mirror of
https://github.com/vulkano-rs/vulkano.git
synced 2024-11-22 06:45:23 +00:00
664 lines
24 KiB
Rust
664 lines
24 KiB
Rust
// A minimal particle-sandbox to demonstrate a reasonable use-case for a device-local buffer. We
|
|
// gain significant runtime performance by writing the inital vertex values to the GPU using a
|
|
// staging buffer and then copying the data to a device-local buffer to be accessed solely by the
|
|
// GPU through the compute shader and as a vertex array.
|
|
|
|
use std::{error::Error, sync::Arc, time::SystemTime};
|
|
use vulkano::{
|
|
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage},
|
|
command_buffer::{
|
|
allocator::StandardCommandBufferAllocator, CommandBufferBeginInfo, CommandBufferLevel,
|
|
CommandBufferUsage, CopyBufferInfo, RecordingCommandBuffer, RenderPassBeginInfo,
|
|
},
|
|
descriptor_set::{
|
|
allocator::StandardDescriptorSetAllocator, DescriptorSet, WriteDescriptorSet,
|
|
},
|
|
device::{
|
|
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo,
|
|
QueueFlags,
|
|
},
|
|
image::{view::ImageView, ImageUsage},
|
|
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
|
|
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
|
|
pipeline::{
|
|
compute::ComputePipelineCreateInfo,
|
|
graphics::{
|
|
color_blend::{ColorBlendAttachmentState, ColorBlendState},
|
|
input_assembly::{InputAssemblyState, PrimitiveTopology},
|
|
multisample::MultisampleState,
|
|
rasterization::RasterizationState,
|
|
vertex_input::{Vertex, VertexDefinition},
|
|
viewport::{Viewport, ViewportState},
|
|
GraphicsPipelineCreateInfo,
|
|
},
|
|
layout::PipelineDescriptorSetLayoutCreateInfo,
|
|
ComputePipeline, GraphicsPipeline, PipelineBindPoint, PipelineLayout,
|
|
PipelineShaderStageCreateInfo,
|
|
},
|
|
render_pass::{Framebuffer, FramebufferCreateInfo, Subpass},
|
|
swapchain::{
|
|
acquire_next_image, PresentMode, Surface, Swapchain, SwapchainCreateInfo,
|
|
SwapchainPresentInfo,
|
|
},
|
|
sync::{self, future::FenceSignalFuture, GpuFuture},
|
|
Validated, VulkanLibrary,
|
|
};
|
|
use winit::{
|
|
event::{Event, WindowEvent},
|
|
event_loop::{ControlFlow, EventLoop},
|
|
window::WindowBuilder,
|
|
};
|
|
|
|
const WINDOW_WIDTH: u32 = 800;
|
|
const WINDOW_HEIGHT: u32 = 600;
|
|
|
|
const PARTICLE_COUNT: usize = 100_000;
|
|
|
|
fn main() -> Result<(), impl Error> {
|
|
// The usual Vulkan initialization. Largely the same as example `triangle.rs` until further
|
|
// commentation is provided.
|
|
let event_loop = EventLoop::new().unwrap();
|
|
|
|
let library = VulkanLibrary::new().unwrap();
|
|
let required_extensions = Surface::required_extensions(&event_loop).unwrap();
|
|
let instance = Instance::new(
|
|
library,
|
|
InstanceCreateInfo {
|
|
enabled_extensions: required_extensions,
|
|
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap();
|
|
|
|
let window = Arc::new(
|
|
WindowBuilder::new()
|
|
// For simplicity, we are going to assert that the window size is static.
|
|
.with_resizable(false)
|
|
.with_title("simple particles")
|
|
.with_inner_size(winit::dpi::PhysicalSize::new(WINDOW_WIDTH, WINDOW_HEIGHT))
|
|
.build(&event_loop)
|
|
.unwrap(),
|
|
);
|
|
let surface = Surface::from_window(instance.clone(), window.clone()).unwrap();
|
|
|
|
let device_extensions = DeviceExtensions {
|
|
khr_swapchain: true,
|
|
..DeviceExtensions::empty()
|
|
};
|
|
let (physical_device, queue_family_index) = instance
|
|
.enumerate_physical_devices()
|
|
.unwrap()
|
|
.filter(|p| p.supported_extensions().contains(&device_extensions))
|
|
.filter_map(|p| {
|
|
p.queue_family_properties()
|
|
.iter()
|
|
.enumerate()
|
|
.position(|(i, q)| {
|
|
q.queue_flags.intersects(QueueFlags::GRAPHICS)
|
|
&& p.surface_support(i as u32, &surface).unwrap_or(false)
|
|
})
|
|
.map(|i| (p, i as u32))
|
|
})
|
|
.min_by_key(|(p, _)| match p.properties().device_type {
|
|
PhysicalDeviceType::DiscreteGpu => 0,
|
|
PhysicalDeviceType::IntegratedGpu => 1,
|
|
PhysicalDeviceType::VirtualGpu => 2,
|
|
PhysicalDeviceType::Cpu => 3,
|
|
PhysicalDeviceType::Other => 4,
|
|
_ => 5,
|
|
})
|
|
.unwrap();
|
|
|
|
println!(
|
|
"Using device: {} (type: {:?})",
|
|
physical_device.properties().device_name,
|
|
physical_device.properties().device_type,
|
|
);
|
|
|
|
let (device, mut queues) = Device::new(
|
|
physical_device,
|
|
DeviceCreateInfo {
|
|
enabled_extensions: device_extensions,
|
|
queue_create_infos: vec![QueueCreateInfo {
|
|
queue_family_index,
|
|
..Default::default()
|
|
}],
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap();
|
|
let queue = queues.next().unwrap();
|
|
|
|
let (swapchain, images) = {
|
|
let surface_capabilities = device
|
|
.physical_device()
|
|
.surface_capabilities(&surface, Default::default())
|
|
.unwrap();
|
|
|
|
let image_format = device
|
|
.physical_device()
|
|
.surface_formats(&surface, Default::default())
|
|
.unwrap()[0]
|
|
.0;
|
|
|
|
Swapchain::new(
|
|
device.clone(),
|
|
surface,
|
|
SwapchainCreateInfo {
|
|
min_image_count: surface_capabilities.min_image_count.max(2),
|
|
image_format,
|
|
image_extent: [WINDOW_WIDTH, WINDOW_HEIGHT],
|
|
image_usage: ImageUsage::COLOR_ATTACHMENT,
|
|
composite_alpha: surface_capabilities
|
|
.supported_composite_alpha
|
|
.into_iter()
|
|
.next()
|
|
.unwrap(),
|
|
present_mode: PresentMode::Fifo,
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap()
|
|
};
|
|
|
|
let render_pass = vulkano::single_pass_renderpass!(
|
|
device.clone(),
|
|
attachments: {
|
|
color: {
|
|
format: swapchain.image_format(),
|
|
samples: 1,
|
|
load_op: Clear,
|
|
store_op: Store,
|
|
},
|
|
},
|
|
pass: {
|
|
color: [color],
|
|
depth_stencil: {},
|
|
},
|
|
)
|
|
.unwrap();
|
|
|
|
let framebuffers: Vec<Arc<Framebuffer>> = images
|
|
.into_iter()
|
|
.map(|img| {
|
|
let view = ImageView::new_default(img).unwrap();
|
|
Framebuffer::new(
|
|
render_pass.clone(),
|
|
FramebufferCreateInfo {
|
|
attachments: vec![view],
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap()
|
|
})
|
|
.collect();
|
|
|
|
// Compute shader for updating the position and velocity of each particle every frame.
|
|
mod cs {
|
|
vulkano_shaders::shader! {
|
|
ty: "compute",
|
|
src: r"
|
|
#version 450
|
|
|
|
layout(local_size_x = 128, local_size_y = 1, local_size_z = 1) in;
|
|
|
|
struct VertexData {
|
|
vec2 pos;
|
|
vec2 vel;
|
|
};
|
|
|
|
// Storage buffer binding, which we optimize by using a DeviceLocalBuffer.
|
|
layout (binding = 0) buffer VertexBuffer {
|
|
VertexData verticies[];
|
|
};
|
|
|
|
// Allow push constants to define a parameters of compute.
|
|
layout (push_constant) uniform PushConstants {
|
|
vec2 attractor;
|
|
float attractor_strength;
|
|
float delta_time;
|
|
} push;
|
|
|
|
// Keep this value in sync with the `maxSpeed` const in the vertex shader.
|
|
const float maxSpeed = 10.0;
|
|
|
|
const float minLength = 0.02;
|
|
const float friction = -2.0;
|
|
|
|
void main() {
|
|
const uint index = gl_GlobalInvocationID.x;
|
|
|
|
vec2 vel = verticies[index].vel;
|
|
|
|
// Update particle position according to velocity.
|
|
vec2 pos = verticies[index].pos + push.delta_time * vel;
|
|
|
|
// Bounce particle off screen-border.
|
|
if (abs(pos.x) > 1.0) {
|
|
vel.x = sign(pos.x) * (-0.95 * abs(vel.x) - 0.0001);
|
|
if (abs(pos.x) >= 1.05) {
|
|
pos.x = sign(pos.x);
|
|
}
|
|
}
|
|
if (abs(pos.y) > 1.0) {
|
|
vel.y = sign(pos.y) * (-0.95 * abs(vel.y) - 0.0001);
|
|
if (abs(pos.y) >= 1.05) {
|
|
pos.y = sign(pos.y);
|
|
}
|
|
}
|
|
|
|
// Simple inverse-square force.
|
|
vec2 t = push.attractor - pos;
|
|
float r = max(length(t), minLength);
|
|
vec2 force = push.attractor_strength * (t / r) / (r * r);
|
|
|
|
// Update velocity, enforcing a maximum speed.
|
|
vel += push.delta_time * force;
|
|
if (length(vel) > maxSpeed) {
|
|
vel = maxSpeed*normalize(vel);
|
|
}
|
|
|
|
// Set new values back into buffer.
|
|
verticies[index].pos = pos;
|
|
verticies[index].vel = vel * exp(friction * push.delta_time);
|
|
}
|
|
",
|
|
}
|
|
}
|
|
|
|
// The vertex shader determines color and is run once per particle. The vertices will be
|
|
// updated by the compute shader each frame.
|
|
mod vs {
|
|
vulkano_shaders::shader! {
|
|
ty: "vertex",
|
|
src: r"
|
|
#version 450
|
|
|
|
layout(location = 0) in vec2 pos;
|
|
layout(location = 1) in vec2 vel;
|
|
|
|
layout(location = 0) out vec4 outColor;
|
|
|
|
// Keep this value in sync with the `maxSpeed` const in the compute shader.
|
|
const float maxSpeed = 10.0;
|
|
|
|
void main() {
|
|
gl_Position = vec4(pos, 0.0, 1.0);
|
|
gl_PointSize = 1.0;
|
|
|
|
// Mix colors based on position and velocity.
|
|
outColor = mix(
|
|
0.2 * vec4(pos, abs(vel.x) + abs(vel.y), 1.0),
|
|
vec4(1.0, 0.5, 0.8, 1.0),
|
|
sqrt(length(vel) / maxSpeed)
|
|
);
|
|
}
|
|
",
|
|
}
|
|
}
|
|
|
|
// The fragment shader will only need to apply the color forwarded by the vertex shader,
|
|
// because the color of a particle should be identical over all pixels.
|
|
mod fs {
|
|
vulkano_shaders::shader! {
|
|
ty: "fragment",
|
|
src: r"
|
|
#version 450
|
|
|
|
layout(location = 0) in vec4 outColor;
|
|
|
|
layout(location = 0) out vec4 fragColor;
|
|
|
|
void main() {
|
|
fragColor = outColor;
|
|
}
|
|
",
|
|
}
|
|
}
|
|
|
|
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
|
|
let descriptor_set_allocator = Arc::new(StandardDescriptorSetAllocator::new(
|
|
device.clone(),
|
|
Default::default(),
|
|
));
|
|
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
|
|
device.clone(),
|
|
Default::default(),
|
|
));
|
|
|
|
#[derive(BufferContents, Vertex)]
|
|
#[repr(C)]
|
|
struct Vertex {
|
|
#[format(R32G32_SFLOAT)]
|
|
pos: [f32; 2],
|
|
#[format(R32G32_SFLOAT)]
|
|
vel: [f32; 2],
|
|
}
|
|
|
|
// Apply scoped logic to create `DeviceLocalBuffer` initialized with vertex data.
|
|
let vertex_buffer = {
|
|
// Initialize vertex data as an iterator.
|
|
let vertices = (0..PARTICLE_COUNT).map(|i| {
|
|
let f = i as f32 / (PARTICLE_COUNT / 10) as f32;
|
|
Vertex {
|
|
pos: [2. * f.fract() - 1., 0.2 * f.floor() - 1.],
|
|
vel: [0.; 2],
|
|
}
|
|
});
|
|
|
|
// Create a CPU-accessible buffer initialized with the vertex data.
|
|
let temporary_accessible_buffer = Buffer::from_iter(
|
|
memory_allocator.clone(),
|
|
BufferCreateInfo {
|
|
// Specify this buffer will be used as a transfer source.
|
|
usage: BufferUsage::TRANSFER_SRC,
|
|
..Default::default()
|
|
},
|
|
AllocationCreateInfo {
|
|
// Specify this buffer will be used for uploading to the GPU.
|
|
memory_type_filter: MemoryTypeFilter::PREFER_HOST
|
|
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
|
|
..Default::default()
|
|
},
|
|
vertices,
|
|
)
|
|
.unwrap();
|
|
|
|
// Create a buffer in device-local memory with enough space for `PARTICLE_COUNT` number of
|
|
// `Vertex`.
|
|
let device_local_buffer = Buffer::new_slice::<Vertex>(
|
|
memory_allocator,
|
|
BufferCreateInfo {
|
|
// Specify use as a storage buffer, vertex buffer, and transfer destination.
|
|
usage: BufferUsage::STORAGE_BUFFER
|
|
| BufferUsage::TRANSFER_DST
|
|
| BufferUsage::VERTEX_BUFFER,
|
|
..Default::default()
|
|
},
|
|
AllocationCreateInfo {
|
|
// Specify this buffer will only be used by the device.
|
|
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE,
|
|
..Default::default()
|
|
},
|
|
PARTICLE_COUNT as vulkano::DeviceSize,
|
|
)
|
|
.unwrap();
|
|
|
|
// Create one-time command to copy between the buffers.
|
|
let mut cbb = RecordingCommandBuffer::new(
|
|
command_buffer_allocator.clone(),
|
|
queue.queue_family_index(),
|
|
CommandBufferLevel::Primary,
|
|
CommandBufferBeginInfo {
|
|
usage: CommandBufferUsage::OneTimeSubmit,
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap();
|
|
cbb.copy_buffer(CopyBufferInfo::buffers(
|
|
temporary_accessible_buffer,
|
|
device_local_buffer.clone(),
|
|
))
|
|
.unwrap();
|
|
let cb = cbb.end().unwrap();
|
|
|
|
// Execute copy and wait for copy to complete before proceeding.
|
|
cb.execute(queue.clone())
|
|
.unwrap()
|
|
.then_signal_fence_and_flush()
|
|
.unwrap()
|
|
.wait(None /* timeout */)
|
|
.unwrap();
|
|
|
|
device_local_buffer
|
|
};
|
|
|
|
// Create a compute-pipeline for applying the compute shader to vertices.
|
|
let compute_pipeline = {
|
|
let cs = cs::load(device.clone())
|
|
.unwrap()
|
|
.entry_point("main")
|
|
.unwrap();
|
|
let stage = PipelineShaderStageCreateInfo::new(cs);
|
|
let layout = PipelineLayout::new(
|
|
device.clone(),
|
|
PipelineDescriptorSetLayoutCreateInfo::from_stages([&stage])
|
|
.into_pipeline_layout_create_info(device.clone())
|
|
.expect("failed to create descriptor set layouts"),
|
|
)
|
|
.expect("failed to create pipeline layout");
|
|
ComputePipeline::new(
|
|
device.clone(),
|
|
None,
|
|
ComputePipelineCreateInfo::stage_layout(stage, layout),
|
|
)
|
|
.expect("failed to create compute shader")
|
|
};
|
|
|
|
// Create a new descriptor set for binding vertices as a storage buffer.
|
|
use vulkano::pipeline::Pipeline; // Required to access the `layout` method of pipeline.
|
|
let descriptor_set = DescriptorSet::new(
|
|
descriptor_set_allocator.clone(),
|
|
// 0 is the index of the descriptor set.
|
|
compute_pipeline.layout().set_layouts()[0].clone(),
|
|
[
|
|
// 0 is the binding of the data in this set. We bind the `Buffer` of vertices here.
|
|
WriteDescriptorSet::buffer(0, vertex_buffer.clone()),
|
|
],
|
|
[],
|
|
)
|
|
.unwrap();
|
|
|
|
// Create a basic graphics pipeline for rendering particles.
|
|
let graphics_pipeline = {
|
|
let vs = vs::load(device.clone())
|
|
.unwrap()
|
|
.entry_point("main")
|
|
.unwrap();
|
|
let fs = fs::load(device.clone())
|
|
.unwrap()
|
|
.entry_point("main")
|
|
.unwrap();
|
|
let vertex_input_state = Vertex::per_vertex()
|
|
.definition(&vs.info().input_interface)
|
|
.unwrap();
|
|
let stages = [
|
|
PipelineShaderStageCreateInfo::new(vs),
|
|
PipelineShaderStageCreateInfo::new(fs),
|
|
];
|
|
let layout = PipelineLayout::new(
|
|
device.clone(),
|
|
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
|
|
.into_pipeline_layout_create_info(device.clone())
|
|
.unwrap(),
|
|
)
|
|
.unwrap();
|
|
let subpass = Subpass::from(render_pass, 0).unwrap();
|
|
GraphicsPipeline::new(
|
|
device.clone(),
|
|
None,
|
|
GraphicsPipelineCreateInfo {
|
|
stages: stages.into_iter().collect(),
|
|
vertex_input_state: Some(vertex_input_state),
|
|
// Vertices will be rendered as a list of points.
|
|
input_assembly_state: Some(InputAssemblyState {
|
|
topology: PrimitiveTopology::PointList,
|
|
..Default::default()
|
|
}),
|
|
viewport_state: Some(ViewportState {
|
|
viewports: [Viewport {
|
|
offset: [0.0, 0.0],
|
|
extent: [WINDOW_WIDTH as f32, WINDOW_HEIGHT as f32],
|
|
depth_range: 0.0..=1.0,
|
|
}]
|
|
.into_iter()
|
|
.collect(),
|
|
..Default::default()
|
|
}),
|
|
rasterization_state: Some(RasterizationState::default()),
|
|
multisample_state: Some(MultisampleState::default()),
|
|
color_blend_state: Some(ColorBlendState::with_attachment_states(
|
|
subpass.num_color_attachments(),
|
|
ColorBlendAttachmentState::default(),
|
|
)),
|
|
subpass: Some(subpass.into()),
|
|
..GraphicsPipelineCreateInfo::layout(layout)
|
|
},
|
|
)
|
|
.unwrap()
|
|
};
|
|
|
|
let mut fences: Vec<Option<FenceSignalFuture<_>>> =
|
|
(0..framebuffers.len()).map(|_| None).collect();
|
|
let mut previous_fence_index = 0u32;
|
|
|
|
let start_time = SystemTime::now();
|
|
let mut last_frame_time = start_time;
|
|
event_loop.run(move |event, elwt| {
|
|
elwt.set_control_flow(ControlFlow::Poll);
|
|
|
|
match event {
|
|
Event::WindowEvent {
|
|
event: WindowEvent::CloseRequested,
|
|
..
|
|
} => {
|
|
elwt.exit();
|
|
}
|
|
Event::WindowEvent {
|
|
event: WindowEvent::RedrawRequested,
|
|
..
|
|
} => {
|
|
let image_extent: [u32; 2] = window.inner_size().into();
|
|
|
|
if image_extent.contains(&0) {
|
|
return;
|
|
}
|
|
|
|
// Update per-frame variables.
|
|
let now = SystemTime::now();
|
|
let time = now.duration_since(start_time).unwrap().as_secs_f32();
|
|
let delta_time = now.duration_since(last_frame_time).unwrap().as_secs_f32();
|
|
last_frame_time = now;
|
|
|
|
// Create push contants to be passed to compute shader.
|
|
let push_constants = cs::PushConstants {
|
|
attractor: [0.75 * (3. * time).cos(), 0.6 * (0.75 * time).sin()],
|
|
attractor_strength: 1.2 * (2. * time).cos(),
|
|
delta_time,
|
|
};
|
|
|
|
// Acquire information on the next swapchain target.
|
|
let (image_index, suboptimal, acquire_future) = match acquire_next_image(
|
|
swapchain.clone(),
|
|
None, // timeout
|
|
) {
|
|
Ok(tuple) => tuple,
|
|
Err(e) => panic!("failed to acquire next image: {e}"),
|
|
};
|
|
|
|
// Since we disallow resizing, assert that the swapchain and surface are optimally
|
|
// configured.
|
|
assert!(
|
|
!suboptimal,
|
|
"not handling sub-optimal swapchains in this sample code",
|
|
);
|
|
|
|
// If this image buffer already has a future then attempt to cleanup fence
|
|
// resources. Usually the future for this index will have completed by the time we
|
|
// are rendering it again.
|
|
if let Some(image_fence) = &mut fences[image_index as usize] {
|
|
image_fence.cleanup_finished()
|
|
}
|
|
|
|
// If the previous image has a fence then use it for synchronization, else create
|
|
// a new one.
|
|
let previous_future = match fences[previous_fence_index as usize].take() {
|
|
// Ensure current frame is synchronized with previous.
|
|
Some(fence) => fence.boxed(),
|
|
// Create new future to guarentee synchronization with (fake) previous frame.
|
|
None => sync::now(device.clone()).boxed(),
|
|
};
|
|
|
|
let mut builder = RecordingCommandBuffer::new(
|
|
command_buffer_allocator.clone(),
|
|
queue.queue_family_index(),
|
|
CommandBufferLevel::Primary,
|
|
CommandBufferBeginInfo {
|
|
usage: CommandBufferUsage::OneTimeSubmit,
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap();
|
|
|
|
builder
|
|
// Push constants for compute shader.
|
|
.push_constants(compute_pipeline.layout().clone(), 0, push_constants)
|
|
.unwrap()
|
|
// Perform compute operation to update particle positions.
|
|
.bind_pipeline_compute(compute_pipeline.clone())
|
|
.unwrap()
|
|
.bind_descriptor_sets(
|
|
PipelineBindPoint::Compute,
|
|
compute_pipeline.layout().clone(),
|
|
0, // Bind this descriptor set to index 0.
|
|
descriptor_set.clone(),
|
|
)
|
|
.unwrap();
|
|
|
|
unsafe {
|
|
builder
|
|
.dispatch([PARTICLE_COUNT as u32 / 128, 1, 1])
|
|
.unwrap();
|
|
}
|
|
|
|
// Use render-pass to draw particles to swapchain.
|
|
builder
|
|
.begin_render_pass(
|
|
RenderPassBeginInfo {
|
|
clear_values: vec![Some([0., 0., 0., 1.].into())],
|
|
..RenderPassBeginInfo::framebuffer(
|
|
framebuffers[image_index as usize].clone(),
|
|
)
|
|
},
|
|
Default::default(),
|
|
)
|
|
.unwrap()
|
|
.bind_pipeline_graphics(graphics_pipeline.clone())
|
|
.unwrap()
|
|
.bind_vertex_buffers(0, vertex_buffer.clone())
|
|
.unwrap();
|
|
|
|
unsafe {
|
|
builder.draw(PARTICLE_COUNT as u32, 1, 0, 0).unwrap();
|
|
}
|
|
|
|
builder.end_render_pass(Default::default()).unwrap();
|
|
|
|
let command_buffer = builder.end().unwrap();
|
|
let future = previous_future
|
|
.join(acquire_future)
|
|
.then_execute(queue.clone(), command_buffer)
|
|
.unwrap()
|
|
.then_swapchain_present(
|
|
queue.clone(),
|
|
SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index),
|
|
)
|
|
.then_signal_fence_and_flush();
|
|
|
|
// Update this frame's future with current fence.
|
|
fences[image_index as usize] = match future.map_err(Validated::unwrap) {
|
|
// Success, store result into vector.
|
|
Ok(future) => Some(future),
|
|
|
|
// Unknown failure.
|
|
Err(e) => panic!("failed to flush future: {e}"),
|
|
};
|
|
previous_fence_index = image_index;
|
|
}
|
|
Event::AboutToWait => window.request_redraw(),
|
|
_ => (),
|
|
}
|
|
})
|
|
}
|