wgpu/tests/in/boids.wgsl
2021-02-07 18:16:26 -05:00

113 lines
2.6 KiB
WebGPU Shading Language

const NUM_PARTICLES: u32 = 1500;
[[block]]
struct Particle {
pos : vec2<f32>;
vel : vec2<f32>;
};
[[block]]
struct SimParams {
deltaT : f32;
rule1Distance : f32;
rule2Distance : f32;
rule3Distance : f32;
rule1Scale : f32;
rule2Scale : f32;
rule3Scale : f32;
};
[[block]]
struct Particles {
particles : [[stride(16)]] array<Particle>;
};
[[group(0), binding(0)]] var<uniform> params : SimParams;
[[group(0), binding(1)]] var<storage> particlesSrc : [[access(read)]] Particles;
[[group(0), binding(2)]] var<storage> particlesDst : [[access(read_write)]] Particles;
[[builtin(global_invocation_id)]] var gl_GlobalInvocationID : vec3<u32>;
// https://github.com/austinEng/Project6-Vulkan-Flocking/blob/master/data/shaders/computeparticles/particle.comp
[[stage(compute), workgroup_size(64)]]
fn main() {
const index : u32 = gl_GlobalInvocationID.x;
if (index >= NUM_PARTICLES) {
return;
}
var vPos : vec2<f32> = particlesSrc.particles[index].pos;
var vVel : vec2<f32> = particlesSrc.particles[index].vel;
var cMass : vec2<f32> = vec2<f32>(0.0, 0.0);
var cVel : vec2<f32> = vec2<f32>(0.0, 0.0);
var colVel : vec2<f32> = vec2<f32>(0.0, 0.0);
var cMassCount : i32 = 0;
var cVelCount : i32 = 0;
var pos : vec2<f32>;
var vel : vec2<f32>;
var i : u32 = 0u;
loop {
if (i >= NUM_PARTICLES) {
break;
}
if (i == index) {
continue;
}
pos = particlesSrc.particles[i].pos;
vel = particlesSrc.particles[i].vel;
if (distance(pos, vPos) < params.rule1Distance) {
cMass = cMass + pos;
cMassCount = cMassCount + 1;
}
if (distance(pos, vPos) < params.rule2Distance) {
colVel = colVel - (pos - vPos);
}
if (distance(pos, vPos) < params.rule3Distance) {
cVel = cVel + vel;
cVelCount = cVelCount + 1;
}
continuing {
i = i + 1u;
}
}
if (cMassCount > 0) {
cMass = cMass * (1.0 / f32(cMassCount)) - vPos;
}
if (cVelCount > 0) {
cVel = cVel * (1.0 / f32(cVelCount));
}
vVel = vVel + (cMass * params.rule1Scale) +
(colVel * params.rule2Scale) +
(cVel * params.rule3Scale);
// clamp velocity for a more pleasing simulation
vVel = normalize(vVel) * clamp(length(vVel), 0.0, 0.1);
// kinematic update
vPos = vPos + (vVel * params.deltaT);
// Wrap around boundary
if (vPos.x < -1.0) {
vPos.x = 1.0;
}
if (vPos.x > 1.0) {
vPos.x = -1.0;
}
if (vPos.y < -1.0) {
vPos.y = 1.0;
}
if (vPos.y > 1.0) {
vPos.y = -1.0;
}
// Write back
particlesDst.particles[index].pos = vPos;
particlesDst.particles[index].vel = vVel;
}