MatchVisitor<'_, 'p, 'tcx> {
fn check_patterns(&self, pat: &Pat<'_>) {
pat.walk_always(|pat| check_borrow_conflicts_in_at_patterns(self, pat));
check_for_bindings_named_same_as_variants(self, pat);
}
fn lower_pattern<'p>(
fn lower_pattern(
&self,
cx: &mut MatchCheckCtxt<'p, 'tcx>,
pat: &'tcx hir::Pat<'tcx>,
have_errors: &mut bool,
) -> (&'p super::Pat<'tcx>, Ty<'tcx>) {
) -> &'p DeconstructedPat<'p, 'tcx> {
let mut patcx = PatCtxt::new(self.tcx, self.param_env, self.typeck_results);
patcx.include_lint_checks();
let pattern = patcx.lower_pattern(pat);
let pattern_ty = pattern.ty;
let pattern: &_ = cx.pattern_arena.alloc(expand_pattern(pattern));
let pattern: &_ = cx.pattern_arena.alloc(DeconstructedPat::from_pat(cx, &pattern));
if !patcx.errors.is_empty() {
*have_errors = true;
patcx.report_inlining_errors();
}
(pattern, pattern_ty)
pattern
}
fn new_cx(&self, hir_id: HirId) -> MatchCheckCtxt<'_, 'tcx> {
fn new_cx(&self, hir_id: HirId) -> MatchCheckCtxt<'p, 'tcx> {
MatchCheckCtxt {
tcx: self.tcx,
param_env: self.param_env,
@ -149,8 +147,8 @@ impl<'tcx> MatchVisitor<'_, 'tcx> {
fn check_let(&mut self, pat: &'tcx hir::Pat<'tcx>, expr: &hir::Expr<'_>, span: Span) {
self.check_patterns(pat);
let mut cx = self.new_cx(expr.hir_id);
let tpat = self.lower_pattern(&mut cx, pat, &mut false).0;
check_let_reachability(&mut cx, pat.hir_id, &tpat, span);
let tpat = self.lower_pattern(&mut cx, pat, &mut false);
check_let_reachability(&mut cx, pat.hir_id, tpat, span);
}
fn check_match(
@ -166,8 +164,8 @@ impl<'tcx> MatchVisitor<'_, 'tcx> {
self.check_patterns(&arm.pat);
if let Some(hir::Guard::IfLet(ref pat, _)) = arm.guard {
self.check_patterns(pat);
let tpat = self.lower_pattern(&mut cx, pat, &mut false).0;
check_let_reachability(&mut cx, pat.hir_id, &tpat, tpat.span);
let tpat = self.lower_pattern(&mut cx, pat, &mut false);
check_let_reachability(&mut cx, pat.hir_id, tpat, tpat.span());
}
}
@ -176,7 +174,7 @@ impl<'tcx> MatchVisitor<'_, 'tcx> {
let arms: Vec<_> = arms
.iter()
.map(|hir::Arm { pat, guard, .. }| MatchArm {
pat: self.lower_pattern(&mut cx, pat, &mut have_errors).0,
pat: self.lower_pattern(&mut cx, pat, &mut have_errors),
hir_id: pat.hir_id,
has_guard: guard.is_some(),
})
@ -210,7 +208,8 @@ impl<'tcx> MatchVisitor<'_, 'tcx> {
fn check_irrefutable(&self, pat: &'tcx Pat<'tcx>, origin: &str, sp: Option<Span>) {
let mut cx = self.new_cx(pat.hir_id);
let (pattern, pattern_ty) = self.lower_pattern(&mut cx, pat, &mut false);
let pattern = self.lower_pattern(&mut cx, pat, &mut false);
let pattern_ty = pattern.ty();
let arms = vec![MatchArm { pat: pattern, hir_id: pat.hir_id, has_guard: false }];
let report = compute_match_usefulness(&cx, &arms, pat.hir_id, pattern_ty);
@ -222,7 +221,7 @@ impl<'tcx> MatchVisitor<'_, 'tcx> {
return;
}
let joined_patterns = joined_uncovered_patterns(&witnesses);
let joined_patterns = joined_uncovered_patterns(&cx, &witnesses);
let mut err = struct_span_err!(
self.tcx.sess,
pat.span,
@ -298,7 +297,7 @@ fn const_not_var(
}
}
fn check_for_bindings_named_same_as_variants(cx: &MatchVisitor<'_, '_>, pat: &Pat<'_>) {
fn check_for_bindings_named_same_as_variants(cx: &MatchVisitor<'_, '_, '_>, pat: &Pat<'_>) {
pat.walk_always(|p| {
if let hir::PatKind::Binding(_, _, ident, None) = p.kind {
if let Some(ty::BindByValue(hir::Mutability::Not)) =
@ -340,12 +339,11 @@ fn check_for_bindings_named_same_as_variants(cx: &MatchVisitor<'_, '_>, pat: &Pa
}
/// Checks for common cases of "catchall" patterns that may not be intended as such.
fn pat_is_catchall(pat: &super::Pat<'_>) -> bool {
use PatKind::*;
match &*pat.kind {
Binding { subpattern: None, .. } => true,
Binding { subpattern: Some(s), .. } | Deref { subpattern: s } => pat_is_catchall(s),
Leaf { subpatterns: s } => s.iter().all(|p| pat_is_catchall(&p.pattern)),
fn pat_is_catchall(pat: &DeconstructedPat<'_, '_>) -> bool {
use Constructor::*;
match pat.ctor() {
Wildcard => true,
Single => pat.iter_fields().all(|pat| pat_is_catchall(pat)),
_ => false,
}
}
@ -424,11 +422,11 @@ fn irrefutable_let_pattern(tcx: TyCtxt<'_>, id: HirId, span: Span) {
fn check_let_reachability<'p, 'tcx>(
cx: &mut MatchCheckCtxt<'p, 'tcx>,
pat_id: HirId,
pat: &'p super::Pat<'tcx>,
pat: &'p DeconstructedPat<'p, 'tcx>,
span: Span,
) {
let arms = [MatchArm { pat, hir_id: pat_id, has_guard: false }];
let report = compute_match_usefulness(&cx, &arms, pat_id, pat.ty);
let report = compute_match_usefulness(&cx, &arms, pat_id, pat.ty());
// Report if the pattern is unreachable, which can only occur when the type is uninhabited.
// This also reports unreachable sub-patterns though, so we can't just replace it with an
@ -450,7 +448,7 @@ fn report_arm_reachability<'p, 'tcx>(
let mut catchall = None;
for (arm, is_useful) in report.arm_usefulness.iter() {
match is_useful {
Unreachable => unreachable_pattern(cx.tcx, arm.pat.span, arm.hir_id, catchall),
Unreachable => unreachable_pattern(cx.tcx, arm.pat.span(), arm.hir_id, catchall),
Reachable(unreachables) if unreachables.is_empty() => {}
// The arm is reachable, but contains unreachable subpatterns (from or-patterns).
Reachable(unreachables) => {
@ -463,7 +461,7 @@ fn report_arm_reachability<'p, 'tcx>(
}
}
if !arm.has_guard && catchall.is_none() && pat_is_catchall(arm.pat) {
catchall = Some(arm.pat.span);
catchall = Some(arm.pat.span());
}
}
}
@ -473,7 +471,7 @@ fn non_exhaustive_match<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
scrut_ty: Ty<'tcx>,
sp: Span,
witnesses: Vec<super::Pat<'tcx>>,
witnesses: Vec<DeconstructedPat<'p, 'tcx>>,
is_empty_match: bool,
) {
let non_empty_enum = match scrut_ty.kind() {
@ -490,7 +488,7 @@ fn non_exhaustive_match<'p, 'tcx>(
format!("non-exhaustive patterns: type `{}` is non-empty", scrut_ty),
);
} else {
let joined_patterns = joined_uncovered_patterns(&witnesses);
let joined_patterns = joined_uncovered_patterns(cx, &witnesses);
err = create_e0004(
cx.tcx.sess,
sp,
@ -517,7 +515,7 @@ fn non_exhaustive_match<'p, 'tcx>(
if (scrut_ty == cx.tcx.types.usize || scrut_ty == cx.tcx.types.isize)
&& !is_empty_match
&& witnesses.len() == 1
&& is_wildcard(&witnesses[0])
&& matches!(witnesses[0].ctor(), Constructor::NonExhaustive)
{
err.note(&format!(
"`{}` does not have a fixed maximum value, \
@ -540,33 +538,40 @@ fn non_exhaustive_match<'p, 'tcx>(
err.emit();
}
crate fn joined_uncovered_patterns(witnesses: &[super::Pat<'_>]) -> String {
crate fn joined_uncovered_patterns<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
witnesses: &[DeconstructedPat<'p, 'tcx>],
) -> String {
const LIMIT: usize = 3;
let pat_to_str = |pat: &DeconstructedPat<'p, 'tcx>| pat.to_pat(cx).to_string();
match witnesses {
[] => bug!(),
[witness] => format!("`{}`", witness),
[witness] => format!("`{}`", witness.to_pat(cx)),
[head @ .., tail] if head.len() < LIMIT => {
let head: Vec<_> = head.iter().map(<_>::to_string).collect();
format!("`{}` and `{}`", head.join("`, `"), tail)
let head: Vec<_> = head.iter().map(pat_to_str).collect();
format!("`{}` and `{}`", head.join("`, `"), tail.to_pat(cx))
}
_ => {
let (head, tail) = witnesses.split_at(LIMIT);
let head: Vec<_> = head.iter().map(<_>::to_string).collect();
let head: Vec<_> = head.iter().map(pat_to_str).collect();
format!("`{}` and {} more", head.join("`, `"), tail.len())
}
}
}
crate fn pattern_not_covered_label(witnesses: &[super::Pat<'_>], joined_patterns: &str) -> String {
crate fn pattern_not_covered_label(
witnesses: &[DeconstructedPat<'_, '_>],
joined_patterns: &str,
) -> String {
format!("pattern{} {} not covered", rustc_errors::pluralize!(witnesses.len()), joined_patterns)
}
/// Point at the definition of non-covered `enum` variants.
fn adt_defined_here(
cx: &MatchCheckCtxt<'_, '_>,
fn adt_defined_here<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
err: &mut DiagnosticBuilder<'_>,
ty: Ty<'_>,
witnesses: &[super::Pat<'_>],
ty: Ty<'tcx>,
witnesses: &[DeconstructedPat<'p, 'tcx>],
) {
let ty = ty.peel_refs();
if let ty::Adt(def, _) = ty.kind() {
@ -575,57 +580,42 @@ fn adt_defined_here(
}
if witnesses.len() < 4 {
for sp in maybe_point_at_variant(ty, &witnesses) {
for sp in maybe_point_at_variant(cx, def, witnesses.iter()) {
err.span_label(sp, "not covered");
}
}
}
}
fn maybe_point_at_variant(ty: Ty<'_>, patterns: &[super::Pat<'_>]) -> Vec<Span> {
fn maybe_point_at_variant<'a, 'p: 'a, 'tcx: 'a>(
cx: &MatchCheckCtxt<'p, 'tcx>,
def: &AdtDef,
patterns: impl Iterator<Item = &'a DeconstructedPat<'p, 'tcx>>,
) -> Vec<Span> {
use Constructor::*;
let mut covered = vec![];
if let ty::Adt(def, _) = ty.kind() {
// Don't point at variants that have already been covered due to other patterns to avoid
// visual clutter.
for pattern in patterns {
use PatKind::{AscribeUserType, Deref, Leaf, Or, Variant};
match &*pattern.kind {
AscribeUserType { subpattern, .. } | Deref { subpattern } => {
covered.extend(maybe_point_at_variant(ty, slice::from_ref(&subpattern)));
for pattern in patterns {
if let Variant(variant_index) = pattern.ctor() {
if let ty::Adt(this_def, _) = pattern.ty().kind() {
if this_def.did != def.did {
continue;
}
Variant { adt_def, variant_index, subpatterns, .. } if adt_def.did == def.did => {
let sp = def.variants[*variant_index].ident.span;
if covered.contains(&sp) {
continue;
}
covered.push(sp);
let pats = subpatterns
.iter()
.map(|field_pattern| field_pattern.pattern.clone())
.collect::<Box<[_]>>();
covered.extend(maybe_point_at_variant(ty, &pats));
}
Leaf { subpatterns } => {
let pats = subpatterns
.iter()
.map(|field_pattern| field_pattern.pattern.clone())
.collect::<Box<[_]>>();
covered.extend(maybe_point_at_variant(ty, &pats));
}
Or { pats } => {
let pats = pats.iter().cloned().collect::<Box<[_]>>();
covered.extend(maybe_point_at_variant(ty, &pats));
}
_ => {}
}
let sp = def.variants[*variant_index].ident.span;
if covered.contains(&sp) {
// Don't point at variants that have already been covered due to other patterns to avoid
// visual clutter.
continue;
}
covered.push(sp);
}
covered.extend(maybe_point_at_variant(cx, def, pattern.iter_fields()));
}
covered
}
/// Check if a by-value binding is by-value. That is, check if the binding's type is not `Copy`.
fn is_binding_by_move(cx: &MatchVisitor<'_, '_>, hir_id: HirId, span: Span) -> bool {
fn is_binding_by_move(cx: &MatchVisitor<'_, '_, '_>, hir_id: HirId, span: Span) -> bool {
!cx.typeck_results.node_type(hir_id).is_copy_modulo_regions(cx.tcx.at(span), cx.param_env)
}
@ -639,7 +629,7 @@ fn is_binding_by_move(cx: &MatchVisitor<'_, '_>, hir_id: HirId, span: Span) -> b
/// - `x @ Some(ref mut? y)`.
///
/// This analysis is *not* subsumed by NLL.
fn check_borrow_conflicts_in_at_patterns(cx: &MatchVisitor<'_, '_>, pat: &Pat<'_>) {
fn check_borrow_conflicts_in_at_patterns(cx: &MatchVisitor<'_, '_, '_>, pat: &Pat<'_>) {
// Extract `sub` in `binding @ sub`.
let (name, sub) = match &pat.kind {
hir::PatKind::Binding(.., name, Some(sub)) => (*name, sub),

View File

@ -46,7 +46,7 @@ use self::Constructor::*;
use self::SliceKind::*;
use super::compare_const_vals;
use super::usefulness::{is_wildcard, MatchCheckCtxt, PatCtxt};
use super::usefulness::{MatchCheckCtxt, PatCtxt};
use rustc_data_structures::captures::Captures;
use rustc_index::vec::Idx;
@ -62,10 +62,29 @@ use rustc_span::{Span, DUMMY_SP};
use rustc_target::abi::{Integer, Size, VariantIdx};
use smallvec::{smallvec, SmallVec};
use std::borrow::Cow;
use std::cmp::{self, max, min, Ordering};
use std::fmt;
use std::iter::{once, IntoIterator};
use std::ops::RangeInclusive;
/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> {
fn expand<'p, 'tcx>(pat: &'p Pat<'tcx>, vec: &mut Vec<&'p Pat<'tcx>>) {
if let PatKind::Or { pats } = pat.kind.as_ref() {
for pat in pats {
expand(pat, vec);
}
} else {
vec.push(pat)
}
}
let mut pats = Vec::new();
expand(pat, &mut pats);
pats
}
/// An inclusive interval, used for precise integer exhaustiveness checking.
/// `IntRange`s always store a contiguous range. This means that values are
/// encoded such that `0` encodes the minimum value for the integer,
@ -76,9 +95,13 @@ use std::ops::RangeInclusive;
///
/// `IntRange` is never used to encode an empty range or a "range" that wraps
/// around the (offset) space: i.e., `range.lo <= range.hi`.
#[derive(Clone, Debug, PartialEq, Eq)]
#[derive(Clone, PartialEq, Eq)]
pub(super) struct IntRange {
range: RangeInclusive<u128>,
/// Keeps the bias used for encoding the range. It depends on the type of the range and
/// possibly the pointer size of the current architecture. The algorithm ensures we never
/// compare `IntRange`s with different types/architectures.
bias: u128,
}
impl IntRange {
@ -131,7 +154,7 @@ impl IntRange {
value.try_eval_bits(tcx, param_env, ty)
})()?;
let val = val ^ bias;
Some(IntRange { range: val..=val })
Some(IntRange { range: val..=val, bias })
} else {
None
}
@ -155,7 +178,7 @@ impl IntRange {
// This should have been caught earlier by E0030.
bug!("malformed range pattern: {}..={}", lo, (hi - offset));
}
Some(IntRange { range: lo..=(hi - offset) })
Some(IntRange { range: lo..=(hi - offset), bias })
} else {
None
}
@ -180,7 +203,7 @@ impl IntRange {
let (lo, hi) = self.boundaries();
let (other_lo, other_hi) = other.boundaries();
if lo <= other_hi && other_lo <= hi {
Some(IntRange { range: max(lo, other_lo)..=min(hi, other_hi) })
Some(IntRange { range: max(lo, other_lo)..=min(hi, other_hi), bias: self.bias })
} else {
None
}
@ -203,10 +226,11 @@ impl IntRange {
(lo == other_hi || hi == other_lo) && !self.is_singleton() && !other.is_singleton()
}
/// Only used for displaying the range properly.
fn to_pat<'tcx>(&self, tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Pat<'tcx> {
let (lo, hi) = self.boundaries();
let bias = IntRange::signed_bias(tcx, ty);
let bias = self.bias;
let (lo, hi) = (lo ^ bias, hi ^ bias);
let env = ty::ParamEnv::empty().and(ty);
@ -223,10 +247,10 @@ impl IntRange {
}
/// Lint on likely incorrect range patterns (#63987)
pub(super) fn lint_overlapping_range_endpoints<'a, 'tcx: 'a>(
pub(super) fn lint_overlapping_range_endpoints<'a, 'p: 'a, 'tcx: 'a>(
&self,
pcx: PatCtxt<'_, '_, 'tcx>,
ctors: impl Iterator<Item = (&'a Constructor<'tcx>, Span)>,
pcx: PatCtxt<'_, 'p, 'tcx>,
pats: impl Iterator<Item = &'a DeconstructedPat<'p, 'tcx>>,
column_count: usize,
hir_id: HirId,
) {
@ -248,8 +272,8 @@ impl IntRange {
return;
}
let overlaps: Vec<_> = ctors
.filter_map(|(ctor, span)| Some((ctor.as_int_range()?, span)))
let overlaps: Vec<_> = pats
.filter_map(|pat| Some((pat.ctor().as_int_range()?, pat.span())))
.filter(|(range, _)| self.suspicious_intersection(range))
.map(|(range, span)| (self.intersection(&range).unwrap(), span))
.collect();
@ -291,6 +315,19 @@ impl IntRange {
}
}
/// Note: this is often not what we want: e.g. `false` is converted into the range `0..=0` and
/// would be displayed as such. To render properly, convert to a pattern first.
impl fmt::Debug for IntRange {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let (lo, hi) = self.boundaries();
let bias = self.bias;
let (lo, hi) = (lo ^ bias, hi ^ bias);
write!(f, "{}", lo)?;
write!(f, "{}", RangeEnd::Included)?;
write!(f, "{}", hi)
}
}
/// Represents a border between 2 integers. Because the intervals spanning borders must be able to
/// cover every integer, we need to be able to represent 2^128 + 1 such borders.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
@ -375,13 +412,13 @@ impl SplitIntRange {
// Skip duplicates.
.filter(|(prev_border, border)| prev_border != border)
// Finally, convert to ranges.
.map(|(prev_border, border)| {
.map(move |(prev_border, border)| {
let range = match (prev_border, border) {
(JustBefore(n), JustBefore(m)) if n < m => n..=(m - 1),
(JustBefore(n), AfterMax) => n..=u128::MAX,
_ => unreachable!(), // Ruled out by the sorting and filtering we did
};
IntRange { range }
IntRange { range, bias: self.range.bias }
})
}
}
@ -611,6 +648,8 @@ pub(super) enum Constructor<'tcx> {
Missing { nonexhaustive_enum_missing_real_variants: bool },
/// Wildcard pattern.
Wildcard,
/// Or-pattern.
Or,
}
impl<'tcx> Constructor<'tcx> {
@ -647,61 +686,34 @@ impl<'tcx> Constructor<'tcx> {
}
}
/// Determines the constructor that the given pattern can be specialized to.
pub(super) fn from_pat<'p>(cx: &MatchCheckCtxt<'p, 'tcx>, pat: &'p Pat<'tcx>) -> Self {
match pat.kind.as_ref() {
PatKind::AscribeUserType { .. } => bug!(), // Handled by `expand_pattern`
PatKind::Binding { .. } | PatKind::Wild => Wildcard,
PatKind::Leaf { .. } | PatKind::Deref { .. } => Single,
&PatKind::Variant { variant_index, .. } => Variant(variant_index),
PatKind::Constant { value } => {
if let Some(int_range) = IntRange::from_const(cx.tcx, cx.param_env, value) {
IntRange(int_range)
} else {
match pat.ty.kind() {
ty::Float(_) => FloatRange(value, value, RangeEnd::Included),
// We make `&str` constants behave like `Deref` patterns, to be compatible
// with other `Deref` patterns. See also `Fields::extract_pattern_arguments`.
ty::Ref(_, t, _) if t.is_str() => Single,
// In truth this carries a constant of type `&str`.
ty::Str => Str(value),
// All constants that can be structurally matched have already been expanded
// into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
// opaque.
_ => Opaque,
/// The number of fields for this constructor. This must be kept in sync with
/// `Fields::wildcards`.
pub(super) fn arity(&self, pcx: PatCtxt<'_, '_, 'tcx>) -> usize {
match self {
Single | Variant(_) => match pcx.ty.kind() {
ty::Tuple(fs) => fs.len(),
ty::Ref(..) => 1,
ty::Adt(adt, ..) => {
if adt.is_box() {
// The only legal patterns of type `Box` (outside `std`) are `_` and box
// patterns. If we're here we can assume this is a box pattern.
1
} else {
let variant = &adt.variants[self.variant_index_for_adt(adt)];
Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant).count()
}
}
}
&PatKind::Range(PatRange { lo, hi, end }) => {
let ty = lo.ty;
if let Some(int_range) = IntRange::from_range(
cx.tcx,
lo.eval_bits(cx.tcx, cx.param_env, lo.ty),
hi.eval_bits(cx.tcx, cx.param_env, hi.ty),
ty,
&end,
) {
IntRange(int_range)
} else {
FloatRange(lo, hi, end)
}
}
PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
let array_len = match pat.ty.kind() {
ty::Array(_, length) => Some(length.eval_usize(cx.tcx, cx.param_env) as usize),
ty::Slice(_) => None,
_ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
};
let prefix = prefix.len();
let suffix = suffix.len();
let kind = if slice.is_some() {
VarLen(prefix, suffix)
} else {
FixedLen(prefix + suffix)
};
Slice(Slice::new(array_len, kind))
}
PatKind::Or { .. } => bug!("Or-pattern should have been expanded earlier on."),
_ => bug!("Unexpected type for `Single` constructor: {:?}", pcx.ty),
},
Slice(slice) => slice.arity(),
Str(..)
| FloatRange(..)
| IntRange(..)
| NonExhaustive
| Opaque
| Missing { .. }
| Wildcard => 0,
Or => bug!("The `Or` constructor doesn't have a fixed arity"),
}
}
@ -824,7 +836,7 @@ impl<'tcx> Constructor<'tcx> {
match self {
// If `self` is `Single`, `used_ctors` cannot contain anything else than `Single`s.
Single => !used_ctors.is_empty(),
Variant(_) => used_ctors.iter().any(|c| c == self),
Variant(vid) => used_ctors.iter().any(|c| matches!(c, Variant(i) if i == vid)),
IntRange(range) => used_ctors
.iter()
.filter_map(|c| c.as_int_range())
@ -835,7 +847,7 @@ impl<'tcx> Constructor<'tcx> {
.any(|other| slice.is_covered_by(other)),
// This constructor is never covered by anything else
NonExhaustive => false,
Str(..) | FloatRange(..) | Opaque | Missing { .. } | Wildcard => {
Str(..) | FloatRange(..) | Opaque | Missing { .. } | Wildcard | Or => {
span_bug!(pcx.span, "found unexpected ctor in all_ctors: {:?}", self)
}
}
@ -1097,7 +1109,7 @@ impl<'tcx> SplitWildcard<'tcx> {
/// `index_with_declared_idx`.
#[derive(Debug, Clone)]
pub(super) struct Fields<'p, 'tcx> {
fields: SmallVec<[&'p Pat<'tcx>; 2]>,
fields: SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]>,
}
impl<'p, 'tcx> Fields<'p, 'tcx> {
@ -1105,19 +1117,30 @@ impl<'p, 'tcx> Fields<'p, 'tcx> {
Fields { fields: SmallVec::new() }
}
fn from_iter(
fn singleton(cx: &MatchCheckCtxt<'p, 'tcx>, field: DeconstructedPat<'p, 'tcx>) -> Self {
let field: &_ = cx.pattern_arena.alloc(field);
Fields { fields: smallvec![field] }
}
pub(super) fn from_iter(
cx: &MatchCheckCtxt<'p, 'tcx>,
fields: impl IntoIterator<Item = Pat<'tcx>>,
fields: impl IntoIterator<Item = DeconstructedPat<'p, 'tcx>>,
) -> Self {
let fields: &_ = cx.pattern_arena.alloc_from_iter(fields);
Fields { fields: fields.iter().collect() }
Fields { fields: fields.into_iter().collect() }
}
pub(super) fn from_ref_iter(
fields: impl IntoIterator<Item = &'p DeconstructedPat<'p, 'tcx>>,
) -> Self {
Fields { fields: fields.into_iter().collect() }
}
fn wildcards_from_tys(
cx: &MatchCheckCtxt<'p, 'tcx>,
tys: impl IntoIterator<Item = Ty<'tcx>>,
) -> Self {
Fields::from_iter(cx, tys.into_iter().map(Pat::wildcard_from_ty))
Fields::from_iter(cx, tys.into_iter().map(DeconstructedPat::wildcard))
}
// In the cases of either a `#[non_exhaustive]` field list or a non-public field, we hide
@ -1148,7 +1171,8 @@ impl<'p, 'tcx> Fields<'p, 'tcx> {
})
}
/// Creates a new list of wildcard fields for a given constructor.
/// Creates a new list of wildcard fields for a given constructor. The result must have a
/// length of `constructor.arity()`.
pub(super) fn wildcards(
cx: &MatchCheckCtxt<'p, 'tcx>,
ty: Ty<'tcx>,
@ -1156,15 +1180,12 @@ impl<'p, 'tcx> Fields<'p, 'tcx> {
) -> Self {
let ret = match constructor {
Single | Variant(_) => match ty.kind() {
ty::Tuple(ref fs) => {
Fields::wildcards_from_tys(cx, fs.into_iter().map(|ty| ty.expect_ty()))
}
ty::Tuple(fs) => Fields::wildcards_from_tys(cx, fs.iter().map(|ty| ty.expect_ty())),
ty::Ref(_, rty, _) => Fields::wildcards_from_tys(cx, once(*rty)),
ty::Adt(adt, substs) => {
if adt.is_box() {
// Use T as the sub pattern type of Box<T>.
// FIXME(Nadrieril): This is to make box-patterns work even though `Box` is
// actually a struct with 2 private fields. Hacky.
// The only legal patterns of type `Box` (outside `std`) are `_` and box
// patterns. If we're here we can assume this is a box pattern.
Fields::wildcards_from_tys(cx, once(substs.type_at(0)))
} else {
let variant = &adt.variants[constructor.variant_index_for_adt(adt)];
@ -1189,47 +1210,193 @@ impl<'p, 'tcx> Fields<'p, 'tcx> {
| Opaque
| Missing { .. }
| Wildcard => Fields::empty(),
Or => {
bug!("called `Fields::wildcards` on an `Or` ctor")
}
};
debug!("Fields::wildcards({:?}, {:?}) = {:#?}", constructor, ty, ret);
ret
}
/// Returns the number of patterns. This is the same as the arity of the constructor used to
/// construct `self`.
pub(super) fn len(&self) -> usize {
self.fields.len()
}
/// Returns the list of patterns.
pub(super) fn iter_patterns<'a>(
&'a self,
) -> impl Iterator<Item = &'p Pat<'tcx>> + Captures<'a> {
) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
self.fields.iter().copied()
}
}
/// Apply a constructor to a list of patterns, yielding a new pattern. `self`
/// must have as many elements as this constructor's arity.
///
/// This is roughly the inverse of `specialize_constructor`.
///
/// Examples:
///
/// ```text
/// ctor: `Constructor::Single`
/// ty: `Foo(u32, u32, u32)`
/// self: `[10, 20, _]`
/// returns `Foo(10, 20, _)`
///
/// ctor: `Constructor::Variant(Option::Some)`
/// ty: `Option<bool>`
/// self: `[false]`
/// returns `Some(false)`
/// ```
pub(super) fn apply(self, pcx: PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>) -> Pat<'tcx> {
let mut subpatterns = self.iter_patterns().cloned();
#[derive(Clone)]
pub(crate) struct DeconstructedPat<'p, 'tcx> {
ctor: Constructor<'tcx>,
fields: Fields<'p, 'tcx>,
ty: Ty<'tcx>,
span: Span,
}
let pat = match ctor {
Single | Variant(_) => match pcx.ty.kind() {
impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> {
pub(super) fn wildcard(ty: Ty<'tcx>) -> Self {
Self::new(Wildcard, Fields::empty(), ty)
}
pub(super) fn new(ctor: Constructor<'tcx>, fields: Fields<'p, 'tcx>, ty: Ty<'tcx>) -> Self {
DeconstructedPat { ctor, fields, ty, span: DUMMY_SP }
}
pub(crate) fn from_pat(cx: &MatchCheckCtxt<'p, 'tcx>, pat: &Pat<'tcx>) -> Self {
let mkpat = |pat| DeconstructedPat::from_pat(cx, pat);
let allocpat = |pat| &*cx.pattern_arena.alloc(mkpat(pat));
let ctor;
let mut fields;
match pat.kind.as_ref() {
PatKind::AscribeUserType { subpattern, .. } => return mkpat(subpattern),
PatKind::Binding { subpattern: Some(subpat), .. } => return mkpat(subpat),
PatKind::Binding { subpattern: None, .. } | PatKind::Wild => {
ctor = Wildcard;
fields = Fields::empty();
}
PatKind::Deref { subpattern } => {
ctor = Single;
fields = Fields::singleton(cx, mkpat(subpattern));
}
PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
match pat.ty.kind() {
ty::Tuple(fs) => {
ctor = Single;
fields = Fields::wildcards_from_tys(cx, fs.iter().map(|ty| ty.expect_ty()));
for pat in subpatterns {
fields.fields[pat.field.index()] = allocpat(&pat.pattern);
}
}
ty::Adt(adt, substs) if adt.is_box() => {
// The only legal patterns of type `Box` (outside `std`) are `_` and box
// patterns. If we're here we can assume this is a box pattern.
// FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
// _)` or a box pattern. As a hack to avoid an ICE with the former, we
// ignore other fields than the first one. This will trigger an error later
// anyway.
// See https://github.com/rust-lang/rust/issues/82772 ,
// explanation: https://github.com/rust-lang/rust/pull/82789#issuecomment-796921977
// The problem is that we can't know from the type whether we'll match
// normally or through box-patterns. We'll have to figure out a proper
// solution when we introduce generalized deref patterns. Also need to
// prevent mixing of those two options.
let pat = subpatterns.into_iter().find(|pat| pat.field.index() == 0);
let pat = if let Some(pat) = pat {
mkpat(&pat.pattern)
} else {
DeconstructedPat::wildcard(substs.type_at(0))
};
ctor = Single;
fields = Fields::singleton(cx, pat);
}
ty::Adt(adt, _) => {
ctor = match pat.kind.as_ref() {
PatKind::Leaf { .. } => Single,
PatKind::Variant { variant_index, .. } => Variant(*variant_index),
_ => bug!(),
};
let variant = &adt.variants[ctor.variant_index_for_adt(adt)];
// For each field in the variant, we store the relevant index into `self.fields` if any.
let mut field_id_to_id: Vec<Option<usize>> =
(0..variant.fields.len()).map(|_| None).collect();
let tys = Fields::list_variant_nonhidden_fields(cx, pat.ty, variant)
.enumerate()
.map(|(i, (field, ty))| {
field_id_to_id[field.index()] = Some(i);
ty
});
fields = Fields::wildcards_from_tys(cx, tys);
for pat in subpatterns {
if let Some(i) = field_id_to_id[pat.field.index()] {
fields.fields[i] = allocpat(&pat.pattern);
}
}
}
_ => bug!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, pat.ty),
}
}
PatKind::Constant { value } => {
if let Some(int_range) = IntRange::from_const(cx.tcx, cx.param_env, value) {
ctor = IntRange(int_range);
fields = Fields::empty();
} else {
match pat.ty.kind() {
ty::Float(_) => {
ctor = FloatRange(value, value, RangeEnd::Included);
fields = Fields::empty();
}
ty::Ref(_, t, _) if t.is_str() => {
// We want a `&str` constant to behave like a `Deref` pattern, to be compatible
// with other `Deref` patterns. This could have been done in `const_to_pat`,
// but that causes issues with the rest of the matching code.
// So here, the constructor for a `"foo"` pattern is `&` (represented by
// `Single`), and has one field. That field has constructor `Str(value)` and no
// fields.
let subpattern = DeconstructedPat {
ctor: Str(value),
fields: Fields::empty(),
ty: t, // `t` is `str`, not `&str`
span: pat.span,
};
ctor = Single;
fields = Fields::singleton(cx, subpattern)
}
// All constants that can be structurally matched have already been expanded
// into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
// opaque.
_ => {
ctor = Opaque;
fields = Fields::empty();
}
}
}
}
&PatKind::Range(PatRange { lo, hi, end }) => {
let ty = lo.ty;
ctor = if let Some(int_range) = IntRange::from_range(
cx.tcx,
lo.eval_bits(cx.tcx, cx.param_env, lo.ty),
hi.eval_bits(cx.tcx, cx.param_env, hi.ty),
ty,
&end,
) {
IntRange(int_range)
} else {
FloatRange(lo, hi, end)
};
fields = Fields::empty();
}
PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
let array_len = match pat.ty.kind() {
ty::Array(_, length) => Some(length.eval_usize(cx.tcx, cx.param_env) as usize),
ty::Slice(_) => None,
_ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
};
let kind = if slice.is_some() {
VarLen(prefix.len(), suffix.len())
} else {
FixedLen(prefix.len() + suffix.len())
};
ctor = Slice(Slice::new(array_len, kind));
fields = Fields::from_iter(cx, prefix.iter().chain(suffix).map(mkpat));
}
PatKind::Or { .. } => {
ctor = Or;
let pats = expand_or_pat(pat);
fields = Fields::from_iter(cx, pats.into_iter().map(mkpat));
}
}
DeconstructedPat { ctor, fields, ty: pat.ty, span: pat.span }
}
pub(crate) fn to_pat(&self, cx: &MatchCheckCtxt<'p, 'tcx>) -> Pat<'tcx> {
let is_wildcard = |pat: &Pat<'_>| {
matches!(*pat.kind, PatKind::Binding { subpattern: None, .. } | PatKind::Wild)
};
let mut subpatterns = self.iter_fields().map(|p| p.to_pat(cx));
let pat = match &self.ctor {
Single | Variant(_) => match self.ty.kind() {
ty::Tuple(..) => PatKind::Leaf {
subpatterns: subpatterns
.enumerate()
@ -1242,22 +1409,16 @@ impl<'p, 'tcx> Fields<'p, 'tcx> {
// the pattern is a box pattern.
PatKind::Deref { subpattern: subpatterns.next().unwrap() }
}
ty::Adt(adt, substs) => {
let variant_index = ctor.variant_index_for_adt(adt);
let variant = &adt.variants[variant_index];
let subpatterns =
Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant)
.zip(subpatterns)
.map(|((field, _ty), pattern)| FieldPat { field, pattern })
.collect();
ty::Adt(adt_def, substs) => {
let variant_index = self.ctor.variant_index_for_adt(adt_def);
let variant = &adt_def.variants[variant_index];
let subpatterns = Fields::list_variant_nonhidden_fields(cx, self.ty, variant)
.zip(subpatterns)
.map(|((field, _ty), pattern)| FieldPat { field, pattern })
.collect();
if adt.is_enum() {
PatKind::Variant {
adt_def: adt,
substs,
variant_index: ctor.variant_index_for_adt(adt),
subpatterns,
}
if adt_def.is_enum() {
PatKind::Variant { adt_def, substs, variant_index, subpatterns }
} else {
PatKind::Leaf { subpatterns }
}
@ -1265,150 +1426,222 @@ impl<'p, 'tcx> Fields<'p, 'tcx> {
// Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
// be careful to reconstruct the correct constant pattern here. However a string
// literal pattern will never be reported as a non-exhaustiveness witness, so we
// can ignore this issue.
// ignore this issue.
ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
_ => bug!("unexpected ctor for type {:?} {:?}", ctor, pcx.ty),
_ => bug!("unexpected ctor for type {:?} {:?}", self.ctor, self.ty),
},
Slice(slice) => match slice.kind {
FixedLen(_) => {
PatKind::Slice { prefix: subpatterns.collect(), slice: None, suffix: vec![] }
}
VarLen(prefix, _) => {
let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect();
if slice.array_len.is_some() {
// Improves diagnostics a bit: if the type is a known-size array, instead
// of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
// This is incorrect if the size is not known, since `[_, ..]` captures
// arrays of lengths `>= 1` whereas `[..]` captures any length.
while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) {
prefix.pop();
}
}
let suffix: Vec<_> = if slice.array_len.is_some() {
// Same as above.
subpatterns.skip_while(is_wildcard).collect()
} else {
subpatterns.collect()
};
let wild = Pat::wildcard_from_ty(pcx.ty);
PatKind::Slice { prefix, slice: Some(wild), suffix }
}
},
&Str(value) => PatKind::Constant { value },
&FloatRange(lo, hi, end) => PatKind::Range(PatRange { lo, hi, end }),
IntRange(range) => return range.to_pat(pcx.cx.tcx, pcx.ty),
NonExhaustive => PatKind::Wild,
Wildcard => return Pat::wildcard_from_ty(pcx.ty),
Opaque => bug!("we should not try to apply an opaque constructor"),
Missing { .. } => bug!(
"trying to apply the `Missing` constructor; this should have been done in `apply_constructors`"
),
};
Pat { ty: pcx.ty, span: DUMMY_SP, kind: Box::new(pat) }
}
/// Replaces contained fields with the given list of patterns. There must be `len()` patterns
/// in `pats`.
pub(super) fn replace_fields(
self,
cx: &MatchCheckCtxt<'p, 'tcx>,
pats: impl IntoIterator<Item = Pat<'tcx>>,
) -> Self {
Self::from_iter(cx, pats)
}
/// Replaces contained fields with the arguments of the given pattern. Only use on a pattern
/// that is compatible with the constructor used to build `self`.
/// This is meant to be used on the result of `Fields::wildcards()`. See the comment above
/// `Fields` for details
/// This is guaranteed to preserve the number of patterns in `self`.
pub(super) fn extract_pattern_arguments(
mut self,
cx: &MatchCheckCtxt<'p, 'tcx>,
pat: &'p Pat<'tcx>,
) -> Self {
match pat.kind.as_ref() {
PatKind::Deref { subpattern } => {
assert_eq!(self.len(), 1);
self.fields[0] = subpattern;
}
PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
match pat.ty.kind() {
ty::Adt(adt, _) if adt.is_box() => {
// FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
// _)` or a box pattern. As a hack to avoid an ICE with the former, we
// ignore other fields than the first one. This will trigger an error later
// anyway.
// See https://github.com/rust-lang/rust/issues/82772 ,
// explanation: https://github.com/rust-lang/rust/pull/82789#issuecomment-796921977
// The problem is that we can't know from the type whether we'll match
// normally or through box-patterns. We'll have to figure out a proper
// solution when we introduce generalized deref patterns. Also need to
// prevent mixing of those two options.
assert_eq!(self.len(), 1);
let pat = subpatterns.into_iter().find(|pat| pat.field.index() == 0);
if let Some(pat) = pat {
self.fields[0] = &pat.pattern;
}
}
ty::Adt(adt, _) => {
let variant_index = match pat.kind.as_ref() {
PatKind::Leaf { .. } => VariantIdx::new(0),
PatKind::Variant { variant_index, .. } => *variant_index,
_ => bug!(),
};
let variant = &adt.variants[variant_index];
// For each field in the variant, we store the relevant index into `self.fields` if any.
let mut field_id_to_id: Vec<Option<usize>> =
(0..variant.fields.len()).map(|_| None).collect();
for (i, (field, _ty)) in
Fields::list_variant_nonhidden_fields(cx, pat.ty, variant).enumerate()
{
field_id_to_id[field.index()] = Some(i);
}
for pat in subpatterns {
if let Some(i) = field_id_to_id[pat.field.index()] {
self.fields[i] = &pat.pattern;
Slice(slice) => {
match slice.kind {
FixedLen(_) => PatKind::Slice {
prefix: subpatterns.collect(),
slice: None,
suffix: vec![],
},
VarLen(prefix, _) => {
let mut subpatterns = subpatterns.peekable();
let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect();
if slice.array_len.is_some() {
// Improves diagnostics a bit: if the type is a known-size array, instead
// of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
// This is incorrect if the size is not known, since `[_, ..]` captures
// arrays of lengths `>= 1` whereas `[..]` captures any length.
while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) {
prefix.pop();
}
while subpatterns.peek().is_some()
&& is_wildcard(subpatterns.peek().unwrap())
{
subpatterns.next();
}
}
let suffix: Vec<_> = subpatterns.collect();
let wild = Pat::wildcard_from_ty(self.ty);
PatKind::Slice { prefix, slice: Some(wild), suffix }
}
_ => {
for pat in subpatterns {
self.fields[pat.field.index()] = &pat.pattern;
}
}
&Str(value) => PatKind::Constant { value },
&FloatRange(lo, hi, end) => PatKind::Range(PatRange { lo, hi, end }),
IntRange(range) => return range.to_pat(cx.tcx, self.ty),
Wildcard | NonExhaustive => PatKind::Wild,
Missing { .. } => bug!(
"trying to convert a `Missing` constructor into a `Pat`; this is probably a bug,
`Missing` should have been processed in `apply_constructors`"
),
Opaque | Or => {
bug!("can't convert to pattern: {:?}", self)
}
};
Pat { ty: self.ty, span: DUMMY_SP, kind: Box::new(pat) }
}
/// Construct a pattern that matches everything that starts with this constructor.
// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern
// `Some(_)`.
pub(super) fn wild_from_ctor(pcx: PatCtxt<'_, 'p, 'tcx>, ctor: Constructor<'tcx>) -> Self {
let fields = Fields::wildcards(pcx.cx, pcx.ty, &ctor);
DeconstructedPat::new(ctor, fields, pcx.ty)
}
pub(super) fn is_or_pat(&self) -> bool {
matches!(self.ctor, Or)
}
pub(super) fn ctor(&self) -> &Constructor<'tcx> {
&self.ctor
}
pub(super) fn ty(&self) -> Ty<'tcx> {
self.ty
}
pub(super) fn span(&self) -> Span {
self.span
}
pub(super) fn iter_fields<'a>(
&'a self,
) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
self.fields.iter_patterns()
}
/// Specialize this pattern with a constructor.
/// `other_ctor` can be different from `self.ctor`, but must be covered by it.
pub(super) fn specialize<'a>(
&'a self,
cx: &MatchCheckCtxt<'p, 'tcx>,
other_ctor: &Constructor<'tcx>,
) -> Cow<'a, Fields<'p, 'tcx>> {
match (&self.ctor, other_ctor) {
(Wildcard, _) => {
// We return a wildcard for each field of `other_ctor`.
Cow::Owned(Fields::wildcards(cx, self.ty, other_ctor))
}
(Slice(self_slice), Slice(other_slice))
if self_slice.arity() != other_slice.arity() =>
{
// The only tricky case: two slices of different arity. Since `self_slice` covers
// `other_slice`, `self_slice` must be `VarLen`, i.e. of the form
// `[prefix, .., suffix]`. Moreover `other_slice` is guaranteed to have a larger
// arity. We fill the middle part with enough wildcards to reach the length of the
// new, larger slice.
match self_slice.kind {
FixedLen(_) => bug!("{:?} doesn't cover {:?}", self_slice, other_slice),
VarLen(prefix, suffix) => {
let inner_ty = match *self.ty.kind() {
ty::Slice(ty) | ty::Array(ty, _) => ty,
_ => bug!("bad slice pattern {:?} {:?}", self.ctor, self.ty),
};
let prefix = self.fields.fields[..prefix].iter().copied();
let suffix =
self.fields.fields[self_slice.arity() - suffix..].iter().copied();
let extra_wildcards = other_slice.arity() - self_slice.arity();
let extra_wildcards: &[_] = cx.pattern_arena.alloc_from_iter(
(0..extra_wildcards).map(|_| DeconstructedPat::wildcard(inner_ty)),
);
let fields = prefix.chain(extra_wildcards).chain(suffix);
Cow::Owned(Fields::from_ref_iter(fields))
}
}
}
_ => Cow::Borrowed(&self.fields),
}
}
}
/// This is mostly copied from the `Pat` impl. This is best effort and not good enough for a
/// `Display` impl.
impl<'p, 'tcx> fmt::Debug for DeconstructedPat<'p, 'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Printing lists is a chore.
let mut first = true;
let mut start_or_continue = |s| {
if first {
first = false;
""
} else {
s
}
};
let mut start_or_comma = || start_or_continue(", ");
match &self.ctor {
Single | Variant(_) => match self.ty.kind() {
ty::Adt(def, _) if def.is_box() => {
// Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
// of `std`). So this branch is only reachable when the feature is enabled and
// the pattern is a box pattern.
let subpattern = self.iter_fields().next().unwrap();
write!(f, "box {:?}", subpattern)
}
ty::Adt(..) | ty::Tuple(..) => {
let variant = match self.ty.kind() {
ty::Adt(adt, _) => {
Some(&adt.variants[self.ctor.variant_index_for_adt(adt)])
}
ty::Tuple(_) => None,
_ => unreachable!(),
};
if let Some(variant) = variant {
write!(f, "{}", variant.ident)?;
}
// Without `cx`, we can't know which field corresponds to which, so we can't
// get the names of the fields. Instead we just display everything as a suple
// struct, which should be good enough.
write!(f, "(")?;
for p in self.iter_fields() {
write!(f, "{}", start_or_comma())?;
write!(f, "{:?}", p)?;
}
write!(f, ")")
}
// Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
// be careful to detect strings here. However a string literal pattern will never
// be reported as a non-exhaustiveness witness, so we can ignore this issue.
ty::Ref(_, _, mutbl) => {
let subpattern = self.iter_fields().next().unwrap();
write!(f, "&{}{:?}", mutbl.prefix_str(), subpattern)
}
_ => write!(f, "_"),
},
Slice(slice) => {
let mut subpatterns = self.fields.iter_patterns();
write!(f, "[")?;
match slice.kind {
FixedLen(_) => {
for p in subpatterns {
write!(f, "{}{:?}", start_or_comma(), p)?;
}
}
VarLen(prefix_len, _) => {
for p in subpatterns.by_ref().take(prefix_len) {
write!(f, "{}{:?}", start_or_comma(), p)?;
}
write!(f, "{}", start_or_comma())?;
write!(f, "..")?;
for p in subpatterns {
write!(f, "{}{:?}", start_or_comma(), p)?;
}
}
}
write!(f, "]")
}
PatKind::Array { prefix, suffix, .. } | PatKind::Slice { prefix, suffix, .. } => {
// Number of subpatterns for the constructor
let ctor_arity = self.len();
// Replace the prefix and the suffix with the given patterns, leaving wildcards in
// the middle if there was a subslice pattern `..`.
let prefix = prefix.iter().enumerate();
let suffix =
suffix.iter().enumerate().map(|(i, p)| (ctor_arity - suffix.len() + i, p));
for (i, pat) in prefix.chain(suffix) {
self.fields[i] = pat
}
&FloatRange(lo, hi, end) => {
write!(f, "{}", lo)?;
write!(f, "{}", end)?;
write!(f, "{}", hi)
}
PatKind::Constant { .. } => match pat.ty.kind() {
ty::Ref(_, t, _) if t.is_str() => {
assert_eq!(self.len(), 1);
// We want a `&str` constant to behave like a `Deref` pattern, to be compatible
// with other `Deref` patterns. This could have been done in `const_to_pat`,
// but that causes issues with the rest of the matching code.
// The outer constructor is `&`, and the inner one carries the str value.
let mut new_pat = pat.clone();
new_pat.ty = t; // `t` is `str`, not `&str`
self.fields[0] = &*cx.pattern_arena.alloc(new_pat);
IntRange(range) => write!(f, "{:?}", range), // Best-effort, will render e.g. `false` as `0..=0`
Wildcard | Missing { .. } | NonExhaustive => write!(f, "_"),
Or => {
for pat in self.iter_fields() {
write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
}
_ => {}
},
_ => {}
};
self
Ok(())
}
Str(value) => write!(f, "{}", value),
Opaque => write!(f, "<constant pattern>"),
}
}
}

View File

@ -284,17 +284,14 @@ use self::ArmType::*;
use self::Usefulness::*;
use super::check_match::{joined_uncovered_patterns, pattern_not_covered_label};
use super::deconstruct_pat::{Constructor, Fields, SplitWildcard};
use super::{PatternFoldable, PatternFolder};
use super::deconstruct_pat::{Constructor, DeconstructedPat, Fields, SplitWildcard};
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::FxHashMap;
use hir::def_id::DefId;
use hir::HirId;
use rustc_arena::TypedArena;
use rustc_hir as hir;
use rustc_middle::thir::{Pat, PatKind};
use rustc_hir::def_id::DefId;
use rustc_hir::HirId;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS;
use rustc_span::Span;
@ -302,9 +299,8 @@ use rustc_span::Span;
use smallvec::{smallvec, SmallVec};
use std::fmt;
use std::iter::IntoIterator;
use std::lazy::OnceCell;
crate struct MatchCheckCtxt<'a, 'tcx> {
crate struct MatchCheckCtxt<'p, 'tcx> {
crate tcx: TyCtxt<'tcx>,
/// The module in which the match occurs. This is necessary for
/// checking inhabited-ness of types because whether a type is (visibly)
@ -313,7 +309,7 @@ crate struct MatchCheckCtxt<'a, 'tcx> {
/// outside its module and should not be matchable with an empty match statement.
crate module: DefId,
crate param_env: ty::ParamEnv<'tcx>,
crate pattern_arena: &'a TypedArena<Pat<'tcx>>,
crate pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>,
}
impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
@ -356,64 +352,20 @@ impl<'a, 'p, 'tcx> fmt::Debug for PatCtxt<'a, 'p, 'tcx> {
}
}
crate fn expand_pattern<'tcx>(pat: Pat<'tcx>) -> Pat<'tcx> {
LiteralExpander.fold_pattern(&pat)
}
struct LiteralExpander;
impl<'tcx> PatternFolder<'tcx> for LiteralExpander {
fn fold_pattern(&mut self, pat: &Pat<'tcx>) -> Pat<'tcx> {
debug!("fold_pattern {:?} {:?} {:?}", pat, pat.ty.kind(), pat.kind);
match pat.kind.as_ref() {
PatKind::Binding { subpattern: Some(s), .. } => s.fold_with(self),
PatKind::AscribeUserType { subpattern: s, .. } => s.fold_with(self),
_ => pat.super_fold_with(self),
}
}
}
pub(super) fn is_wildcard(pat: &Pat<'_>) -> bool {
matches!(*pat.kind, PatKind::Binding { subpattern: None, .. } | PatKind::Wild)
}
fn is_or_pat(pat: &Pat<'_>) -> bool {
matches!(*pat.kind, PatKind::Or { .. })
}
/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> {
fn expand<'p, 'tcx>(pat: &'p Pat<'tcx>, vec: &mut Vec<&'p Pat<'tcx>>) {
if let PatKind::Or { pats } = pat.kind.as_ref() {
for pat in pats {
expand(pat, vec);
}
} else {
vec.push(pat)
}
}
let mut pats = Vec::new();
expand(pat, &mut pats);
pats
}
/// A row of a matrix. Rows of len 1 are very common, which is why `SmallVec[_; 2]`
/// works well.
#[derive(Clone)]
struct PatStack<'p, 'tcx> {
pats: SmallVec<[&'p Pat<'tcx>; 2]>,
/// Cache for the constructor of the head
head_ctor: OnceCell<Constructor<'tcx>>,
pats: SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]>,
}
impl<'p, 'tcx> PatStack<'p, 'tcx> {
fn from_pattern(pat: &'p Pat<'tcx>) -> Self {
fn from_pattern(pat: &'p DeconstructedPat<'p, 'tcx>) -> Self {
Self::from_vec(smallvec![pat])
}
fn from_vec(vec: SmallVec<[&'p Pat<'tcx>; 2]>) -> Self {
PatStack { pats: vec, head_ctor: OnceCell::new() }
fn from_vec(vec: SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]>) -> Self {
PatStack { pats: vec }
}
fn is_empty(&self) -> bool {
@ -424,30 +376,25 @@ impl<'p, 'tcx> PatStack<'p, 'tcx> {
self.pats.len()
}
fn head(&self) -> &'p Pat<'tcx> {
fn head(&self) -> &'p DeconstructedPat<'p, 'tcx> {
self.pats[0]
}
#[inline]
fn head_ctor<'a>(&'a self, cx: &MatchCheckCtxt<'p, 'tcx>) -> &'a Constructor<'tcx> {
self.head_ctor.get_or_init(|| Constructor::from_pat(cx, self.head()))
}
fn iter(&self) -> impl Iterator<Item = &Pat<'tcx>> {
fn iter(&self) -> impl Iterator<Item = &DeconstructedPat<'p, 'tcx>> {
self.pats.iter().copied()
}
// Recursively expand the first pattern into its subpatterns. Only useful if the pattern is an
// or-pattern. Panics if `self` is empty.
fn expand_or_pat<'a>(&'a self) -> impl Iterator<Item = PatStack<'p, 'tcx>> + Captures<'a> {
expand_or_pat(self.head()).into_iter().map(move |pat| {
self.head().iter_fields().map(move |pat| {
let mut new_patstack = PatStack::from_pattern(pat);
new_patstack.pats.extend_from_slice(&self.pats[1..]);
new_patstack
})
}
/// This computes `S(self.head_ctor(), self)`. See top of the file for explanations.
/// This computes `S(self.head().ctor(), self)`. See top of the file for explanations.
///
/// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
/// fields filled with wild patterns.
@ -456,45 +403,30 @@ impl<'p, 'tcx> PatStack<'p, 'tcx> {
fn pop_head_constructor(
&self,
cx: &MatchCheckCtxt<'p, 'tcx>,
ctor_wild_subpatterns: &Fields<'p, 'tcx>,
ctor: &Constructor<'tcx>,
) -> PatStack<'p, 'tcx> {
// We pop the head pattern and push the new fields extracted from the arguments of
// `self.head()`.
let mut new_fields: SmallVec<[_; 2]> = ctor_wild_subpatterns
.clone()
.extract_pattern_arguments(cx, self.head())
.iter_patterns()
.collect();
let mut new_fields: SmallVec<[_; 2]> =
self.head().specialize(cx, ctor).iter_patterns().collect();
new_fields.extend_from_slice(&self.pats[1..]);
PatStack::from_vec(new_fields)
}
}
impl<'p, 'tcx> Default for PatStack<'p, 'tcx> {
fn default() -> Self {
Self::from_vec(smallvec![])
}
}
impl<'p, 'tcx> PartialEq for PatStack<'p, 'tcx> {
fn eq(&self, other: &Self) -> bool {
self.pats == other.pats
}
}
/// Pretty-printing for matrix row.
impl<'p, 'tcx> fmt::Debug for PatStack<'p, 'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "+")?;
for pat in self.iter() {
write!(f, " {} +", pat)?;
write!(f, " {:?} +", pat)?;
}
Ok(())
}
}
/// A 2D matrix.
#[derive(Clone, PartialEq)]
#[derive(Clone)]
pub(super) struct Matrix<'p, 'tcx> {
patterns: Vec<PatStack<'p, 'tcx>>,
}
@ -512,7 +444,7 @@ impl<'p, 'tcx> Matrix<'p, 'tcx> {
/// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
/// expands it.
fn push(&mut self, row: PatStack<'p, 'tcx>) {
if !row.is_empty() && is_or_pat(row.head()) {
if !row.is_empty() && row.head().is_or_pat() {
for row in row.expand_or_pat() {
self.patterns.push(row);
}
@ -522,37 +454,22 @@ impl<'p, 'tcx> Matrix<'p, 'tcx> {
}
/// Iterate over the first component of each row
fn heads<'a>(&'a self) -> impl Iterator<Item = &'a Pat<'tcx>> + Captures<'p> {
fn heads<'a>(
&'a self,
) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Clone + Captures<'a> {
self.patterns.iter().map(|r| r.head())
}
/// Iterate over the first constructor of each row.
pub(super) fn head_ctors<'a>(
&'a self,
cx: &'a MatchCheckCtxt<'p, 'tcx>,
) -> impl Iterator<Item = &'a Constructor<'tcx>> + Captures<'p> + Clone {
self.patterns.iter().map(move |r| r.head_ctor(cx))
}
/// Iterate over the first constructor and the corresponding span of each row.
pub(super) fn head_ctors_and_spans<'a>(
&'a self,
cx: &'a MatchCheckCtxt<'p, 'tcx>,
) -> impl Iterator<Item = (&'a Constructor<'tcx>, Span)> + Captures<'p> {
self.patterns.iter().map(move |r| (r.head_ctor(cx), r.head().span))
}
/// This computes `S(constructor, self)`. See top of the file for explanations.
fn specialize_constructor(
&self,
pcx: PatCtxt<'_, 'p, 'tcx>,
ctor: &Constructor<'tcx>,
ctor_wild_subpatterns: &Fields<'p, 'tcx>,
) -> Matrix<'p, 'tcx> {
let mut matrix = Matrix::empty();
for row in &self.patterns {
if ctor.is_covered_by(pcx, row.head_ctor(pcx.cx)) {
let new_row = row.pop_head_constructor(pcx.cx, ctor_wild_subpatterns);
if ctor.is_covered_by(pcx, row.head().ctor()) {
let new_row = row.pop_head_constructor(pcx.cx, ctor);
matrix.push(new_row);
}
}
@ -575,7 +492,7 @@ impl<'p, 'tcx> fmt::Debug for Matrix<'p, 'tcx> {
let Matrix { patterns: m, .. } = self;
let pretty_printed_matrix: Vec<Vec<String>> =
m.iter().map(|row| row.iter().map(|pat| format!("{}", pat)).collect()).collect();
m.iter().map(|row| row.iter().map(|pat| format!("{:?}", pat)).collect()).collect();
let column_count = m.iter().map(|row| row.len()).next().unwrap_or(0);
assert!(m.iter().all(|row| row.len() == column_count));
@ -791,7 +708,7 @@ impl SubPatSet {
}
/// When `self` refers to a patstack that was obtained from splitting an or-pattern, after
/// running `unspecialize` it will refer to the original patstack before splitting.
/// running `unsplit_or_pat` it will refer to the original patstack before splitting.
///
/// For example:
/// ```
@ -839,7 +756,7 @@ impl SubPatSet {
/// witnesses of non-exhaustiveness when there are any.
/// Which variant to use is dictated by `ArmType`.
#[derive(Clone, Debug)]
enum Usefulness<'tcx> {
enum Usefulness<'p, 'tcx> {
/// Carries a set of subpatterns that have been found to be reachable. If empty, this indicates
/// the whole pattern is unreachable. If not, this indicates that the pattern is reachable but
/// that some sub-patterns may be unreachable (due to or-patterns). In the absence of
@ -848,10 +765,10 @@ enum Usefulness<'tcx> {
NoWitnesses(SubPatSet),
/// Carries a list of witnesses of non-exhaustiveness. If empty, indicates that the whole
/// pattern is unreachable.
WithWitnesses(Vec<Witness<'tcx>>),
WithWitnesses(Vec<Witness<'p, 'tcx>>),
}
impl<'tcx> Usefulness<'tcx> {
impl<'p, 'tcx> Usefulness<'p, 'tcx> {
fn new_useful(preference: ArmType) -> Self {
match preference {
FakeExtraWildcard => WithWitnesses(vec![Witness(vec![])]),
@ -896,12 +813,11 @@ impl<'tcx> Usefulness<'tcx> {
/// After calculating usefulness after a specialization, call this to reconstruct a usefulness
/// that makes sense for the matrix pre-specialization. This new usefulness can then be merged
/// with the results of specializing with the other constructors.
fn apply_constructor<'p>(
fn apply_constructor(
self,
pcx: PatCtxt<'_, 'p, 'tcx>,
matrix: &Matrix<'p, 'tcx>, // used to compute missing ctors
ctor: &Constructor<'tcx>,
ctor_wild_subpatterns: &Fields<'p, 'tcx>,
) -> Self {
match self {
WithWitnesses(witnesses) if witnesses.is_empty() => WithWitnesses(witnesses),
@ -912,23 +828,18 @@ impl<'tcx> Usefulness<'tcx> {
let new_patterns = if pcx.is_non_exhaustive {
// Here we don't want the user to try to list all variants, we want them to add
// a wildcard, so we only suggest that.
vec![
Fields::wildcards(pcx.cx, pcx.ty, &Constructor::NonExhaustive)
.apply(pcx, &Constructor::NonExhaustive),
]
vec![DeconstructedPat::wildcard(pcx.ty)]
} else {
let mut split_wildcard = SplitWildcard::new(pcx);
split_wildcard.split(pcx, matrix.head_ctors(pcx.cx));
split_wildcard.split(pcx, matrix.heads().map(DeconstructedPat::ctor));
// Construct for each missing constructor a "wild" version of this
// constructor, that matches everything that can be built with
// it. For example, if `ctor` is a `Constructor::Variant` for
// `Option::Some`, we get the pattern `Some(_)`.
split_wildcard
.iter_missing(pcx)
.map(|missing_ctor| {
Fields::wildcards(pcx.cx, pcx.ty, missing_ctor)
.apply(pcx, missing_ctor)
})
.cloned()
.map(|missing_ctor| DeconstructedPat::wild_from_ctor(pcx, missing_ctor))
.collect()
};
@ -945,12 +856,12 @@ impl<'tcx> Usefulness<'tcx> {
} else {
witnesses
.into_iter()
.map(|witness| witness.apply_constructor(pcx, &ctor, ctor_wild_subpatterns))
.map(|witness| witness.apply_constructor(pcx, &ctor))
.collect()
};
WithWitnesses(new_witnesses)
}
NoWitnesses(subpats) => NoWitnesses(subpats.unspecialize(ctor_wild_subpatterns.len())),
NoWitnesses(subpats) => NoWitnesses(subpats.unspecialize(ctor.arity(pcx))),
}
}
}
@ -995,11 +906,11 @@ enum ArmType {
///
/// The final `Pair(Some(_), true)` is then the resulting witness.
#[derive(Clone, Debug)]
crate struct Witness<'tcx>(Vec<Pat<'tcx>>);
crate struct Witness<'p, 'tcx>(Vec<DeconstructedPat<'p, 'tcx>>);
impl<'tcx> Witness<'tcx> {
impl<'p, 'tcx> Witness<'p, 'tcx> {
/// Asserts that the witness contains a single pattern, and returns it.
fn single_pattern(self) -> Pat<'tcx> {
fn single_pattern(self) -> DeconstructedPat<'p, 'tcx> {
assert_eq!(self.0.len(), 1);
self.0.into_iter().next().unwrap()
}
@ -1017,17 +928,13 @@ impl<'tcx> Witness<'tcx> {
///
/// left_ty: struct X { a: (bool, &'static str), b: usize}
/// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
fn apply_constructor<'p>(
mut self,
pcx: PatCtxt<'_, 'p, 'tcx>,
ctor: &Constructor<'tcx>,
ctor_wild_subpatterns: &Fields<'p, 'tcx>,
) -> Self {
fn apply_constructor(mut self, pcx: PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>) -> Self {
let pat = {
let len = self.0.len();
let arity = ctor_wild_subpatterns.len();
let arity = ctor.arity(pcx);
let pats = self.0.drain((len - arity)..).rev();
ctor_wild_subpatterns.clone().replace_fields(pcx.cx, pats).apply(pcx, ctor)
let fields = Fields::from_iter(pcx.cx, pats);
DeconstructedPat::new(ctor.clone(), fields, pcx.ty)
};
self.0.push(pat);
@ -1045,9 +952,9 @@ fn lint_non_exhaustive_omitted_patterns<'p, 'tcx>(
scrut_ty: Ty<'tcx>,
sp: Span,
hir_id: HirId,
witnesses: Vec<Pat<'tcx>>,
witnesses: Vec<DeconstructedPat<'p, 'tcx>>,
) {
let joined_patterns = joined_uncovered_patterns(&witnesses);
let joined_patterns = joined_uncovered_patterns(cx, &witnesses);
cx.tcx.struct_span_lint_hir(NON_EXHAUSTIVE_OMITTED_PATTERNS, hir_id, sp, |build| {
let mut lint = build.build("some variants are not matched explicitly");
lint.span_label(sp, pattern_not_covered_label(&witnesses, &joined_patterns));
@ -1096,7 +1003,7 @@ fn is_useful<'p, 'tcx>(
hir_id: HirId,
is_under_guard: bool,
is_top_level: bool,
) -> Usefulness<'tcx> {
) -> Usefulness<'p, 'tcx> {
debug!("matrix,v={:?}{:?}", matrix, v);
let Matrix { patterns: rows, .. } = matrix;
@ -1118,16 +1025,16 @@ fn is_useful<'p, 'tcx>(
assert!(rows.iter().all(|r| r.len() == v.len()));
// FIXME(Nadrieril): Hack to work around type normalization issues (see #72476).
let ty = matrix.heads().next().map_or(v.head().ty, |r| r.ty);
let ty = matrix.heads().next().map_or(v.head().ty(), |r| r.ty());
let is_non_exhaustive = cx.is_foreign_non_exhaustive_enum(ty);
let pcx = PatCtxt { cx, ty, span: v.head().span, is_top_level, is_non_exhaustive };
let pcx = PatCtxt { cx, ty, span: v.head().span(), is_top_level, is_non_exhaustive };
// If the first pattern is an or-pattern, expand it.
let mut ret = Usefulness::new_not_useful(witness_preference);
if is_or_pat(v.head()) {
if v.head().is_or_pat() {
debug!("expanding or-pattern");
let spans: Vec<_> = v.head().iter_fields().map(|pat| pat.span()).collect();
let vs: Vec<_> = v.expand_or_pat().collect();
let spans: Vec<_> = vs.iter().map(|pat| pat.head().span).collect();
// We try each or-pattern branch in turn.
let mut matrix = matrix.clone();
for (i, v) in vs.into_iter().enumerate() {
@ -1143,18 +1050,18 @@ fn is_useful<'p, 'tcx>(
}
}
} else {
let v_ctor = v.head_ctor(cx);
let v_ctor = v.head().ctor();
if let Constructor::IntRange(ctor_range) = &v_ctor {
// Lint on likely incorrect range patterns (#63987)
ctor_range.lint_overlapping_range_endpoints(
pcx,
matrix.head_ctors_and_spans(cx),
matrix.heads(),
matrix.column_count().unwrap_or(0),
hir_id,
)
}
// We split the head constructor of `v`.
let split_ctors = v_ctor.split(pcx, matrix.head_ctors(cx));
let split_ctors = v_ctor.split(pcx, matrix.heads().map(DeconstructedPat::ctor));
let is_non_exhaustive_and_wild = is_non_exhaustive && v_ctor.is_wildcard();
// For each constructor, we compute whether there's a value that starts with it that would
// witness the usefulness of `v`.
@ -1162,14 +1069,11 @@ fn is_useful<'p, 'tcx>(
for ctor in split_ctors {
debug!("specialize({:?})", ctor);
// We cache the result of `Fields::wildcards` because it is used a lot.
let ctor_wild_subpatterns = Fields::wildcards(pcx.cx, pcx.ty, &ctor);
let spec_matrix =
start_matrix.specialize_constructor(pcx, &ctor, &ctor_wild_subpatterns);
let v = v.pop_head_constructor(cx, &ctor_wild_subpatterns);
let spec_matrix = start_matrix.specialize_constructor(pcx, &ctor);
let v = v.pop_head_constructor(cx, &ctor);
let usefulness =
is_useful(cx, &spec_matrix, &v, witness_preference, hir_id, is_under_guard, false);
let usefulness =
usefulness.apply_constructor(pcx, start_matrix, &ctor, &ctor_wild_subpatterns);
let usefulness = usefulness.apply_constructor(pcx, start_matrix, &ctor);
// When all the conditions are met we have a match with a `non_exhaustive` enum
// that has the potential to trigger the `non_exhaustive_omitted_patterns` lint.
@ -1186,19 +1090,18 @@ fn is_useful<'p, 'tcx>(
{
let patterns = {
let mut split_wildcard = SplitWildcard::new(pcx);
split_wildcard.split(pcx, matrix.head_ctors(pcx.cx));
split_wildcard.split(pcx, matrix.heads().map(DeconstructedPat::ctor));
// Construct for each missing constructor a "wild" version of this
// constructor, that matches everything that can be built with
// it. For example, if `ctor` is a `Constructor::Variant` for
// `Option::Some`, we get the pattern `Some(_)`.
split_wildcard
.iter_missing(pcx)
// Filter out the `Constructor::NonExhaustive` variant it's meaningless
// to our lint
// Filter out the `NonExhaustive` because we want to list only real
// variants.
.filter(|c| !c.is_non_exhaustive())
.map(|missing_ctor| {
Fields::wildcards(pcx.cx, pcx.ty, missing_ctor).apply(pcx, missing_ctor)
})
.cloned()
.map(|missing_ctor| DeconstructedPat::wild_from_ctor(pcx, missing_ctor))
.collect::<Vec<_>>()
};
@ -1217,7 +1120,7 @@ fn is_useful<'p, 'tcx>(
#[derive(Clone, Copy)]
crate struct MatchArm<'p, 'tcx> {
/// The pattern must have been lowered through `check_match::MatchVisitor::lower_pattern`.
crate pat: &'p Pat<'tcx>,
crate pat: &'p DeconstructedPat<'p, 'tcx>,
crate hir_id: HirId,
crate has_guard: bool,
}
@ -1239,7 +1142,7 @@ crate struct UsefulnessReport<'p, 'tcx> {
crate arm_usefulness: Vec<(MatchArm<'p, 'tcx>, Reachability)>,
/// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
/// exhaustiveness.
crate non_exhaustiveness_witnesses: Vec<Pat<'tcx>>,
crate non_exhaustiveness_witnesses: Vec<DeconstructedPat<'p, 'tcx>>,
}
/// The entrypoint for the usefulness algorithm. Computes whether a match is exhaustive and which
@ -1274,7 +1177,7 @@ crate fn compute_match_usefulness<'p, 'tcx>(
})
.collect();
let wild_pattern = cx.pattern_arena.alloc(Pat::wildcard_from_ty(scrut_ty));
let wild_pattern = cx.pattern_arena.alloc(DeconstructedPat::wildcard(scrut_ty));
let v = PatStack::from_pattern(wild_pattern);
let usefulness = is_useful(cx, &matrix, &v, FakeExtraWildcard, scrut_hir_id, false, true);
let non_exhaustiveness_witnesses = match usefulness {

View File

@ -7,8 +7,11 @@ LL | FOO => {},
error: unreachable pattern
--> $DIR/issue-78057.rs:14:9
|
LL | FOO => {},
| --- matches any value
LL |
LL | _ => {}
| ^
| ^ unreachable pattern
|
note: the lint level is defined here
--> $DIR/issue-78057.rs:1:9

View File

@ -7,8 +7,11 @@ LL | FOO => {}
error: unreachable pattern
--> $DIR/consts-opaque.rs:32:9
|
LL | FOO => {}
| --- matches any value
LL |
LL | _ => {} // should not be emitting unreachable warning
| ^
| ^ unreachable pattern
|
note: the lint level is defined here
--> $DIR/consts-opaque.rs:6:9
@ -25,8 +28,11 @@ LL | FOO_REF => {}
error: unreachable pattern
--> $DIR/consts-opaque.rs:39:9
|
LL | FOO_REF => {}
| ------- matches any value
LL |
LL | Foo(_) => {} // should not be emitting unreachable warning
| ^^^^^^
| ^^^^^^ unreachable pattern
warning: to use a constant of type `Foo` in a pattern, `Foo` must be annotated with `#[derive(PartialEq, Eq)]`
--> $DIR/consts-opaque.rs:45:9
@ -70,15 +76,18 @@ LL | BAR => {}
error: unreachable pattern
--> $DIR/consts-opaque.rs:63:9
|
LL | BAR => {}
| --- matches any value
LL |
LL | Bar => {} // should not be emitting unreachable warning
| ^^^
| ^^^ unreachable pattern
error: unreachable pattern
--> $DIR/consts-opaque.rs:65:9
|
LL | Bar => {} // should not be emitting unreachable warning
LL | BAR => {}
| --- matches any value
LL |
...
LL | _ => {}
| ^ unreachable pattern
@ -97,14 +106,20 @@ LL | BAR => {} // should not be emitting unreachable warning
error: unreachable pattern
--> $DIR/consts-opaque.rs:72:9
|
LL | BAR => {}
| --- matches any value
LL |
LL | BAR => {} // should not be emitting unreachable warning
| ^^^
| ^^^ unreachable pattern
error: unreachable pattern
--> $DIR/consts-opaque.rs:75:9
|
LL | BAR => {}
| --- matches any value
...
LL | _ => {} // should not be emitting unreachable warning
| ^
| ^ unreachable pattern
error: to use a constant of type `Baz` in a pattern, `Baz` must be annotated with `#[derive(PartialEq, Eq)]`
--> $DIR/consts-opaque.rs:80:9
@ -115,14 +130,20 @@ LL | BAZ => {}
error: unreachable pattern
--> $DIR/consts-opaque.rs:82:9
|
LL | BAZ => {}
| --- matches any value
LL |
LL | Baz::Baz1 => {} // should not be emitting unreachable warning
| ^^^^^^^^^
| ^^^^^^^^^ unreachable pattern
error: unreachable pattern
--> $DIR/consts-opaque.rs:84:9
|
LL | BAZ => {}
| --- matches any value
...
LL | _ => {}
| ^
| ^ unreachable pattern
error: to use a constant of type `Baz` in a pattern, `Baz` must be annotated with `#[derive(PartialEq, Eq)]`
--> $DIR/consts-opaque.rs:90:9
@ -133,8 +154,11 @@ LL | BAZ => {}
error: unreachable pattern
--> $DIR/consts-opaque.rs:92:9
|
LL | BAZ => {}
| --- matches any value
LL |
LL | _ => {}
| ^
| ^ unreachable pattern
error: to use a constant of type `Baz` in a pattern, `Baz` must be annotated with `#[derive(PartialEq, Eq)]`
--> $DIR/consts-opaque.rs:97:9
@ -145,20 +169,28 @@ LL | BAZ => {}
error: unreachable pattern
--> $DIR/consts-opaque.rs:99:9
|
LL | BAZ => {}
| --- matches any value
LL |
LL | Baz::Baz2 => {} // should not be emitting unreachable warning
| ^^^^^^^^^
| ^^^^^^^^^ unreachable pattern
error: unreachable pattern
--> $DIR/consts-opaque.rs:101:9
|
LL | BAZ => {}
| --- matches any value
...
LL | _ => {} // should not be emitting unreachable warning
| ^
| ^ unreachable pattern
error: unreachable pattern
--> $DIR/consts-opaque.rs:127:9
|
LL | Wrap(_) => {}
| ------- matches any value
LL | WRAPQUUX => {} // detected unreachable because we do inspect the `Wrap` layer
| ^^^^^^^^
| ^^^^^^^^ unreachable pattern
error: unreachable pattern
--> $DIR/consts-opaque.rs:141:9

View File

@ -133,8 +133,10 @@ LL | 5..15 => {},
error: unreachable pattern
--> $DIR/reachability.rs:83:9
|
LL | _ => {},
| - matches any value
LL | '\u{D7FF}'..='\u{E000}' => {},
| ^^^^^^^^^^^^^^^^^^^^^^^
| ^^^^^^^^^^^^^^^^^^^^^^^ unreachable pattern
error: unreachable pattern
--> $DIR/reachability.rs:104:9