wgpu/naga/tests/in/shadow.wgsl
2023-10-25 14:25:04 -04:00

118 lines
3.7 KiB
WebGPU Shading Language

struct Globals {
view_proj: mat4x4<f32>,
num_lights: vec4<u32>,
}
@group(0)
@binding(0)
var<uniform> u_globals: Globals;
struct Entity {
world: mat4x4<f32>,
color: vec4<f32>,
}
@group(1)
@binding(0)
var<uniform> u_entity: Entity;
/* Not useful for testing
@vertex
fn vs_bake(@location(0) position: vec4<i32>) -> @builtin(position) vec4<f32> {
return u_globals.view_proj * u_entity.world * vec4<f32>(position);
}
*/
struct VertexOutput {
@builtin(position) proj_position: vec4<f32>,
@location(0) world_normal: vec3<f32>,
@location(1) world_position: vec4<f32>,
}
@vertex
fn vs_main(
@location(0) position: vec4<i32>,
@location(1) normal: vec4<i32>,
) -> VertexOutput {
let w = u_entity.world;
let world_pos = u_entity.world * vec4<f32>(position);
var out: VertexOutput;
out.world_normal = mat3x3<f32>(w.x.xyz, w.y.xyz, w.z.xyz) * vec3<f32>(normal.xyz);
out.world_position = world_pos;
out.proj_position = u_globals.view_proj * world_pos;
return out;
}
// fragment shader
struct Light {
proj: mat4x4<f32>,
pos: vec4<f32>,
color: vec4<f32>,
}
@group(0)
@binding(1)
var<storage, read> s_lights: array<Light>;
@group(0)
@binding(1)
var<uniform> u_lights: array<Light, 10>; // Used when storage types are not supported
@group(0)
@binding(2)
var t_shadow: texture_depth_2d_array;
@group(0)
@binding(3)
var sampler_shadow: sampler_comparison;
fn fetch_shadow(light_id: u32, homogeneous_coords: vec4<f32>) -> f32 {
if (homogeneous_coords.w <= 0.0) {
return 1.0;
}
// compensate for the Y-flip difference between the NDC and texture coordinates
let flip_correction = vec2<f32>(0.5, -0.5);
// compute texture coordinates for shadow lookup
let proj_correction = 1.0 / homogeneous_coords.w;
let light_local = homogeneous_coords.xy * flip_correction * proj_correction + vec2<f32>(0.5, 0.5);
// do the lookup, using HW PCF and comparison
return textureSampleCompareLevel(t_shadow, sampler_shadow, light_local, i32(light_id), homogeneous_coords.z * proj_correction);
}
const c_ambient: vec3<f32> = vec3<f32>(0.05, 0.05, 0.05);
const c_max_lights: u32 = 10u;
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
let normal = normalize(in.world_normal);
// accumulate color
var color: vec3<f32> = c_ambient;
for(var i = 0u; i < min(u_globals.num_lights.x, c_max_lights); i++) {
let light = s_lights[i];
// project into the light space
let shadow = fetch_shadow(i, light.proj * in.world_position);
// compute Lambertian diffuse term
let light_dir = normalize(light.pos.xyz - in.world_position.xyz);
let diffuse = max(0.0, dot(normal, light_dir));
// add light contribution
color += shadow * diffuse * light.color.xyz;
}
// multiply the light by material color
return vec4<f32>(color, 1.0) * u_entity.color;
}
// The fragment entrypoint used when storage buffers are not available for the lights
@fragment
fn fs_main_without_storage(in: VertexOutput) -> @location(0) vec4<f32> {
let normal = normalize(in.world_normal);
var color: vec3<f32> = c_ambient;
for(var i = 0u; i < min(u_globals.num_lights.x, c_max_lights); i++) {
// This line is the only difference from the entrypoint above. It uses the lights
// uniform instead of the lights storage buffer
let light = u_lights[i];
let shadow = fetch_shadow(i, light.proj * in.world_position);
let light_dir = normalize(light.pos.xyz - in.world_position.xyz);
let diffuse = max(0.0, dot(normal, light_dir));
color += shadow * diffuse * light.color.xyz;
}
return vec4<f32>(color, 1.0) * u_entity.color;
}