compared output and the build log and python2 is not required
both build
'pkgsCross.aarch64-android.linuxHeaders'
'pkgsCross.aarch64-android.bionic.linuxHeaders'
linux-headers> LEX scripts/kconfig/lexer.lex.c
linux-headers> sh: line 1: flex: command not found
linux-headers> YACC scripts/kconfig/parser.tab.[ch]
linux-headers> sh: line 1: bison: command not found
linux-headers> INSTALL ./usr/include
linux-headers> sh: line 1: rsync: command not found
Co-authored-by: exarkun <exarkun@twistedmatrix.com>
mips tools require endian headers which are different on darwin.
Add stub headers to define the appropriate byte swap functions.
Co-authored-by: Adam Joseph <54836058+amjoseph-nixpkgs@users.noreply.github.com>
Without it openiscsi build fails in staging-next as:
../../include/iscsi_proto.h:550:9: error: unknown type name 'itt_t'
550 | itt_t itt; /* Initiator Task Tag */
| ^~~~~
Very confusingly, the `isPowerPC` predicate in
`lib/systems/inspect.nix` does *not* match `powerpc64le`!
This is because `isPowerPC` is defined as
isPowerPC = { cpu = cpuTypes.powerpc; };
Where `cpuTypes.powerpc` is:
{ bits = 32; significantByte = bigEndian; family = "power"; };
This means that the `isPowerPC` predicate actually only matches the
subset of machines marketed under this name which happen to be 32-bit
and running in big-endian mode which is equivalent to:
with stdenv.hostPlatform; isPower && isBigEndian && is32bit
This seems like a sharp edge that people could easily cut themselves
on. In fact, that has already happened: in
`linux/kernel/common-config.nix` there is a test which will always
fail:
(stdenv.hostPlatform.isPowerPC && stdenv.hostPlatform.is64bit)
A more subtle case of the strict isPowerPC being used instead of the
moreg general isPower accidentally are the GHC expressions:
Update pkgs/development/compilers/ghc/8.10.7.nix
Update pkgs/development/compilers/ghc/8.8.4.nix
Update pkgs/development/compilers/ghc/9.2.2.nix
Update pkgs/development/compilers/ghc/9.0.2.nix
Update pkgs/development/compilers/ghc/head.nix
Since the remaining legitimate use sites of isPowerPC are so few, remove
the isPowerPC predicate completely. The alternative expression above is
noted in the release notes as an alternative.
Co-authored-by: sternenseemann <sternenseemann@systemli.org>
This PR adds a new aarch64 android toolchain, which leverages the
existing crossSystem infrastructure and LLVM builders to generate a
working toolchain with minimal prebuilt components.
The only thing that is prebuilt is the bionic libc. This is because it
is practically impossible to compile bionic outside of an AOSP tree. I
tried and failed, braver souls may prevail. For now I just grab the
relevant binaries from https://android.googlesource.com/.
I also grab the msm kernel sources from there to generate headers. I've
included a minor patch to the existing kernel-headers derivation in
order to expose an internal function.
Everything else, from binutils up, is using stock code. Many thanks to
@Ericson2314 for his help on this, and for building such a powerful
system in the first place!
One motivation for this is to be able to build a toolchain which will
work on an aarch64 linux machine. To my knowledge, there is no existing
toolchain for an aarch64-linux builder and an aarch64-android target.
The `platform` field is pointless nesting: it's just stuff that happens
to be defined together, and that should be an implementation detail.
This instead makes `linux-kernel` and `gcc` top level fields in platform
configs. They join `rustc` there [all are optional], which was put there
and not in `platform` in anticipation of a change like this.
`linux-kernel.arch` in particular also becomes `linuxArch`, to match the
other `*Arch`es.
The next step after is this to combine the *specific* machines from
`lib.systems.platforms` with `lib.systems.examples`, keeping just the
"multiplatform" ones for defaulting.
I hate the thing too even though I made it, and rather just get rid of
it. But we can't do that yet. In the meantime, this brings us more
inline with autoconf and will make it slightly easier for me to write a
pkg-config wrapper, which we need.
While it is easy to make a custom kernel by applying kernelPatches it is
not so easy to get the corresponding headers; the derivation uses a
hard-coded kernel version.
This makes us less reliant on the systems/examples.nix. You should be
able to cross compile with just your triple:
$ nix build --arg crossSystem '{ config = "armv6l-unknown-linux-gnueabi"; }' stdenv