wlroots/render/vulkan/renderer.c
Joshua Ashton b62ce3c3c8 render/vulkan: Use image view swizzles instead of shader hack
Signed-off-by: Joshua Ashton <joshua@froggi.es>
2021-10-18 15:57:46 +02:00

1530 lines
50 KiB
C

#define _POSIX_C_SOURCE 200809L
#include <assert.h>
#include <fcntl.h>
#include <math.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <unistd.h>
#include <drm_fourcc.h>
#include <vulkan/vulkan.h>
#include <wlr/render/interface.h>
#include <wlr/types/wlr_drm.h>
#include <wlr/types/wlr_matrix.h>
#include <wlr/util/box.h>
#include <wlr/util/log.h>
#include <wlr/render/vulkan.h>
#include <wlr/backend/interface.h>
#include <wlr/types/wlr_linux_dmabuf_v1.h>
#include "render/pixel_format.h"
#include "render/vulkan.h"
#include "render/vulkan/shaders/common.vert.h"
#include "render/vulkan/shaders/texture.frag.h"
#include "render/vulkan/shaders/quad.frag.h"
#include "types/wlr_buffer.h"
// TODO:
// - simplify stage allocation, don't track allocations but use ringbuffer-like
// - use a pipeline cache (not sure when to save though, after every pipeline
// creation?)
// - create pipelines as derivatives of each other
// - evaluate if creating VkDeviceMemory pools is a good idea.
// We can expect wayland client images to be fairly large (and shouldn't
// have more than 4k of those I guess) but pooling memory allocations
// might still be a good idea.
static const VkDeviceSize min_stage_size = 1024 * 1024; // 1MB
static const VkDeviceSize max_stage_size = 64 * min_stage_size; // 64MB
static const size_t start_descriptor_pool_size = 256u;
static bool default_debug = true;
static const struct wlr_renderer_impl renderer_impl;
struct wlr_vk_renderer *vulkan_get_renderer(struct wlr_renderer *wlr_renderer) {
assert(wlr_renderer->impl == &renderer_impl);
return (struct wlr_vk_renderer *)wlr_renderer;
}
static struct wlr_vk_render_format_setup *find_or_create_render_setup(
struct wlr_vk_renderer *renderer, VkFormat format);
// vertex shader push constant range data
struct vert_pcr_data {
float mat4[4][4];
float uv_off[2];
float uv_size[2];
};
// https://www.w3.org/Graphics/Color/srgb
static float color_to_linear(float non_linear) {
return (non_linear > 0.04045) ?
pow((non_linear + 0.055) / 1.055, 2.4) :
non_linear / 12.92;
}
// renderer
// util
static void mat3_to_mat4(const float mat3[9], float mat4[4][4]) {
memset(mat4, 0, sizeof(float) * 16);
mat4[0][0] = mat3[0];
mat4[0][1] = mat3[1];
mat4[0][3] = mat3[2];
mat4[1][0] = mat3[3];
mat4[1][1] = mat3[4];
mat4[1][3] = mat3[5];
mat4[2][2] = 1.f;
mat4[3][3] = 1.f;
}
struct wlr_vk_descriptor_pool *vulkan_alloc_texture_ds(
struct wlr_vk_renderer *renderer, VkDescriptorSet *ds) {
VkResult res;
VkDescriptorSetAllocateInfo ds_info = {0};
ds_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
ds_info.descriptorSetCount = 1;
ds_info.pSetLayouts = &renderer->ds_layout;
bool found = false;
struct wlr_vk_descriptor_pool *pool;
wl_list_for_each(pool, &renderer->descriptor_pools, link) {
if (pool->free > 0) {
found = true;
break;
}
}
if (!found) { // create new pool
pool = calloc(1, sizeof(*pool));
if (!pool) {
wlr_log_errno(WLR_ERROR, "allocation failed");
return NULL;
}
size_t count = renderer->last_pool_size;
if (!count) {
count = start_descriptor_pool_size;
}
pool->free = count;
VkDescriptorPoolSize pool_size = {0};
pool_size.descriptorCount = count;
pool_size.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
VkDescriptorPoolCreateInfo dpool_info = {0};
dpool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
dpool_info.maxSets = count;
dpool_info.poolSizeCount = 1;
dpool_info.pPoolSizes = &pool_size;
dpool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
res = vkCreateDescriptorPool(renderer->dev->dev, &dpool_info, NULL,
&pool->pool);
if (res != VK_SUCCESS) {
wlr_vk_error("vkCreateDescriptorPool", res);
free(pool);
return NULL;
}
wl_list_insert(&renderer->descriptor_pools, &pool->link);
}
ds_info.descriptorPool = pool->pool;
res = vkAllocateDescriptorSets(renderer->dev->dev, &ds_info, ds);
if (res != VK_SUCCESS) {
wlr_vk_error("vkAllocateDescriptorSets", res);
return NULL;
}
--pool->free;
return pool;
}
void vulkan_free_ds(struct wlr_vk_renderer *renderer,
struct wlr_vk_descriptor_pool *pool, VkDescriptorSet ds) {
vkFreeDescriptorSets(renderer->dev->dev, pool->pool, 1, &ds);
++pool->free;
}
static void destroy_render_format_setup(struct wlr_vk_renderer *renderer,
struct wlr_vk_render_format_setup *setup) {
if (!setup) {
return;
}
VkDevice dev = renderer->dev->dev;
vkDestroyRenderPass(dev, setup->render_pass, NULL);
vkDestroyPipeline(dev, setup->tex_pipe, NULL);
vkDestroyPipeline(dev, setup->quad_pipe, NULL);
}
static void shared_buffer_destroy(struct wlr_vk_renderer *r,
struct wlr_vk_shared_buffer *buffer) {
if (!buffer) {
return;
}
if (buffer->allocs_size > 0) {
wlr_log(WLR_ERROR, "shared_buffer_finish: %d allocations left",
(unsigned) buffer->allocs_size);
}
free(buffer->allocs);
if (buffer->buffer) {
vkDestroyBuffer(r->dev->dev, buffer->buffer, NULL);
}
if (buffer->memory) {
vkFreeMemory(r->dev->dev, buffer->memory, NULL);
}
wl_list_remove(&buffer->link);
free(buffer);
}
static void release_stage_allocations(struct wlr_vk_renderer *renderer) {
struct wlr_vk_shared_buffer *buf;
wl_list_for_each(buf, &renderer->stage.buffers, link) {
buf->allocs_size = 0u;
}
}
struct wlr_vk_buffer_span vulkan_get_stage_span(struct wlr_vk_renderer *r,
VkDeviceSize size) {
// try to find free span
// simple greedy allocation algorithm - should be enough for this usecase
// since all allocations are freed together after the frame
struct wlr_vk_shared_buffer *buf;
wl_list_for_each_reverse(buf, &r->stage.buffers, link) {
VkDeviceSize start = 0u;
if (buf->allocs_size > 0) {
struct wlr_vk_allocation *last = &buf->allocs[buf->allocs_size - 1];
start = last->start + last->size;
}
assert(start <= buf->buf_size);
if (buf->buf_size - start < size) {
continue;
}
++buf->allocs_size;
if (buf->allocs_size > buf->allocs_capacity) {
buf->allocs_capacity = buf->allocs_size * 2;
void *allocs = realloc(buf->allocs,
buf->allocs_capacity * sizeof(*buf->allocs));
if (!allocs) {
wlr_log_errno(WLR_ERROR, "Allocation failed");
goto error_alloc;
}
buf->allocs = allocs;
}
struct wlr_vk_allocation *a = &buf->allocs[buf->allocs_size - 1];
a->start = start;
a->size = size;
return (struct wlr_vk_buffer_span) {
.buffer = buf,
.alloc = *a,
};
}
// we didn't find a free buffer - create one
// size = clamp(max(size * 2, prev_size * 2), min_size, max_size)
VkDeviceSize bsize = size * 2;
bsize = bsize < min_stage_size ? min_stage_size : bsize;
if (!wl_list_empty(&r->stage.buffers)) {
struct wl_list *last_link = r->stage.buffers.prev;
struct wlr_vk_shared_buffer *prev = wl_container_of(
last_link, prev, link);
VkDeviceSize last_size = 2 * prev->buf_size;
bsize = bsize < last_size ? last_size : bsize;
}
if (bsize > max_stage_size) {
wlr_log(WLR_INFO, "vulkan stage buffers have reached max size");
bsize = max_stage_size;
}
// create buffer
buf = calloc(1, sizeof(*buf));
if (!buf) {
wlr_log_errno(WLR_ERROR, "Allocation failed");
goto error_alloc;
}
VkResult res;
VkBufferCreateInfo buf_info = {0};
buf_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buf_info.size = bsize;
buf_info.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT |
VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
buf_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
res = vkCreateBuffer(r->dev->dev, &buf_info, NULL, &buf->buffer);
if (res != VK_SUCCESS) {
wlr_vk_error("vkCreateBuffer", res);
goto error;
}
VkMemoryRequirements mem_reqs;
vkGetBufferMemoryRequirements(r->dev->dev, buf->buffer, &mem_reqs);
VkMemoryAllocateInfo mem_info = {0};
mem_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_info.allocationSize = mem_reqs.size;
mem_info.memoryTypeIndex = vulkan_find_mem_type(r->dev,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, mem_reqs.memoryTypeBits);
res = vkAllocateMemory(r->dev->dev, &mem_info, NULL, &buf->memory);
if (res != VK_SUCCESS) {
wlr_vk_error("vkAllocatorMemory", res);
goto error;
}
res = vkBindBufferMemory(r->dev->dev, buf->buffer, buf->memory, 0);
if (res != VK_SUCCESS) {
wlr_vk_error("vkBindBufferMemory", res);
goto error;
}
size_t start_count = 8u;
buf->allocs = calloc(start_count, sizeof(*buf->allocs));
if (!buf->allocs) {
wlr_log_errno(WLR_ERROR, "Allocation failed");
goto error;
}
wlr_log(WLR_DEBUG, "Created new vk staging buffer of size %" PRIu64, bsize);
buf->buf_size = bsize;
wl_list_insert(&r->stage.buffers, &buf->link);
buf->allocs_capacity = start_count;
buf->allocs_size = 1u;
buf->allocs[0].start = 0u;
buf->allocs[0].size = size;
return (struct wlr_vk_buffer_span) {
.buffer = buf,
.alloc = buf->allocs[0],
};
error:
shared_buffer_destroy(r, buf);
error_alloc:
return (struct wlr_vk_buffer_span) {
.buffer = NULL,
.alloc = (struct wlr_vk_allocation) {0, 0},
};
}
VkCommandBuffer vulkan_record_stage_cb(struct wlr_vk_renderer *renderer) {
if (!renderer->stage.recording) {
VkCommandBufferBeginInfo begin_info = {0};
begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
vkBeginCommandBuffer(renderer->stage.cb, &begin_info);
renderer->stage.recording = true;
}
return renderer->stage.cb;
}
bool vulkan_submit_stage_wait(struct wlr_vk_renderer *renderer) {
if (!renderer->stage.recording) {
return false;
}
vkEndCommandBuffer(renderer->stage.cb);
renderer->stage.recording = false;
VkSubmitInfo submit_info = {0};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1u;
submit_info.pCommandBuffers = &renderer->stage.cb;
VkResult res = vkQueueSubmit(renderer->dev->queue, 1,
&submit_info, renderer->fence);
if (res != VK_SUCCESS) {
wlr_vk_error("vkQueueSubmit", res);
return false;
}
res = vkWaitForFences(renderer->dev->dev, 1, &renderer->fence, true,
UINT64_MAX);
if (res != VK_SUCCESS) {
wlr_vk_error("vkWaitForFences", res);
return false;
}
// NOTE: don't release stage allocations here since they may still be
// used for reading. Will be done next frame.
res = vkResetFences(renderer->dev->dev, 1, &renderer->fence);
if (res != VK_SUCCESS) {
wlr_vk_error("vkResetFences", res);
return false;
}
return true;
}
struct wlr_vk_format_props *vulkan_format_props_from_drm(
struct wlr_vk_device *dev, uint32_t drm_fmt) {
for (size_t i = 0u; i < dev->format_prop_count; ++i) {
if (dev->format_props[i].format.drm_format == drm_fmt) {
return &dev->format_props[i];
}
}
return NULL;
}
// buffer import
static void destroy_render_buffer(struct wlr_vk_render_buffer *buffer) {
wl_list_remove(&buffer->link);
wl_list_remove(&buffer->buffer_destroy.link);
assert(buffer->renderer->current_render_buffer != buffer);
VkDevice dev = buffer->renderer->dev->dev;
vkDestroyFramebuffer(dev, buffer->framebuffer, NULL);
vkDestroyImageView(dev, buffer->image_view, NULL);
vkDestroyImage(dev, buffer->image, NULL);
for (size_t i = 0u; i < buffer->mem_count; ++i) {
vkFreeMemory(dev, buffer->memories[i], NULL);
}
free(buffer);
}
static struct wlr_vk_render_buffer *get_render_buffer(
struct wlr_vk_renderer *renderer, struct wlr_buffer *wlr_buffer) {
struct wlr_vk_render_buffer *buffer;
wl_list_for_each(buffer, &renderer->render_buffers, link) {
if (buffer->wlr_buffer == wlr_buffer) {
return buffer;
}
}
return NULL;
}
static void handle_render_buffer_destroy(struct wl_listener *listener, void *data) {
struct wlr_vk_render_buffer *buffer =
wl_container_of(listener, buffer, buffer_destroy);
destroy_render_buffer(buffer);
}
static struct wlr_vk_render_buffer *create_render_buffer(
struct wlr_vk_renderer *renderer, struct wlr_buffer *wlr_buffer) {
VkResult res;
struct wlr_vk_render_buffer *buffer = calloc(1, sizeof(*buffer));
if (buffer == NULL) {
wlr_log_errno(WLR_ERROR, "Allocation failed");
return NULL;
}
buffer->wlr_buffer = wlr_buffer;
buffer->renderer = renderer;
struct wlr_dmabuf_attributes dmabuf = {0};
if (!wlr_buffer_get_dmabuf(wlr_buffer, &dmabuf)) {
goto error_buffer;
}
wlr_log(WLR_DEBUG, "vulkan create_render_buffer: %.4s, %dx%d",
(const char*) &dmabuf.format, dmabuf.width, dmabuf.height);
// NOTE: we could at least support WLR_DMABUF_ATTRIBUTES_FLAGS_Y_INVERT
// if it is needed by anyone. Can be implemented using negative viewport
// height or flipping matrix.
if (dmabuf.flags != 0) {
wlr_log(WLR_ERROR, "dmabuf flags %x not supported/implemented on vulkan",
dmabuf.flags);
goto error_buffer;
}
buffer->image = vulkan_import_dmabuf(renderer, &dmabuf,
buffer->memories, &buffer->mem_count, true);
if (!buffer->image) {
goto error_buffer;
}
VkDevice dev = renderer->dev->dev;
const struct wlr_vk_format_props *fmt = vulkan_format_props_from_drm(
renderer->dev, dmabuf.format);
if (fmt == NULL) {
wlr_log(WLR_ERROR, "Unsupported pixel format %"PRIx32 " (%.4s)",
dmabuf.format, (const char*) &dmabuf.format);
goto error_buffer;
}
VkImageViewCreateInfo view_info = {0};
view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_info.image = buffer->image;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = fmt->format.vk_format;
view_info.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
view_info.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
view_info.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
view_info.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
view_info.subresourceRange = (VkImageSubresourceRange) {
VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1
};
res = vkCreateImageView(dev, &view_info, NULL, &buffer->image_view);
if (res != VK_SUCCESS) {
wlr_vk_error("vkCreateImageView failed", res);
goto error_view;
}
buffer->render_setup = find_or_create_render_setup(
renderer, fmt->format.vk_format);
if (!buffer->render_setup) {
goto error_view;
}
VkFramebufferCreateInfo fb_info = {0};
fb_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fb_info.attachmentCount = 1u;
fb_info.pAttachments = &buffer->image_view;
fb_info.flags = 0u;
fb_info.width = dmabuf.width;
fb_info.height = dmabuf.height;
fb_info.layers = 1u;
fb_info.renderPass = buffer->render_setup->render_pass;
res = vkCreateFramebuffer(dev, &fb_info, NULL, &buffer->framebuffer);
if (res != VK_SUCCESS) {
wlr_vk_error("vkCreateFramebuffer", res);
goto error_view;
}
buffer->buffer_destroy.notify = handle_render_buffer_destroy;
wl_signal_add(&wlr_buffer->events.destroy, &buffer->buffer_destroy);
wl_list_insert(&renderer->render_buffers, &buffer->link);
return buffer;
error_view:
vkDestroyFramebuffer(dev, buffer->framebuffer, NULL);
vkDestroyImageView(dev, buffer->image_view, NULL);
vkDestroyImage(dev, buffer->image, NULL);
for (size_t i = 0u; i < buffer->mem_count; ++i) {
vkFreeMemory(dev, buffer->memories[i], NULL);
}
error_buffer:
wlr_dmabuf_attributes_finish(&dmabuf);
free(buffer);
return NULL;
}
// interface implementation
static bool vulkan_bind_buffer(struct wlr_renderer *wlr_renderer,
struct wlr_buffer *wlr_buffer) {
struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer);
if (renderer->current_render_buffer) {
wlr_buffer_unlock(renderer->current_render_buffer->wlr_buffer);
renderer->current_render_buffer = NULL;
}
if (!wlr_buffer) {
return true;
}
struct wlr_vk_render_buffer *buffer = get_render_buffer(renderer, wlr_buffer);
if (!buffer) {
buffer = create_render_buffer(renderer, wlr_buffer);
if (!buffer) {
return false;
}
}
wlr_buffer_lock(wlr_buffer);
renderer->current_render_buffer = buffer;
return true;
}
static void vulkan_begin(struct wlr_renderer *wlr_renderer,
uint32_t width, uint32_t height) {
struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer);
assert(renderer->current_render_buffer);
VkCommandBuffer cb = renderer->cb;
VkCommandBufferBeginInfo begin_info = {0};
begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
vkBeginCommandBuffer(cb, &begin_info);
// begin render pass
VkFramebuffer fb = renderer->current_render_buffer->framebuffer;
VkRect2D rect = {{0, 0}, {width, height}};
renderer->scissor = rect;
VkRenderPassBeginInfo rp_info = {0};
rp_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
rp_info.renderArea = rect;
rp_info.renderPass = renderer->current_render_buffer->render_setup->render_pass;
rp_info.framebuffer = fb;
rp_info.clearValueCount = 0;
vkCmdBeginRenderPass(cb, &rp_info, VK_SUBPASS_CONTENTS_INLINE);
VkViewport vp = {0.f, 0.f, (float) width, (float) height, 0.f, 1.f};
vkCmdSetViewport(cb, 0, 1, &vp);
vkCmdSetScissor(cb, 0, 1, &rect);
// Refresh projection matrix.
// wlr_matrix_projection assumes a GL corrdinate system so we need
// to pass WL_OUTPUT_TRANSFORM_FLIPPED_180 to adjust it for vulkan.
wlr_matrix_projection(renderer->projection, width, height,
WL_OUTPUT_TRANSFORM_FLIPPED_180);
renderer->render_width = width;
renderer->render_height = height;
renderer->bound_pipe = VK_NULL_HANDLE;
}
static void vulkan_end(struct wlr_renderer *wlr_renderer) {
struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer);
assert(renderer->current_render_buffer);
VkCommandBuffer render_cb = renderer->cb;
VkCommandBuffer pre_cb = vulkan_record_stage_cb(renderer);
renderer->render_width = 0u;
renderer->render_height = 0u;
renderer->bound_pipe = VK_NULL_HANDLE;
vkCmdEndRenderPass(render_cb);
// insert acquire and release barriers for dmabuf-images
unsigned barrier_count = wl_list_length(&renderer->foreign_textures) + 1;
VkImageMemoryBarrier* acquire_barriers = calloc(barrier_count, sizeof(VkImageMemoryBarrier));
VkImageMemoryBarrier* release_barriers = calloc(barrier_count, sizeof(VkImageMemoryBarrier));
struct wlr_vk_texture *texture, *tmp_tex;
unsigned idx = 0;
wl_list_for_each_safe(texture, tmp_tex, &renderer->foreign_textures, foreign_link) {
VkImageLayout src_layout = VK_IMAGE_LAYOUT_GENERAL;
if (!texture->transitioned) {
src_layout = VK_IMAGE_LAYOUT_PREINITIALIZED;
texture->transitioned = true;
}
// acquire
acquire_barriers[idx].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
acquire_barriers[idx].srcQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT;
acquire_barriers[idx].dstQueueFamilyIndex = renderer->dev->queue_family;
acquire_barriers[idx].image = texture->image;
acquire_barriers[idx].oldLayout = src_layout;
acquire_barriers[idx].newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
acquire_barriers[idx].srcAccessMask = 0u; // ignored anyways
acquire_barriers[idx].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
acquire_barriers[idx].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
acquire_barriers[idx].subresourceRange.layerCount = 1;
acquire_barriers[idx].subresourceRange.levelCount = 1;
// releaes
release_barriers[idx].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
release_barriers[idx].srcQueueFamilyIndex = renderer->dev->queue_family;
release_barriers[idx].dstQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT;
release_barriers[idx].image = texture->image;
release_barriers[idx].oldLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
release_barriers[idx].newLayout = VK_IMAGE_LAYOUT_GENERAL;
release_barriers[idx].srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
release_barriers[idx].dstAccessMask = 0u; // ignored anyways
release_barriers[idx].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
release_barriers[idx].subresourceRange.layerCount = 1;
release_barriers[idx].subresourceRange.levelCount = 1;
++idx;
wl_list_remove(&texture->foreign_link);
texture->owned = false;
}
// also add acquire/release barriers for the current render buffer
VkImageLayout src_layout = VK_IMAGE_LAYOUT_GENERAL;
if (!renderer->current_render_buffer->transitioned) {
src_layout = VK_IMAGE_LAYOUT_PREINITIALIZED;
renderer->current_render_buffer->transitioned = true;
}
// acquire render buffer before rendering
acquire_barriers[idx].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
acquire_barriers[idx].srcQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT;
acquire_barriers[idx].dstQueueFamilyIndex = renderer->dev->queue_family;
acquire_barriers[idx].image = renderer->current_render_buffer->image;
acquire_barriers[idx].oldLayout = src_layout;
acquire_barriers[idx].newLayout = VK_IMAGE_LAYOUT_GENERAL;
acquire_barriers[idx].srcAccessMask = 0u; // ignored anyways
acquire_barriers[idx].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
acquire_barriers[idx].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
acquire_barriers[idx].subresourceRange.layerCount = 1;
acquire_barriers[idx].subresourceRange.levelCount = 1;
// release render buffer after rendering
release_barriers[idx].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
release_barriers[idx].srcQueueFamilyIndex = renderer->dev->queue_family;
release_barriers[idx].dstQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT;
release_barriers[idx].image = renderer->current_render_buffer->image;
release_barriers[idx].oldLayout = VK_IMAGE_LAYOUT_GENERAL;
release_barriers[idx].newLayout = VK_IMAGE_LAYOUT_GENERAL;
release_barriers[idx].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
release_barriers[idx].dstAccessMask = 0u; // ignored anyways
release_barriers[idx].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
release_barriers[idx].subresourceRange.layerCount = 1;
release_barriers[idx].subresourceRange.levelCount = 1;
++idx;
vkCmdPipelineBarrier(pre_cb, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
0, 0, NULL, 0, NULL, barrier_count, acquire_barriers);
vkCmdPipelineBarrier(render_cb, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, NULL, 0, NULL,
barrier_count, release_barriers);
free(acquire_barriers);
free(release_barriers);
vkEndCommandBuffer(renderer->cb);
unsigned submit_count = 0u;
VkSubmitInfo submit_infos[2] = {0};
// No semaphores needed here.
// We don't need a semaphore from the stage/transfer submission
// to the render submissions since they are on the same queue
// and we have a renderpass dependency for that.
if (renderer->stage.recording) {
vkEndCommandBuffer(renderer->stage.cb);
renderer->stage.recording = false;
VkSubmitInfo *stage_sub = &submit_infos[submit_count];
stage_sub->sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
stage_sub->commandBufferCount = 1u;
stage_sub->pCommandBuffers = &pre_cb;
++submit_count;
}
VkSubmitInfo *render_sub = &submit_infos[submit_count];
render_sub->sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
render_sub->pCommandBuffers = &render_cb;
render_sub->commandBufferCount = 1u;
++submit_count;
VkResult res = vkQueueSubmit(renderer->dev->queue, submit_count,
submit_infos, renderer->fence);
if (res != VK_SUCCESS) {
wlr_vk_error("vkQueueSubmit", res);
return;
}
// sadly this is required due to the current api/rendering model of wlr
// ideally we could use gpu and cpu in parallel (_without_ the
// implicit synchronization overhead and mess of opengl drivers)
res = vkWaitForFences(renderer->dev->dev, 1, &renderer->fence, true,
UINT64_MAX);
if (res != VK_SUCCESS) {
wlr_vk_error("vkWaitForFences", res);
return;
}
++renderer->frame;
release_stage_allocations(renderer);
// destroy pending textures
wl_list_for_each_safe(texture, tmp_tex, &renderer->destroy_textures, destroy_link) {
wlr_texture_destroy(&texture->wlr_texture);
}
wl_list_init(&renderer->destroy_textures); // reset the list
res = vkResetFences(renderer->dev->dev, 1, &renderer->fence);
if (res != VK_SUCCESS) {
wlr_vk_error("vkResetFences", res);
return;
}
}
static bool vulkan_render_subtexture_with_matrix(struct wlr_renderer *wlr_renderer,
struct wlr_texture *wlr_texture, const struct wlr_fbox *box,
const float matrix[static 9], float alpha) {
struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer);
VkCommandBuffer cb = renderer->cb;
struct wlr_vk_texture *texture = vulkan_get_texture(wlr_texture);
assert(texture->renderer == renderer);
if (texture->dmabuf_imported && !texture->owned) {
// Store this texture in the list of textures that need to be
// acquired before rendering and released after rendering.
// We don't do it here immediately since barriers inside
// a renderpass are suboptimal (would require additional renderpass
// dependency and potentially multiple barriers) and it's
// better to issue one barrier for all used textures anyways.
texture->owned = true;
assert(texture->foreign_link.prev == NULL);
assert(texture->foreign_link.next == NULL);
wl_list_insert(&renderer->foreign_textures, &texture->foreign_link);
}
VkPipeline pipe = renderer->current_render_buffer->render_setup->tex_pipe;
if (pipe != renderer->bound_pipe) {
vkCmdBindPipeline(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe);
renderer->bound_pipe = pipe;
}
vkCmdBindDescriptorSets(cb, VK_PIPELINE_BIND_POINT_GRAPHICS,
renderer->pipe_layout, 0, 1, &texture->ds, 0, NULL);
float final_matrix[9];
wlr_matrix_multiply(final_matrix, renderer->projection, matrix);
struct vert_pcr_data vert_pcr_data;
mat3_to_mat4(final_matrix, vert_pcr_data.mat4);
vert_pcr_data.uv_off[0] = box->x / wlr_texture->width;
vert_pcr_data.uv_off[1] = box->y / wlr_texture->height;
vert_pcr_data.uv_size[0] = box->width / wlr_texture->width;
vert_pcr_data.uv_size[1] = box->height / wlr_texture->height;
if (texture->invert_y) {
vert_pcr_data.uv_off[1] += vert_pcr_data.uv_size[1];
vert_pcr_data.uv_size[1] = -vert_pcr_data.uv_size[1];
}
vkCmdPushConstants(cb, renderer->pipe_layout,
VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(vert_pcr_data), &vert_pcr_data);
vkCmdPushConstants(cb, renderer->pipe_layout,
VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(vert_pcr_data), sizeof(float),
&alpha);
vkCmdDraw(cb, 4, 1, 0, 0);
texture->last_used = renderer->frame;
return true;
}
static void vulkan_clear(struct wlr_renderer *wlr_renderer,
const float color[static 4]) {
struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer);
VkCommandBuffer cb = renderer->cb;
VkClearAttachment att = {0};
att.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
att.colorAttachment = 0u;
// Input color values are given in srgb space, vulkan expects
// them in linear space. We explicitly import argb8 render buffers
// as srgb, vulkan will convert the input values we give here to
// srgb first.
// But in other parts of wlroots we just always assume
// srgb so that's why we have to convert here.
att.clearValue.color.float32[0] = color_to_linear(color[0]);
att.clearValue.color.float32[1] = color_to_linear(color[1]);
att.clearValue.color.float32[2] = color_to_linear(color[2]);
att.clearValue.color.float32[3] = color[3]; // no conversion for alpha
VkClearRect rect = {0};
rect.rect = renderer->scissor;
rect.layerCount = 1;
vkCmdClearAttachments(cb, 1, &att, 1, &rect);
}
static void vulkan_scissor(struct wlr_renderer *wlr_renderer,
struct wlr_box *box) {
struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer);
VkCommandBuffer cb = renderer->cb;
uint32_t w = renderer->render_width;
uint32_t h = renderer->render_height;
struct wlr_box dst = {0, 0, w, h};
if (box && !wlr_box_intersection(&dst, box, &dst)) {
dst = (struct wlr_box) {0, 0, 0, 0}; // empty
}
VkRect2D rect = (VkRect2D) {{dst.x, dst.y}, {dst.width, dst.height}};
renderer->scissor = rect;
vkCmdSetScissor(cb, 0, 1, &rect);
}
static const uint32_t *vulkan_get_shm_texture_formats(
struct wlr_renderer *wlr_renderer, size_t *len) {
struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer);
*len = renderer->dev->shm_format_count;
return renderer->dev->shm_formats;
}
static void vulkan_render_quad_with_matrix(struct wlr_renderer *wlr_renderer,
const float color[static 4], const float matrix[static 9]) {
struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer);
VkCommandBuffer cb = renderer->cb;
VkPipeline pipe = renderer->current_render_buffer->render_setup->quad_pipe;
if (pipe != renderer->bound_pipe) {
vkCmdBindPipeline(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe);
renderer->bound_pipe = pipe;
}
float final_matrix[9];
wlr_matrix_multiply(final_matrix, renderer->projection, matrix);
struct vert_pcr_data vert_pcr_data;
mat3_to_mat4(final_matrix, vert_pcr_data.mat4);
vert_pcr_data.uv_off[0] = 0.f;
vert_pcr_data.uv_off[1] = 0.f;
vert_pcr_data.uv_size[0] = 1.f;
vert_pcr_data.uv_size[1] = 1.f;
// Input color values are given in srgb space, shader expects
// them in linear space. The shader does all computation in linear
// space and expects in inputs in linear space since it outputs
// colors in linear space as well (and vulkan then automatically
// does the conversion for out SRGB render targets).
// But in other parts of wlroots we just always assume
// srgb so that's why we have to convert here.
float linear_color[4];
linear_color[0] = color_to_linear(color[0]);
linear_color[1] = color_to_linear(color[1]);
linear_color[2] = color_to_linear(color[2]);
linear_color[3] = color[3]; // no conversion for alpha
vkCmdPushConstants(cb, renderer->pipe_layout,
VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(vert_pcr_data), &vert_pcr_data);
vkCmdPushConstants(cb, renderer->pipe_layout,
VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(vert_pcr_data), sizeof(float) * 4,
linear_color);
vkCmdDraw(cb, 4, 1, 0, 0);
}
static const struct wlr_drm_format_set *vulkan_get_dmabuf_texture_formats(
struct wlr_renderer *wlr_renderer) {
struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer);
return &renderer->dev->dmabuf_texture_formats;
}
static const struct wlr_drm_format_set *vulkan_get_render_formats(
struct wlr_renderer *wlr_renderer) {
struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer);
return &renderer->dev->dmabuf_render_formats;
}
static uint32_t vulkan_preferred_read_format(
struct wlr_renderer *wlr_renderer) {
// TODO: implement!
wlr_log(WLR_ERROR, "vulkan_preferred_read_format not implemented");
return DRM_FORMAT_XBGR8888;
}
static void vulkan_destroy(struct wlr_renderer *wlr_renderer) {
struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer);
struct wlr_vk_device *dev = renderer->dev;
if (!dev) {
free(renderer);
return;
}
assert(!renderer->current_render_buffer);
// stage.cb automatically freed with command pool
struct wlr_vk_shared_buffer *buf, *tmp_buf;
wl_list_for_each_safe(buf, tmp_buf, &renderer->stage.buffers, link) {
shared_buffer_destroy(renderer, buf);
}
struct wlr_vk_texture *tex, *tex_tmp;
wl_list_for_each_safe(tex, tex_tmp, &renderer->textures, link) {
vulkan_texture_destroy(tex);
}
struct wlr_vk_render_buffer *render_buffer, *render_buffer_tmp;
wl_list_for_each_safe(render_buffer, render_buffer_tmp,
&renderer->render_buffers, link) {
destroy_render_buffer(render_buffer);
}
struct wlr_vk_render_format_setup *setup, *tmp_setup;
wl_list_for_each_safe(setup, tmp_setup,
&renderer->render_format_setups, link) {
destroy_render_format_setup(renderer, setup);
}
struct wlr_vk_descriptor_pool *pool, *tmp_pool;
wl_list_for_each_safe(pool, tmp_pool, &renderer->descriptor_pools, link) {
vkDestroyDescriptorPool(dev->dev, pool->pool, NULL);
free(pool);
}
vkDestroyShaderModule(dev->dev, renderer->vert_module, NULL);
vkDestroyShaderModule(dev->dev, renderer->tex_frag_module, NULL);
vkDestroyShaderModule(dev->dev, renderer->quad_frag_module, NULL);
vkDestroyFence(dev->dev, renderer->fence, NULL);
vkDestroyPipelineLayout(dev->dev, renderer->pipe_layout, NULL);
vkDestroyDescriptorSetLayout(dev->dev, renderer->ds_layout, NULL);
vkDestroySampler(dev->dev, renderer->sampler, NULL);
vkDestroyCommandPool(dev->dev, renderer->command_pool, NULL);
struct wlr_vk_instance *ini = dev->instance;
vulkan_device_destroy(dev);
vulkan_instance_destroy(ini);
free(renderer);
}
static bool vulkan_read_pixels(struct wlr_renderer *wlr_renderer,
uint32_t drm_format, uint32_t *flags, uint32_t stride,
uint32_t width, uint32_t height, uint32_t src_x, uint32_t src_y,
uint32_t dst_x, uint32_t dst_y, void *data) {
// TODO: implement!
wlr_log(WLR_ERROR, "vulkan_read_pixels not implemented");
return false;
}
static int vulkan_get_drm_fd(struct wlr_renderer *wlr_renderer) {
struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer);
return renderer->dev->drm_fd;
}
static uint32_t vulkan_get_render_buffer_caps(struct wlr_renderer *wlr_renderer) {
return WLR_BUFFER_CAP_DMABUF;
}
static const struct wlr_renderer_impl renderer_impl = {
.bind_buffer = vulkan_bind_buffer,
.begin = vulkan_begin,
.end = vulkan_end,
.clear = vulkan_clear,
.scissor = vulkan_scissor,
.render_subtexture_with_matrix = vulkan_render_subtexture_with_matrix,
.render_quad_with_matrix = vulkan_render_quad_with_matrix,
.get_shm_texture_formats = vulkan_get_shm_texture_formats,
.get_dmabuf_texture_formats = vulkan_get_dmabuf_texture_formats,
.get_render_formats = vulkan_get_render_formats,
.preferred_read_format = vulkan_preferred_read_format,
.read_pixels = vulkan_read_pixels,
.destroy = vulkan_destroy,
.get_drm_fd = vulkan_get_drm_fd,
.get_render_buffer_caps = vulkan_get_render_buffer_caps,
.texture_from_buffer = vulkan_texture_from_buffer,
};
// Initializes the VkDescriptorSetLayout and VkPipelineLayout needed
// for the texture rendering pipeline using the given VkSampler.
static bool init_tex_layouts(struct wlr_vk_renderer *renderer,
VkSampler tex_sampler, VkDescriptorSetLayout *out_ds_layout,
VkPipelineLayout *out_pipe_layout) {
VkResult res;
VkDevice dev = renderer->dev->dev;
// layouts
// descriptor set
VkDescriptorSetLayoutBinding ds_bindings[1] = {{
0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1,
VK_SHADER_STAGE_FRAGMENT_BIT, &tex_sampler,
}};
VkDescriptorSetLayoutCreateInfo ds_info = {0};
ds_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
ds_info.bindingCount = 1;
ds_info.pBindings = ds_bindings;
res = vkCreateDescriptorSetLayout(dev, &ds_info, NULL, out_ds_layout);
if (res != VK_SUCCESS) {
wlr_vk_error("vkCreateDescriptorSetLayout", res);
return false;
}
// pipeline layout
VkPushConstantRange pc_ranges[2] = {0};
pc_ranges[0].size = sizeof(struct vert_pcr_data);
pc_ranges[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
pc_ranges[1].offset = pc_ranges[0].size;
pc_ranges[1].size = sizeof(float) * 4; // alpha or color
pc_ranges[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
VkPipelineLayoutCreateInfo pl_info = {0};
pl_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pl_info.setLayoutCount = 1;
pl_info.pSetLayouts = out_ds_layout;
pl_info.pushConstantRangeCount = 2;
pl_info.pPushConstantRanges = pc_ranges;
res = vkCreatePipelineLayout(dev, &pl_info, NULL, out_pipe_layout);
if (res != VK_SUCCESS) {
wlr_vk_error("vkCreatePipelineLayout", res);
return false;
}
return true;
}
// Initializes the pipeline for rendering textures and using the given
// VkRenderPass and VkPipelineLayout.
static bool init_tex_pipeline(struct wlr_vk_renderer *renderer,
VkRenderPass rp, VkPipelineLayout pipe_layout, VkPipeline *pipe) {
VkResult res;
VkDevice dev = renderer->dev->dev;
// shaders
VkPipelineShaderStageCreateInfo vert_stage = {
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
NULL, 0, VK_SHADER_STAGE_VERTEX_BIT, renderer->vert_module,
"main", NULL
};
VkPipelineShaderStageCreateInfo tex_stages[2] = {vert_stage, {
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
NULL, 0, VK_SHADER_STAGE_FRAGMENT_BIT, renderer->tex_frag_module,
"main", NULL
}};
// info
VkPipelineInputAssemblyStateCreateInfo assembly = {0};
assembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
assembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN;
VkPipelineRasterizationStateCreateInfo rasterization = {0};
rasterization.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterization.polygonMode = VK_POLYGON_MODE_FILL;
rasterization.cullMode = VK_CULL_MODE_NONE;
rasterization.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterization.lineWidth = 1.f;
VkPipelineColorBlendAttachmentState blend_attachment = {0};
blend_attachment.blendEnable = true;
// we generally work with pre-multiplied alpha
blend_attachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
blend_attachment.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
blend_attachment.colorBlendOp = VK_BLEND_OP_ADD;
blend_attachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
blend_attachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
blend_attachment.alphaBlendOp = VK_BLEND_OP_ADD;
blend_attachment.colorWriteMask =
VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT |
VK_COLOR_COMPONENT_A_BIT;
VkPipelineColorBlendStateCreateInfo blend = {0};
blend.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
blend.attachmentCount = 1;
blend.pAttachments = &blend_attachment;
VkPipelineMultisampleStateCreateInfo multisample = {0};
multisample.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisample.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
VkPipelineViewportStateCreateInfo viewport = {0};
viewport.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewport.viewportCount = 1;
viewport.scissorCount = 1;
VkDynamicState dynStates[2] = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
};
VkPipelineDynamicStateCreateInfo dynamic = {0};
dynamic.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamic.pDynamicStates = dynStates;
dynamic.dynamicStateCount = 2;
VkPipelineVertexInputStateCreateInfo vertex = {0};
vertex.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
VkGraphicsPipelineCreateInfo pinfo = {0};
pinfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pinfo.layout = pipe_layout;
pinfo.renderPass = rp;
pinfo.subpass = 0;
pinfo.stageCount = 2;
pinfo.pStages = tex_stages;
pinfo.pInputAssemblyState = &assembly;
pinfo.pRasterizationState = &rasterization;
pinfo.pColorBlendState = &blend;
pinfo.pMultisampleState = &multisample;
pinfo.pViewportState = &viewport;
pinfo.pDynamicState = &dynamic;
pinfo.pVertexInputState = &vertex;
// NOTE: use could use a cache here for faster loading
// store it somewhere like $XDG_CACHE_HOME/wlroots/vk_pipe_cache
VkPipelineCache cache = VK_NULL_HANDLE;
res = vkCreateGraphicsPipelines(dev, cache, 1, &pinfo, NULL, pipe);
if (res != VK_SUCCESS) {
wlr_vk_error("failed to create vulkan pipelines:", res);
return false;
}
return true;
}
// Creates static render data, such as sampler, layouts and shader modules
// for the given rednerer.
// Cleanup is done by destroying the renderer.
static bool init_static_render_data(struct wlr_vk_renderer *renderer) {
VkResult res;
VkDevice dev = renderer->dev->dev;
// default sampler (non ycbcr)
VkSamplerCreateInfo sampler_info = {0};
sampler_info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
sampler_info.magFilter = VK_FILTER_LINEAR;
sampler_info.minFilter = VK_FILTER_LINEAR;
sampler_info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
sampler_info.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.maxAnisotropy = 1.f;
sampler_info.minLod = 0.f;
sampler_info.maxLod = 0.25f;
sampler_info.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
res = vkCreateSampler(dev, &sampler_info, NULL, &renderer->sampler);
if (res != VK_SUCCESS) {
wlr_vk_error("Failed to create sampler", res);
return false;
}
if (!init_tex_layouts(renderer, renderer->sampler,
&renderer->ds_layout, &renderer->pipe_layout)) {
return false;
}
// load vert module and tex frag module since they are needed to
// initialize the tex pipeline
VkShaderModuleCreateInfo sinfo = {0};
sinfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
sinfo.codeSize = sizeof(common_vert_data);
sinfo.pCode = common_vert_data;
res = vkCreateShaderModule(dev, &sinfo, NULL, &renderer->vert_module);
if (res != VK_SUCCESS) {
wlr_vk_error("Failed to create vertex shader module", res);
return false;
}
// tex frag
sinfo.codeSize = sizeof(texture_frag_data);
sinfo.pCode = texture_frag_data;
res = vkCreateShaderModule(dev, &sinfo, NULL, &renderer->tex_frag_module);
if (res != VK_SUCCESS) {
wlr_vk_error("Failed to create tex fragment shader module", res);
return false;
}
// quad frag
sinfo.codeSize = sizeof(quad_frag_data);
sinfo.pCode = quad_frag_data;
res = vkCreateShaderModule(dev, &sinfo, NULL, &renderer->quad_frag_module);
if (res != VK_SUCCESS) {
wlr_vk_error("Failed to create quad fragment shader module", res);
return false;
}
return true;
}
static struct wlr_vk_render_format_setup *find_or_create_render_setup(
struct wlr_vk_renderer *renderer, VkFormat format) {
struct wlr_vk_render_format_setup *setup;
wl_list_for_each(setup, &renderer->render_format_setups, link) {
if (setup->render_format == format) {
return setup;
}
}
setup = calloc(1u, sizeof(*setup));
if (!setup) {
wlr_log(WLR_ERROR, "Allocation failed");
return NULL;
}
setup->render_format = format;
// util
VkDevice dev = renderer->dev->dev;
VkResult res;
VkAttachmentDescription attachment = {0};
attachment.format = format;
attachment.samples = VK_SAMPLE_COUNT_1_BIT;
attachment.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachment.initialLayout = VK_IMAGE_LAYOUT_GENERAL;
attachment.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
VkAttachmentReference color_ref = {0};
color_ref.attachment = 0u;
color_ref.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {0};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_ref;
VkSubpassDependency deps[2] = {0};
deps[0].srcSubpass = VK_SUBPASS_EXTERNAL;
deps[0].srcStageMask = VK_PIPELINE_STAGE_HOST_BIT |
VK_PIPELINE_STAGE_TRANSFER_BIT |
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
deps[0].srcAccessMask = VK_ACCESS_HOST_WRITE_BIT |
VK_ACCESS_TRANSFER_WRITE_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
deps[0].dstSubpass = 0;
deps[0].dstStageMask = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
deps[0].dstAccessMask = VK_ACCESS_UNIFORM_READ_BIT |
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT |
VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
VK_ACCESS_SHADER_READ_BIT;
deps[1].srcSubpass = 0;
deps[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
deps[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
deps[1].dstSubpass = VK_SUBPASS_EXTERNAL;
deps[1].dstStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT |
VK_PIPELINE_STAGE_HOST_BIT | VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
deps[1].dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT |
VK_ACCESS_MEMORY_READ_BIT;
VkRenderPassCreateInfo rp_info = {0};
rp_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
rp_info.attachmentCount = 1;
rp_info.pAttachments = &attachment;
rp_info.subpassCount = 1;
rp_info.pSubpasses = &subpass;
rp_info.dependencyCount = 2u;
rp_info.pDependencies = deps;
res = vkCreateRenderPass(dev, &rp_info, NULL, &setup->render_pass);
if (res != VK_SUCCESS) {
wlr_vk_error("Failed to create render pass", res);
free(setup);
return NULL;
}
if (!init_tex_pipeline(renderer, setup->render_pass, renderer->pipe_layout,
&setup->tex_pipe)) {
goto error;
}
VkPipelineShaderStageCreateInfo vert_stage = {
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
NULL, 0, VK_SHADER_STAGE_VERTEX_BIT, renderer->vert_module,
"main", NULL
};
VkPipelineShaderStageCreateInfo quad_stages[2] = {vert_stage, {
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
NULL, 0, VK_SHADER_STAGE_FRAGMENT_BIT,
renderer->quad_frag_module, "main", NULL
}};
// info
VkPipelineInputAssemblyStateCreateInfo assembly = {0};
assembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
assembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN;
VkPipelineRasterizationStateCreateInfo rasterization = {0};
rasterization.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterization.polygonMode = VK_POLYGON_MODE_FILL;
rasterization.cullMode = VK_CULL_MODE_NONE;
rasterization.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterization.lineWidth = 1.f;
VkPipelineColorBlendAttachmentState blend_attachment = {0};
blend_attachment.blendEnable = true;
blend_attachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
blend_attachment.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
blend_attachment.colorBlendOp = VK_BLEND_OP_ADD;
blend_attachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
blend_attachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
blend_attachment.alphaBlendOp = VK_BLEND_OP_ADD;
blend_attachment.colorWriteMask =
VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT |
VK_COLOR_COMPONENT_A_BIT;
VkPipelineColorBlendStateCreateInfo blend = {0};
blend.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
blend.attachmentCount = 1;
blend.pAttachments = &blend_attachment;
VkPipelineMultisampleStateCreateInfo multisample = {0};
multisample.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisample.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
VkPipelineViewportStateCreateInfo viewport = {0};
viewport.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewport.viewportCount = 1;
viewport.scissorCount = 1;
VkDynamicState dynStates[2] = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
};
VkPipelineDynamicStateCreateInfo dynamic = {0};
dynamic.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamic.pDynamicStates = dynStates;
dynamic.dynamicStateCount = 2;
VkPipelineVertexInputStateCreateInfo vertex = {0};
vertex.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
VkGraphicsPipelineCreateInfo pinfo = {0};
pinfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pinfo.layout = renderer->pipe_layout;
pinfo.renderPass = setup->render_pass;
pinfo.subpass = 0;
pinfo.stageCount = 2;
pinfo.pStages = quad_stages;
pinfo.pInputAssemblyState = &assembly;
pinfo.pRasterizationState = &rasterization;
pinfo.pColorBlendState = &blend;
pinfo.pMultisampleState = &multisample;
pinfo.pViewportState = &viewport;
pinfo.pDynamicState = &dynamic;
pinfo.pVertexInputState = &vertex;
// NOTE: use could use a cache here for faster loading
// store it somewhere like $XDG_CACHE_HOME/wlroots/vk_pipe_cache.bin
VkPipelineCache cache = VK_NULL_HANDLE;
res = vkCreateGraphicsPipelines(dev, cache, 1, &pinfo, NULL, &setup->quad_pipe);
if (res != VK_SUCCESS) {
wlr_log(WLR_ERROR, "failed to create vulkan quad pipeline: %d", res);
goto error;
}
wl_list_insert(&renderer->render_format_setups, &setup->link);
return setup;
error:
destroy_render_format_setup(renderer, setup);
return NULL;
}
struct wlr_renderer *vulkan_renderer_create_for_device(struct wlr_vk_device *dev) {
struct wlr_vk_renderer *renderer;
VkResult res;
if (!(renderer = calloc(1, sizeof(*renderer)))) {
wlr_log_errno(WLR_ERROR, "failed to allocate wlr_vk_renderer");
return NULL;
}
renderer->dev = dev;
wlr_renderer_init(&renderer->wlr_renderer, &renderer_impl);
wl_list_init(&renderer->stage.buffers);
wl_list_init(&renderer->destroy_textures);
wl_list_init(&renderer->foreign_textures);
wl_list_init(&renderer->textures);
wl_list_init(&renderer->descriptor_pools);
wl_list_init(&renderer->render_format_setups);
wl_list_init(&renderer->render_buffers);
if (!init_static_render_data(renderer)) {
goto error;
}
// command pool
VkCommandPoolCreateInfo cpool_info = {0};
cpool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cpool_info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
cpool_info.queueFamilyIndex = dev->queue_family;
res = vkCreateCommandPool(dev->dev, &cpool_info, NULL,
&renderer->command_pool);
if (res != VK_SUCCESS) {
wlr_vk_error("vkCreateCommandPool", res);
goto error;
}
VkCommandBufferAllocateInfo cbai = {0};
cbai.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cbai.commandBufferCount = 1u;
cbai.commandPool = renderer->command_pool;
cbai.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
res = vkAllocateCommandBuffers(dev->dev, &cbai, &renderer->cb);
if (res != VK_SUCCESS) {
wlr_vk_error("vkAllocateCommandBuffers", res);
goto error;
}
VkFenceCreateInfo fence_info = {0};
fence_info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
res = vkCreateFence(dev->dev, &fence_info, NULL,
&renderer->fence);
if (res != VK_SUCCESS) {
wlr_vk_error("vkCreateFence", res);
goto error;
}
// staging command buffer
VkCommandBufferAllocateInfo cmd_buf_info = {0};
cmd_buf_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cmd_buf_info.commandPool = renderer->command_pool;
cmd_buf_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
cmd_buf_info.commandBufferCount = 1u;
res = vkAllocateCommandBuffers(dev->dev, &cmd_buf_info,
&renderer->stage.cb);
if (res != VK_SUCCESS) {
wlr_vk_error("vkAllocateCommandBuffers", res);
goto error;
}
return &renderer->wlr_renderer;
error:
vulkan_destroy(&renderer->wlr_renderer);
return NULL;
}
struct wlr_renderer *wlr_vk_renderer_create_with_drm_fd(int drm_fd) {
wlr_log(WLR_INFO, "The vulkan renderer is only experimental and "
"not expected to be ready for daily use");
// NOTE: we could add functionality to allow the compositor passing its
// name and version to this function. Just use dummies until then,
// shouldn't be relevant to the driver anyways
struct wlr_vk_instance *ini = vulkan_instance_create(0, NULL, default_debug);
if (!ini) {
wlr_log(WLR_ERROR, "creating vulkan instance for renderer failed");
return NULL;
}
VkPhysicalDevice phdev = vulkan_find_drm_phdev(ini, drm_fd);
if (!phdev) {
// We rather fail here than doing some guesswork
wlr_log(WLR_ERROR, "Could not match drm and vulkan device");
return NULL;
}
// queue families
uint32_t qfam_count;
vkGetPhysicalDeviceQueueFamilyProperties(phdev, &qfam_count, NULL);
VkQueueFamilyProperties queue_props[qfam_count];
vkGetPhysicalDeviceQueueFamilyProperties(phdev, &qfam_count,
queue_props);
struct wlr_vk_device *dev = vulkan_device_create(ini, phdev, 0, NULL);
if (!dev) {
wlr_log(WLR_ERROR, "Failed to create vulkan device");
vulkan_instance_destroy(ini);
return NULL;
}
// We duplicate it so it's not closed while we still need it.
dev->drm_fd = fcntl(drm_fd, F_DUPFD_CLOEXEC, 0);
if (dev->drm_fd < 0) {
wlr_log_errno(WLR_ERROR, "fcntl(F_DUPFD_CLOEXEC) failed");
vulkan_device_destroy(dev);
vulkan_instance_destroy(ini);
return NULL;
}
return vulkan_renderer_create_for_device(dev);
}