vulkano/examples/pipeline-caching/main.rs
marc0246 34736a675a
Remove license notices from source files (#2401)
* Remove license notices from source files

* Add license notices for rangemap
2023-11-08 13:49:49 +01:00

212 lines
7.7 KiB
Rust

// This example demonstrates how to use pipeline caching.
//
// Using a `PipelineCache` can improve performance significantly, by checking if the requested
// pipeline exists in the cache and if so, return that pipeline directly or insert that new
// pipeline into the cache.
//
// You can retrieve the data in the cache as a `Vec<u8>` and save that to a binary file. Later you
// can load that file and build a PipelineCache with the given data. Be aware that the Vulkan
// implementation does not check if the data is valid and vulkano currently does not either.
// Invalid data can lead to driver crashes or worse. Using the same cache data with a different GPU
// probably won't work, a simple driver update can lead to invalid data as well. To check if your
// data is valid you can find inspiration here:
// https://zeux.io/2019/07/17/serializing-pipeline-cache/
//
// In the future, vulkano might implement those safety checks, but for now, you would have to do
// that yourself or trust the data and the user.
use std::{
fs::{remove_file, rename, File},
io::{Read, Write},
path::{Path, PathBuf},
};
use vulkano::{
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo,
QueueFlags,
},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
pipeline::{
cache::{PipelineCache, PipelineCacheCreateInfo},
compute::ComputePipelineCreateInfo,
layout::PipelineDescriptorSetLayoutCreateInfo,
ComputePipeline, PipelineLayout, PipelineShaderStageCreateInfo,
},
VulkanLibrary,
};
fn main() {
// As with other examples, the first step is to create an instance.
let library = VulkanLibrary::new().unwrap();
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
..Default::default()
},
)
.unwrap();
// Choose which physical device to use.
let device_extensions = DeviceExtensions {
khr_storage_buffer_storage_class: true,
..DeviceExtensions::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.position(|q| q.queue_flags.intersects(QueueFlags::COMPUTE))
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
// Now initializing the device.
let (device, _) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
..Default::default()
},
)
.unwrap();
// We are creating an empty PipelineCache to start somewhere.
let pipeline_cache = unsafe { PipelineCache::new(device.clone(), Default::default()).unwrap() };
// We need to create the compute pipeline that describes our operation. We are using the shader
// from the basic-compute-shader example.
//
// If you are familiar with graphics pipeline, the principle is the same except that compute
// pipelines are much simpler to create.
//
// Pass the `PipelineCache` as an optional parameter to the `ComputePipeline` constructor. For
// `GraphicPipeline`s you can use the `GraphicPipelineBuilder` that has a method
// `build_with_cache(cache: Arc<PipelineCache>)`.
let _pipeline = {
mod cs {
vulkano_shaders::shader! {
ty: "compute",
src: r"
#version 450
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
layout(set = 0, binding = 0) buffer Data {
uint data[];
};
void main() {
uint idx = gl_GlobalInvocationID.x;
data[idx] *= 12;
}
",
}
}
let cs = cs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let stage = PipelineShaderStageCreateInfo::new(cs);
let layout = PipelineLayout::new(
device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages([&stage])
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap();
ComputePipeline::new(
device.clone(),
Some(pipeline_cache.clone()),
ComputePipelineCreateInfo::stage_layout(stage, layout),
)
.unwrap()
};
// Normally you would use your pipeline for computing, but we just want to focus on the cache
// functionality. The cache works the same for a `GraphicsPipeline`, a `ComputePipeline` is
// just simpler to build.
//
// We are now going to retrieve the cache data into a Vec<u8> and save that to a file on our
// disk.
if let Ok(data) = pipeline_cache.get_data() {
let tmp_path = relpath("pipeline_cache.bin.tmp");
if let Ok(mut file) = File::create(&tmp_path) {
if file.write_all(&data).is_ok() {
let _ = rename(&tmp_path, relpath("pipeline_cache.bin"));
} else {
let _ = remove_file(&tmp_path);
}
}
}
// The `PipelineCache` is now saved to disk and can be loaded the next time the application is
// started. This way, the pipelines do not have to be rebuild and pipelines that might exist in
// the cache can be build far quicker.
//
// To load the cache from the file, we just need to load the data into a Vec<u8> and build the
// `PipelineCache` from that. Note that this function is currently unsafe as there are no
// checks, as it was mentioned at the start of this example.
let initial_data = {
if let Ok(mut file) = File::open(relpath("pipeline_cache.bin")) {
let mut data = Vec::new();
if file.read_to_end(&mut data).is_ok() {
data
} else {
Vec::new()
}
} else {
Vec::new()
}
};
// This is unsafe because there is no way to be sure that the file contains valid data.
let second_cache = unsafe {
PipelineCache::new(
device,
PipelineCacheCreateInfo {
initial_data,
..Default::default()
},
)
.unwrap()
};
// As the `PipelineCache` of the Vulkan implementation saves an opaque blob of data, there is
// no real way to know if the data is correct. There might be differences in the byte blob
// here, but it should still work. If it doesn't, please check if there is an issue describing
// this problem, and if not open a new one, on the GitHub page.
assert_eq!(
pipeline_cache.get_data().unwrap(),
second_cache.get_data().unwrap(),
);
println!("Success");
}
fn relpath(path: &str) -> PathBuf {
Path::new(env!("CARGO_MANIFEST_DIR")).join(path)
}