wlroots/render/vulkan/pass.c
Kenny Levinsen bf67eb342b render/vulkan: vkMapMemory stage spans up front
We always need these mapped for CPU access, so map it up front instead
of duplicating lazy mapping at each site of use.
2024-06-26 21:10:46 +00:00

1027 lines
33 KiB
C

#include <assert.h>
#include <drm_fourcc.h>
#include <stdlib.h>
#include <wlr/util/log.h>
#include <wlr/render/color.h>
#include "render/color.h"
#include "render/vulkan.h"
#include "types/wlr_matrix.h"
static const struct wlr_render_pass_impl render_pass_impl;
static const struct wlr_addon_interface vk_color_transform_impl;
static struct wlr_vk_render_pass *get_render_pass(struct wlr_render_pass *wlr_pass) {
assert(wlr_pass->impl == &render_pass_impl);
struct wlr_vk_render_pass *pass = wl_container_of(wlr_pass, pass, base);
return pass;
}
static struct wlr_vk_color_transform *get_color_transform(
struct wlr_color_transform *c, struct wlr_vk_renderer *renderer) {
struct wlr_addon *a = wlr_addon_find(&c->addons, renderer, &vk_color_transform_impl);
if (!a) {
return NULL;
}
struct wlr_vk_color_transform *transform = wl_container_of(a, transform, addon);
return transform;
}
static void bind_pipeline(struct wlr_vk_render_pass *pass, VkPipeline pipeline) {
if (pipeline == pass->bound_pipeline) {
return;
}
vkCmdBindPipeline(pass->command_buffer->vk, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
pass->bound_pipeline = pipeline;
}
static void get_clip_region(struct wlr_vk_render_pass *pass,
const pixman_region32_t *in, pixman_region32_t *out) {
if (in != NULL) {
pixman_region32_init(out);
pixman_region32_copy(out, in);
} else {
struct wlr_buffer *buffer = pass->render_buffer->wlr_buffer;
pixman_region32_init_rect(out, 0, 0, buffer->width, buffer->height);
}
}
static void convert_pixman_box_to_vk_rect(const pixman_box32_t *box, VkRect2D *rect) {
*rect = (VkRect2D){
.offset = { .x = box->x1, .y = box->y1 },
.extent = { .width = box->x2 - box->x1, .height = box->y2 - box->y1 },
};
}
static float color_to_linear(float non_linear) {
// See https://www.w3.org/Graphics/Color/srgb
return (non_linear > 0.04045) ?
pow((non_linear + 0.055) / 1.055, 2.4) :
non_linear / 12.92;
}
static float color_to_linear_premult(float non_linear, float alpha) {
return (alpha == 0) ? 0 : color_to_linear(non_linear / alpha) * alpha;
}
static void mat3_to_mat4(const float mat3[9], float mat4[4][4]) {
memset(mat4, 0, sizeof(float) * 16);
mat4[0][0] = mat3[0];
mat4[0][1] = mat3[1];
mat4[0][3] = mat3[2];
mat4[1][0] = mat3[3];
mat4[1][1] = mat3[4];
mat4[1][3] = mat3[5];
mat4[2][2] = 1.f;
mat4[3][3] = 1.f;
}
static bool render_pass_submit(struct wlr_render_pass *wlr_pass) {
struct wlr_vk_render_pass *pass = get_render_pass(wlr_pass);
struct wlr_vk_renderer *renderer = pass->renderer;
struct wlr_vk_command_buffer *render_cb = pass->command_buffer;
struct wlr_vk_render_buffer *render_buffer = pass->render_buffer;
struct wlr_vk_command_buffer *stage_cb = NULL;
VkSemaphoreSubmitInfoKHR *render_wait = NULL;
bool device_lost = false;
if (pass->failed) {
goto error;
}
if (vulkan_record_stage_cb(renderer) == VK_NULL_HANDLE) {
goto error;
}
stage_cb = renderer->stage.cb;
assert(stage_cb != NULL);
renderer->stage.cb = NULL;
if (!pass->srgb_pathway) {
// Apply output shader to map blend image to actual output image
vkCmdNextSubpass(render_cb->vk, VK_SUBPASS_CONTENTS_INLINE);
int width = pass->render_buffer->wlr_buffer->width;
int height = pass->render_buffer->wlr_buffer->height;
float final_matrix[9] = {
width, 0, -1,
0, height, -1,
0, 0, 0,
};
struct wlr_vk_vert_pcr_data vert_pcr_data = {
.uv_off = { 0, 0 },
.uv_size = { 1, 1 },
};
size_t dim = pass->color_transform ? pass->color_transform->lut3d.dim_len : 1;
struct wlr_vk_frag_output_pcr_data frag_pcr_data = {
.lut_3d_offset = 0.5f / dim,
.lut_3d_scale = (float)(dim - 1) / dim,
};
mat3_to_mat4(final_matrix, vert_pcr_data.mat4);
if (pass->color_transform) {
bind_pipeline(pass, render_buffer->plain.render_setup->output_pipe_lut3d);
} else {
bind_pipeline(pass, render_buffer->plain.render_setup->output_pipe_srgb);
}
vkCmdPushConstants(render_cb->vk, renderer->output_pipe_layout,
VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(vert_pcr_data), &vert_pcr_data);
vkCmdPushConstants(render_cb->vk, renderer->output_pipe_layout,
VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(vert_pcr_data),
sizeof(frag_pcr_data), &frag_pcr_data);
VkDescriptorSet lut_ds;
if (pass->color_transform && pass->color_transform->type == COLOR_TRANSFORM_LUT_3D) {
struct wlr_vk_color_transform *transform =
get_color_transform(pass->color_transform, renderer);
assert(transform);
lut_ds = transform->lut_3d.ds;
} else {
lut_ds = renderer->output_ds_lut3d_dummy;
}
VkDescriptorSet ds[] = {
render_buffer->plain.blend_descriptor_set, // set 0
lut_ds, // set 1
};
size_t ds_len = sizeof(ds) / sizeof(ds[0]);
vkCmdBindDescriptorSets(render_cb->vk,
VK_PIPELINE_BIND_POINT_GRAPHICS, renderer->output_pipe_layout,
0, ds_len, ds, 0, NULL);
const pixman_region32_t *clip = rect_union_evaluate(&pass->updated_region);
int clip_rects_len;
const pixman_box32_t *clip_rects = pixman_region32_rectangles(
clip, &clip_rects_len);
for (int i = 0; i < clip_rects_len; i++) {
VkRect2D rect;
convert_pixman_box_to_vk_rect(&clip_rects[i], &rect);
vkCmdSetScissor(render_cb->vk, 0, 1, &rect);
vkCmdDraw(render_cb->vk, 4, 1, 0, 0);
}
}
vkCmdEndRenderPass(render_cb->vk);
// insert acquire and release barriers for dmabuf-images
uint32_t barrier_count = wl_list_length(&renderer->foreign_textures) + 1;
render_wait = calloc(barrier_count * WLR_DMABUF_MAX_PLANES, sizeof(*render_wait));
if (render_wait == NULL) {
wlr_log_errno(WLR_ERROR, "Allocation failed");
goto error;
}
VkImageMemoryBarrier *acquire_barriers = calloc(barrier_count, sizeof(*acquire_barriers));
VkImageMemoryBarrier *release_barriers = calloc(barrier_count, sizeof(*release_barriers));
if (acquire_barriers == NULL || release_barriers == NULL) {
wlr_log_errno(WLR_ERROR, "Allocation failed");
free(acquire_barriers);
free(release_barriers);
goto error;
}
struct wlr_vk_texture *texture, *tmp_tex;
size_t idx = 0;
uint32_t render_wait_len = 0;
wl_list_for_each_safe(texture, tmp_tex, &renderer->foreign_textures, foreign_link) {
if (!texture->transitioned) {
texture->transitioned = true;
}
// acquire
acquire_barriers[idx] = (VkImageMemoryBarrier){
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT,
.dstQueueFamilyIndex = renderer->dev->queue_family,
.image = texture->image,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
.srcAccessMask = 0, // ignored anyways
.dstAccessMask = VK_ACCESS_SHADER_READ_BIT,
.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.subresourceRange.layerCount = 1,
.subresourceRange.levelCount = 1,
};
// release
release_barriers[idx] = (VkImageMemoryBarrier){
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.srcQueueFamilyIndex = renderer->dev->queue_family,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT,
.image = texture->image,
.oldLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.srcAccessMask = VK_ACCESS_SHADER_READ_BIT,
.dstAccessMask = 0, // ignored anyways
.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.subresourceRange.layerCount = 1,
.subresourceRange.levelCount = 1,
};
++idx;
if (!vulkan_sync_foreign_texture(texture)) {
wlr_log(WLR_ERROR, "Failed to wait for foreign texture DMA-BUF fence");
} else {
for (size_t i = 0; i < WLR_DMABUF_MAX_PLANES; i++) {
if (texture->foreign_semaphores[i] != VK_NULL_HANDLE) {
assert(render_wait_len < barrier_count * WLR_DMABUF_MAX_PLANES);
render_wait[render_wait_len++] = (VkSemaphoreSubmitInfoKHR){
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO_KHR,
.semaphore = texture->foreign_semaphores[i],
.stageMask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT_KHR,
};
}
}
}
wl_list_remove(&texture->foreign_link);
texture->owned = false;
}
// also add acquire/release barriers for the current render buffer
VkImageLayout src_layout = VK_IMAGE_LAYOUT_GENERAL;
if (pass->srgb_pathway) {
if (!render_buffer->srgb.transitioned) {
src_layout = VK_IMAGE_LAYOUT_PREINITIALIZED;
render_buffer->srgb.transitioned = true;
}
} else {
if (!render_buffer->plain.transitioned) {
src_layout = VK_IMAGE_LAYOUT_PREINITIALIZED;
render_buffer->plain.transitioned = true;
}
// The render pass changes the blend image layout from
// color attachment to read only, so on each frame, before
// the render pass starts, we change it back
VkImageLayout blend_src_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
if (!render_buffer->plain.blend_transitioned) {
blend_src_layout = VK_IMAGE_LAYOUT_UNDEFINED;
render_buffer->plain.blend_transitioned = true;
}
VkImageMemoryBarrier blend_acq_barrier = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = render_buffer->plain.blend_image,
.oldLayout = blend_src_layout,
.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
.srcAccessMask = VK_ACCESS_SHADER_READ_BIT,
.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.layerCount = 1,
.levelCount = 1,
},
};
vkCmdPipelineBarrier(stage_cb->vk, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
0, 0, NULL, 0, NULL, 1, &blend_acq_barrier);
}
// acquire render buffer before rendering
acquire_barriers[idx] = (VkImageMemoryBarrier){
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT,
.dstQueueFamilyIndex = renderer->dev->queue_family,
.image = render_buffer->image,
.oldLayout = src_layout,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.srcAccessMask = 0, // ignored anyways
.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.subresourceRange.layerCount = 1,
.subresourceRange.levelCount = 1,
};
// release render buffer after rendering
release_barriers[idx] = (VkImageMemoryBarrier){
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.srcQueueFamilyIndex = renderer->dev->queue_family,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT,
.image = render_buffer->image,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
.dstAccessMask = 0, // ignored anyways
.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.subresourceRange.layerCount = 1,
.subresourceRange.levelCount = 1,
};
++idx;
vkCmdPipelineBarrier(stage_cb->vk, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
0, 0, NULL, 0, NULL, barrier_count, acquire_barriers);
vkCmdPipelineBarrier(render_cb->vk, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, NULL, 0, NULL,
barrier_count, release_barriers);
free(acquire_barriers);
free(release_barriers);
// No semaphores needed here.
// We don't need a semaphore from the stage/transfer submission
// to the render submissions since they are on the same queue
// and we have a renderpass dependency for that.
uint64_t stage_timeline_point = vulkan_end_command_buffer(stage_cb, renderer);
if (stage_timeline_point == 0) {
goto error;
}
VkCommandBufferSubmitInfoKHR stage_cb_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO_KHR,
.commandBuffer = stage_cb->vk,
};
VkSemaphoreSubmitInfoKHR stage_signal = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO_KHR,
.semaphore = renderer->timeline_semaphore,
.value = stage_timeline_point,
};
VkSubmitInfo2KHR stage_submit = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO_2_KHR,
.commandBufferInfoCount = 1,
.pCommandBufferInfos = &stage_cb_info,
.signalSemaphoreInfoCount = 1,
.pSignalSemaphoreInfos = &stage_signal,
};
VkSemaphoreSubmitInfoKHR stage_wait;
if (renderer->stage.last_timeline_point > 0) {
stage_wait = (VkSemaphoreSubmitInfoKHR){
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO_KHR,
.semaphore = renderer->timeline_semaphore,
.value = renderer->stage.last_timeline_point,
.stageMask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT_KHR,
};
stage_submit.waitSemaphoreInfoCount = 1;
stage_submit.pWaitSemaphoreInfos = &stage_wait;
}
renderer->stage.last_timeline_point = stage_timeline_point;
uint64_t render_timeline_point = vulkan_end_command_buffer(render_cb, renderer);
if (render_timeline_point == 0) {
goto error;
}
uint32_t render_signal_len = 1;
VkSemaphoreSubmitInfoKHR render_signal[2] = {0};
render_signal[0] = (VkSemaphoreSubmitInfoKHR){
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO_KHR,
.semaphore = renderer->timeline_semaphore,
.value = render_timeline_point,
};
if (renderer->dev->implicit_sync_interop) {
if (render_cb->binary_semaphore == VK_NULL_HANDLE) {
VkExportSemaphoreCreateInfo export_info = {
.sType = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO,
.handleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT,
};
VkSemaphoreCreateInfo semaphore_info = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
.pNext = &export_info,
};
VkResult res = vkCreateSemaphore(renderer->dev->dev, &semaphore_info,
NULL, &render_cb->binary_semaphore);
if (res != VK_SUCCESS) {
wlr_vk_error("vkCreateSemaphore", res);
goto error;
}
}
render_signal[render_signal_len++] = (VkSemaphoreSubmitInfoKHR){
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO_KHR,
.semaphore = render_cb->binary_semaphore,
};
}
VkCommandBufferSubmitInfoKHR render_cb_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO_KHR,
.commandBuffer = render_cb->vk,
};
VkSubmitInfo2KHR render_submit = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO_2_KHR,
.waitSemaphoreInfoCount = render_wait_len,
.pWaitSemaphoreInfos = render_wait,
.commandBufferInfoCount = 1,
.pCommandBufferInfos = &render_cb_info,
.signalSemaphoreInfoCount = render_signal_len,
.pSignalSemaphoreInfos = render_signal,
};
VkSubmitInfo2KHR submit_info[] = { stage_submit, render_submit };
VkResult res = renderer->dev->api.vkQueueSubmit2KHR(renderer->dev->queue, 2, submit_info, VK_NULL_HANDLE);
if (res != VK_SUCCESS) {
device_lost = res == VK_ERROR_DEVICE_LOST;
wlr_vk_error("vkQueueSubmit", res);
goto error;
}
free(render_wait);
struct wlr_vk_shared_buffer *stage_buf, *stage_buf_tmp;
wl_list_for_each_safe(stage_buf, stage_buf_tmp, &renderer->stage.buffers, link) {
if (stage_buf->allocs.size == 0) {
continue;
}
wl_list_remove(&stage_buf->link);
wl_list_insert(&stage_cb->stage_buffers, &stage_buf->link);
}
if (!vulkan_sync_render_buffer(renderer, render_buffer, render_cb)) {
wlr_log(WLR_ERROR, "Failed to sync render buffer");
}
wlr_color_transform_unref(pass->color_transform);
wlr_buffer_unlock(render_buffer->wlr_buffer);
rect_union_finish(&pass->updated_region);
free(pass);
return true;
error:
free(render_wait);
vulkan_reset_command_buffer(stage_cb);
vulkan_reset_command_buffer(render_cb);
wlr_buffer_unlock(render_buffer->wlr_buffer);
rect_union_finish(&pass->updated_region);
free(pass);
if (device_lost) {
wl_signal_emit_mutable(&renderer->wlr_renderer.events.lost, NULL);
}
return false;
}
static void render_pass_mark_box_updated(struct wlr_vk_render_pass *pass,
const struct wlr_box *box) {
if (pass->srgb_pathway) {
return;
}
pixman_box32_t pixman_box = {
.x1 = box->x,
.x2 = box->x + box->width,
.y1 = box->y,
.y2 = box->y + box->height,
};
rect_union_add(&pass->updated_region, pixman_box);
}
static void render_pass_add_rect(struct wlr_render_pass *wlr_pass,
const struct wlr_render_rect_options *options) {
struct wlr_vk_render_pass *pass = get_render_pass(wlr_pass);
VkCommandBuffer cb = pass->command_buffer->vk;
// Input color values are given in sRGB space, shader expects
// them in linear space. The shader does all computation in linear
// space and expects in inputs in linear space since it outputs
// colors in linear space as well (and vulkan then automatically
// does the conversion for out sRGB render targets).
float linear_color[] = {
color_to_linear_premult(options->color.r, options->color.a),
color_to_linear_premult(options->color.g, options->color.a),
color_to_linear_premult(options->color.b, options->color.a),
options->color.a, // no conversion for alpha
};
pixman_region32_t clip;
get_clip_region(pass, options->clip, &clip);
int clip_rects_len;
const pixman_box32_t *clip_rects = pixman_region32_rectangles(&clip, &clip_rects_len);
// Record regions possibly updated for use in second subpass
for (int i = 0; i < clip_rects_len; i++) {
struct wlr_box clip_box = {
.x = clip_rects[i].x1,
.y = clip_rects[i].y1,
.width = clip_rects[i].x2 - clip_rects[i].x1,
.height = clip_rects[i].y2 - clip_rects[i].y1,
};
struct wlr_box intersection;
if (!wlr_box_intersection(&intersection, &options->box, &clip_box)) {
continue;
}
render_pass_mark_box_updated(pass, &intersection);
}
struct wlr_box box;
wlr_render_rect_options_get_box(options, pass->render_buffer->wlr_buffer, &box);
switch (options->blend_mode) {
case WLR_RENDER_BLEND_MODE_PREMULTIPLIED:;
float proj[9], matrix[9];
wlr_matrix_identity(proj);
wlr_matrix_project_box(matrix, &box, WL_OUTPUT_TRANSFORM_NORMAL, 0, proj);
wlr_matrix_multiply(matrix, pass->projection, matrix);
struct wlr_vk_render_format_setup *setup = pass->srgb_pathway ?
pass->render_buffer->srgb.render_setup :
pass->render_buffer->plain.render_setup;
struct wlr_vk_pipeline *pipe = setup_get_or_create_pipeline(
setup,
&(struct wlr_vk_pipeline_key) {
.source = WLR_VK_SHADER_SOURCE_SINGLE_COLOR,
.layout = { .ycbcr_format = NULL },
});
if (!pipe) {
pass->failed = true;
break;
}
struct wlr_vk_vert_pcr_data vert_pcr_data = {
.uv_off = { 0, 0 },
.uv_size = { 1, 1 },
};
mat3_to_mat4(matrix, vert_pcr_data.mat4);
bind_pipeline(pass, pipe->vk);
vkCmdPushConstants(cb, pipe->layout->vk,
VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(vert_pcr_data), &vert_pcr_data);
vkCmdPushConstants(cb, pipe->layout->vk,
VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(vert_pcr_data), sizeof(float) * 4,
linear_color);
for (int i = 0; i < clip_rects_len; i++) {
VkRect2D rect;
convert_pixman_box_to_vk_rect(&clip_rects[i], &rect);
vkCmdSetScissor(cb, 0, 1, &rect);
vkCmdDraw(cb, 4, 1, 0, 0);
}
break;
case WLR_RENDER_BLEND_MODE_NONE:;
VkClearAttachment clear_att = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.colorAttachment = 0,
.clearValue.color.float32 = {
linear_color[0],
linear_color[1],
linear_color[2],
linear_color[3],
},
};
VkClearRect clear_rect = {
.rect = {
.offset = { box.x, box.y },
.extent = { box.width, box.height },
},
.layerCount = 1,
};
for (int i = 0; i < clip_rects_len; i++) {
VkRect2D rect;
convert_pixman_box_to_vk_rect(&clip_rects[i], &rect);
vkCmdSetScissor(cb, 0, 1, &rect);
vkCmdClearAttachments(cb, 1, &clear_att, 1, &clear_rect);
}
break;
}
pixman_region32_fini(&clip);
}
static void render_pass_add_texture(struct wlr_render_pass *wlr_pass,
const struct wlr_render_texture_options *options) {
struct wlr_vk_render_pass *pass = get_render_pass(wlr_pass);
struct wlr_vk_renderer *renderer = pass->renderer;
VkCommandBuffer cb = pass->command_buffer->vk;
struct wlr_vk_texture *texture = vulkan_get_texture(options->texture);
assert(texture->renderer == renderer);
if (texture->dmabuf_imported && !texture->owned) {
// Store this texture in the list of textures that need to be
// acquired before rendering and released after rendering.
// We don't do it here immediately since barriers inside
// a renderpass are suboptimal (would require additional renderpass
// dependency and potentially multiple barriers) and it's
// better to issue one barrier for all used textures anyways.
texture->owned = true;
assert(texture->foreign_link.prev == NULL);
assert(texture->foreign_link.next == NULL);
wl_list_insert(&renderer->foreign_textures, &texture->foreign_link);
}
struct wlr_fbox src_box;
wlr_render_texture_options_get_src_box(options, &src_box);
struct wlr_box dst_box;
wlr_render_texture_options_get_dst_box(options, &dst_box);
float alpha = wlr_render_texture_options_get_alpha(options);
float proj[9], matrix[9];
wlr_matrix_identity(proj);
wlr_matrix_project_box(matrix, &dst_box, options->transform, 0, proj);
wlr_matrix_multiply(matrix, pass->projection, matrix);
struct wlr_vk_vert_pcr_data vert_pcr_data = {
.uv_off = {
src_box.x / options->texture->width,
src_box.y / options->texture->height,
},
.uv_size = {
src_box.width / options->texture->width,
src_box.height / options->texture->height,
},
};
mat3_to_mat4(matrix, vert_pcr_data.mat4);
struct wlr_vk_render_format_setup *setup = pass->srgb_pathway ?
pass->render_buffer->srgb.render_setup :
pass->render_buffer->plain.render_setup;
struct wlr_vk_pipeline *pipe = setup_get_or_create_pipeline(
setup,
&(struct wlr_vk_pipeline_key) {
.source = WLR_VK_SHADER_SOURCE_TEXTURE,
.layout = {
.ycbcr_format = texture->format->is_ycbcr ? texture->format : NULL,
.filter_mode = options->filter_mode,
},
.texture_transform = texture->transform,
.blend_mode = !texture->has_alpha && alpha == 1.0 ?
WLR_RENDER_BLEND_MODE_NONE : options->blend_mode,
});
if (!pipe) {
pass->failed = true;
return;
}
struct wlr_vk_texture_view *view =
vulkan_texture_get_or_create_view(texture, pipe->layout);
if (!view) {
pass->failed = true;
return;
}
bind_pipeline(pass, pipe->vk);
vkCmdBindDescriptorSets(cb, VK_PIPELINE_BIND_POINT_GRAPHICS,
pipe->layout->vk, 0, 1, &view->ds, 0, NULL);
vkCmdPushConstants(cb, pipe->layout->vk,
VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(vert_pcr_data), &vert_pcr_data);
vkCmdPushConstants(cb, pipe->layout->vk,
VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(vert_pcr_data), sizeof(float),
&alpha);
pixman_region32_t clip;
get_clip_region(pass, options->clip, &clip);
int clip_rects_len;
const pixman_box32_t *clip_rects = pixman_region32_rectangles(&clip, &clip_rects_len);
for (int i = 0; i < clip_rects_len; i++) {
VkRect2D rect;
convert_pixman_box_to_vk_rect(&clip_rects[i], &rect);
vkCmdSetScissor(cb, 0, 1, &rect);
vkCmdDraw(cb, 4, 1, 0, 0);
struct wlr_box clip_box = {
.x = clip_rects[i].x1,
.y = clip_rects[i].y1,
.width = clip_rects[i].x2 - clip_rects[i].x1,
.height = clip_rects[i].y2 - clip_rects[i].y1,
};
struct wlr_box intersection;
if (!wlr_box_intersection(&intersection, &dst_box, &clip_box)) {
continue;
}
render_pass_mark_box_updated(pass, &intersection);
}
texture->last_used_cb = pass->command_buffer;
pixman_region32_fini(&clip);
}
static const struct wlr_render_pass_impl render_pass_impl = {
.submit = render_pass_submit,
.add_rect = render_pass_add_rect,
.add_texture = render_pass_add_texture,
};
void vk_color_transform_destroy(struct wlr_addon *addon) {
struct wlr_vk_renderer *renderer = (struct wlr_vk_renderer *)addon->owner;
struct wlr_vk_color_transform *transform = wl_container_of(addon, transform, addon);
VkDevice dev = renderer->dev->dev;
if (transform->lut_3d.image) {
vkDestroyImage(dev, transform->lut_3d.image, NULL);
vkDestroyImageView(dev, transform->lut_3d.image_view, NULL);
vkFreeMemory(dev, transform->lut_3d.memory, NULL);
vulkan_free_ds(renderer, transform->lut_3d.ds_pool, transform->lut_3d.ds);
}
wl_list_remove(&transform->link);
wlr_addon_finish(&transform->addon);
free(transform);
}
static bool create_3d_lut_image(struct wlr_vk_renderer *renderer,
const struct wlr_color_transform_lut3d *lut_3d,
VkImage *image, VkImageView *image_view,
VkDeviceMemory *memory, VkDescriptorSet *ds,
struct wlr_vk_descriptor_pool **ds_pool) {
VkDevice dev = renderer->dev->dev;
VkResult res;
*image = VK_NULL_HANDLE;
*memory = VK_NULL_HANDLE;
*image_view = VK_NULL_HANDLE;
*ds = VK_NULL_HANDLE;
*ds_pool = NULL;
// R32G32B32 is not a required Vulkan format
// TODO: use it when available
VkFormat format = VK_FORMAT_R32G32B32A32_SFLOAT;
VkImageCreateInfo img_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.imageType = VK_IMAGE_TYPE_3D,
.format = format,
.mipLevels = 1,
.arrayLayers = 1,
.samples = VK_SAMPLE_COUNT_1_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.extent = (VkExtent3D) { lut_3d->dim_len, lut_3d->dim_len, lut_3d->dim_len },
.tiling = VK_IMAGE_TILING_OPTIMAL,
.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
};
res = vkCreateImage(dev, &img_info, NULL, image);
if (res != VK_SUCCESS) {
wlr_vk_error("vkCreateImage failed", res);
return NULL;
}
VkMemoryRequirements mem_reqs = {0};
vkGetImageMemoryRequirements(dev, *image, &mem_reqs);
int mem_type_index = vulkan_find_mem_type(renderer->dev,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, mem_reqs.memoryTypeBits);
if (mem_type_index == -1) {
wlr_log(WLR_ERROR, "Failed to find suitable memory type");
goto fail_image;
}
VkMemoryAllocateInfo mem_info = {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
.allocationSize = mem_reqs.size,
.memoryTypeIndex = mem_type_index,
};
res = vkAllocateMemory(dev, &mem_info, NULL, memory);
if (res != VK_SUCCESS) {
wlr_vk_error("vkAllocateMemory failed", res);
goto fail_image;
}
res = vkBindImageMemory(dev, *image, *memory, 0);
if (res != VK_SUCCESS) {
wlr_vk_error("vkBindMemory failed", res);
goto fail_memory;
}
VkImageViewCreateInfo view_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.viewType = VK_IMAGE_VIEW_TYPE_3D,
.format = format,
.components.r = VK_COMPONENT_SWIZZLE_IDENTITY,
.components.g = VK_COMPONENT_SWIZZLE_IDENTITY,
.components.b = VK_COMPONENT_SWIZZLE_IDENTITY,
.components.a = VK_COMPONENT_SWIZZLE_IDENTITY,
.subresourceRange = (VkImageSubresourceRange) {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
.image = *image,
};
res = vkCreateImageView(dev, &view_info, NULL, image_view);
if (res != VK_SUCCESS) {
wlr_vk_error("vkCreateImageView failed", res);
goto fail_image;
}
size_t bytes_per_block = 4 * sizeof(float);
size_t size = lut_3d->dim_len * lut_3d->dim_len * lut_3d->dim_len * bytes_per_block;
struct wlr_vk_buffer_span span = vulkan_get_stage_span(renderer,
size, bytes_per_block);
if (!span.buffer || span.alloc.size != size) {
wlr_log(WLR_ERROR, "Failed to retrieve staging buffer");
goto fail_imageview;
}
char *map = (char*)span.buffer->cpu_mapping + span.alloc.start;
float *dst = (float*)map;
size_t dim_len = lut_3d->dim_len;
for (size_t b_index = 0; b_index < dim_len; b_index++) {
for (size_t g_index = 0; g_index < dim_len; g_index++) {
for (size_t r_index = 0; r_index < dim_len; r_index++) {
size_t sample_index = r_index + dim_len * g_index + dim_len * dim_len * b_index;
size_t src_offset = 3 * sample_index;
size_t dst_offset = 4 * sample_index;
dst[dst_offset] = lut_3d->lut_3d[src_offset];
dst[dst_offset + 1] = lut_3d->lut_3d[src_offset + 1];
dst[dst_offset + 2] = lut_3d->lut_3d[src_offset + 2];
dst[dst_offset + 3] = 1.0;
}
}
}
VkCommandBuffer cb = vulkan_record_stage_cb(renderer);
vulkan_change_layout(cb, *image,
VK_IMAGE_LAYOUT_UNDEFINED, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT);
VkBufferImageCopy copy = {
.bufferOffset = span.alloc.start,
.imageExtent.width = lut_3d->dim_len,
.imageExtent.height = lut_3d->dim_len,
.imageExtent.depth = lut_3d->dim_len,
.imageSubresource.layerCount = 1,
.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
};
vkCmdCopyBufferToImage(cb, span.buffer->buffer, *image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copy);
vulkan_change_layout(cb, *image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_ACCESS_SHADER_READ_BIT);
*ds_pool = vulkan_alloc_texture_ds(renderer,
renderer->output_ds_lut3d_layout, ds);
if (!*ds_pool) {
wlr_log(WLR_ERROR, "Failed to allocate descriptor");
goto fail_imageview;
}
VkDescriptorImageInfo ds_img_info = {
.imageView = *image_view,
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
};
VkWriteDescriptorSet ds_write = {
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.dstSet = *ds,
.pImageInfo = &ds_img_info,
};
vkUpdateDescriptorSets(dev, 1, &ds_write, 0, NULL);
return true;
fail_imageview:
vkDestroyImageView(dev, *image_view, NULL);
fail_memory:
vkFreeMemory(dev, *memory, NULL);
fail_image:
vkDestroyImage(dev, *image, NULL);
return false;
}
static struct wlr_vk_color_transform *vk_color_transform_create(
struct wlr_vk_renderer *renderer, struct wlr_color_transform *transform) {
struct wlr_vk_color_transform *vk_transform =
calloc(1, sizeof(*vk_transform));
if (!vk_transform) {
return NULL;
}
if (transform->type == COLOR_TRANSFORM_LUT_3D) {
if (!create_3d_lut_image(renderer, &transform->lut3d,
&vk_transform->lut_3d.image,
&vk_transform->lut_3d.image_view,
&vk_transform->lut_3d.memory,
&vk_transform->lut_3d.ds,
&vk_transform->lut_3d.ds_pool)) {
free(vk_transform);
return NULL;
}
}
wlr_addon_init(&vk_transform->addon, &transform->addons,
renderer, &vk_color_transform_impl);
wl_list_insert(&renderer->color_transforms, &vk_transform->link);
return vk_transform;
}
static const struct wlr_addon_interface vk_color_transform_impl = {
"vk_color_transform",
.destroy = vk_color_transform_destroy,
};
struct wlr_vk_render_pass *vulkan_begin_render_pass(struct wlr_vk_renderer *renderer,
struct wlr_vk_render_buffer *buffer, const struct wlr_buffer_pass_options *options) {
bool using_srgb_pathway;
if (options != NULL && options->color_transform != NULL) {
using_srgb_pathway = false;
if (!get_color_transform(options->color_transform, renderer)) {
/* Try to create a new color transform */
if (!vk_color_transform_create(renderer, options->color_transform)) {
wlr_log(WLR_ERROR, "Failed to create color transform");
return NULL;
}
}
} else {
// Use srgb pathway if it is the default/has already been set up
using_srgb_pathway = buffer->srgb.framebuffer != VK_NULL_HANDLE;
}
if (!using_srgb_pathway && !buffer->plain.image_view) {
struct wlr_dmabuf_attributes attribs;
wlr_buffer_get_dmabuf(buffer->wlr_buffer, &attribs);
if (!vulkan_setup_plain_framebuffer(buffer, &attribs)) {
wlr_log(WLR_ERROR, "Failed to set up blend image");
return NULL;
}
}
struct wlr_vk_render_pass *pass = calloc(1, sizeof(*pass));
if (pass == NULL) {
return NULL;
}
wlr_render_pass_init(&pass->base, &render_pass_impl);
pass->renderer = renderer;
pass->srgb_pathway = using_srgb_pathway;
if (options != NULL && options->color_transform != NULL) {
wlr_color_transform_ref(options->color_transform);
pass->color_transform = options->color_transform;
}
rect_union_init(&pass->updated_region);
struct wlr_vk_command_buffer *cb = vulkan_acquire_command_buffer(renderer);
if (cb == NULL) {
free(pass);
return NULL;
}
VkCommandBufferBeginInfo begin_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
};
VkResult res = vkBeginCommandBuffer(cb->vk, &begin_info);
if (res != VK_SUCCESS) {
wlr_vk_error("vkBeginCommandBuffer", res);
vulkan_reset_command_buffer(cb);
free(pass);
return NULL;
}
if (!renderer->dummy3d_image_transitioned) {
renderer->dummy3d_image_transitioned = true;
vulkan_change_layout(cb->vk, renderer->dummy3d_image,
VK_IMAGE_LAYOUT_UNDEFINED, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
0, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_ACCESS_SHADER_READ_BIT);
}
int width = buffer->wlr_buffer->width;
int height = buffer->wlr_buffer->height;
VkRect2D rect = { .extent = { width, height } };
VkRenderPassBeginInfo rp_info = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderArea = rect,
.clearValueCount = 0,
};
if (pass->srgb_pathway) {
rp_info.renderPass = buffer->srgb.render_setup->render_pass;
rp_info.framebuffer = buffer->srgb.framebuffer;
} else {
rp_info.renderPass = buffer->plain.render_setup->render_pass;
rp_info.framebuffer = buffer->plain.framebuffer;
}
vkCmdBeginRenderPass(cb->vk, &rp_info, VK_SUBPASS_CONTENTS_INLINE);
vkCmdSetViewport(cb->vk, 0, 1, &(VkViewport){
.width = width,
.height = height,
.maxDepth = 1,
});
// matrix_projection() assumes a GL coordinate system so we need
// to pass WL_OUTPUT_TRANSFORM_FLIPPED_180 to adjust it for vulkan.
matrix_projection(pass->projection, width, height, WL_OUTPUT_TRANSFORM_FLIPPED_180);
wlr_buffer_lock(buffer->wlr_buffer);
pass->render_buffer = buffer;
pass->command_buffer = cb;
return pass;
}