vulkano/examples/triangle-util/main.rs
2024-03-04 22:58:27 +01:00

462 lines
20 KiB
Rust

// Welcome to the triangle-util example!
//
// This is almost exactly the same as the triange example, except that it uses utility functions
// to make life easier.
//
// This example assumes that you are already more or less familiar with graphics programming and
// that you want to learn Vulkan. This means that for example it won't go into details about what a
// vertex or a shader is.
use std::{error::Error, sync::Arc};
use vulkano::{
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage},
command_buffer::{
allocator::StandardCommandBufferAllocator, CommandBufferBeginInfo, CommandBufferLevel,
CommandBufferUsage, RecordingCommandBuffer, RenderPassBeginInfo, SubpassBeginInfo,
SubpassContents,
},
image::view::ImageView,
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter},
pipeline::{
graphics::{
color_blend::{ColorBlendAttachmentState, ColorBlendState},
input_assembly::InputAssemblyState,
multisample::MultisampleState,
rasterization::RasterizationState,
vertex_input::{Vertex, VertexDefinition},
viewport::{Viewport, ViewportState},
GraphicsPipelineCreateInfo,
},
layout::PipelineDescriptorSetLayoutCreateInfo,
DynamicState, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo,
},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
sync::GpuFuture,
};
use vulkano_util::{
context::{VulkanoConfig, VulkanoContext},
window::VulkanoWindows,
};
use winit::{
event::{Event, WindowEvent},
event_loop::{ControlFlow, EventLoop},
};
fn main() -> Result<(), impl Error> {
let context = VulkanoContext::new(VulkanoConfig::default());
let event_loop = EventLoop::new().unwrap();
// Manages any windows and their rendering.
let mut windows_manager = VulkanoWindows::default();
windows_manager.create_window(&event_loop, &context, &Default::default(), |_| {});
let window_renderer = windows_manager.get_primary_renderer_mut().unwrap();
// Some little debug infos.
println!(
"Using device: {} (type: {:?})",
context.device().physical_device().properties().device_name,
context.device().physical_device().properties().device_type,
);
// We now create a buffer that will store the shape of our triangle. We use `#[repr(C)]` here
// to force rustc to use a defined layout for our data, as the default representation has *no
// guarantees*.
#[derive(BufferContents, Vertex)]
#[repr(C)]
struct Vertex {
#[format(R32G32_SFLOAT)]
position: [f32; 2],
}
let vertices = [
Vertex {
position: [-0.5, -0.25],
},
Vertex {
position: [0.0, 0.5],
},
Vertex {
position: [0.25, -0.1],
},
];
let vertex_buffer = Buffer::from_iter(
context.memory_allocator().clone(),
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
vertices,
)
.unwrap();
// The next step is to create the shaders.
//
// The raw shader creation API provided by the vulkano library is unsafe for various reasons,
// so The `shader!` macro provides a way to generate a Rust module from GLSL source - in the
// example below, the source is provided as a string input directly to the shader, but a path
// to a source file can be provided as well. Note that the user must specify the type of shader
// (e.g. "vertex", "fragment", etc.) using the `ty` option of the macro.
//
// The items generated by the `shader!` macro include a `load` function which loads the shader
// using an input logical device. The module also includes type definitions for layout
// structures defined in the shader source, for example uniforms and push constants.
//
// A more detailed overview of what the `shader!` macro generates can be found in the
// vulkano-shaders crate docs. You can view them at https://docs.rs/vulkano-shaders/
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: r"
#version 450
layout(location = 0) in vec2 position;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
}
",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: r"
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 0.0, 0.0, 1.0);
}
",
}
}
// At this point, OpenGL initialization would be finished. However in Vulkan it is not. OpenGL
// implicitly does a lot of computation whenever you draw. In Vulkan, you have to do all this
// manually.
// The next step is to create a *render pass*, which is an object that describes where the
// output of the graphics pipeline will go. It describes the layout of the images where the
// colors, depth and/or stencil information will be written.
let render_pass = vulkano::single_pass_renderpass!(
context.device().clone(),
attachments: {
// `color` is a custom name we give to the first and only attachment.
color: {
// `format: <ty>` indicates the type of the format of the image. This has to be one
// of the types of the `vulkano::format` module (or alternatively one of your
// structs that implements the `FormatDesc` trait). Here we use the same format as
// the swapchain.
format: window_renderer.swapchain_format(),
// `samples: 1` means that we ask the GPU to use one sample to determine the value
// of each pixel in the color attachment. We could use a larger value
// (multisampling) for antialiasing. An example of this can be found in
// msaa-renderpass.rs.
samples: 1,
// `load_op: Clear` means that we ask the GPU to clear the content of this
// attachment at the start of the drawing.
load_op: Clear,
// `store_op: Store` means that we ask the GPU to store the output of the draw in
// the actual image. We could also ask it to discard the result.
store_op: Store,
},
},
pass: {
// We use the attachment named `color` as the one and only color attachment.
color: [color],
// No depth-stencil attachment is indicated with empty brackets.
depth_stencil: {},
},
)
.unwrap();
// Before we draw, we have to create what is called a **pipeline**. A pipeline describes how
// a GPU operation is to be performed. It is similar to an OpenGL program, but it also contains
// many settings for customization, all baked into a single object. For drawing, we create
// a **graphics** pipeline, but there are also other types of pipeline.
let pipeline = {
// First, we load the shaders that the pipeline will use:
// the vertex shader and the fragment shader.
//
// A Vulkan shader can in theory contain multiple entry points, so we have to specify which
// one.
let vs = vs::load(context.device().clone())
.unwrap()
.entry_point("main")
.unwrap();
let fs = fs::load(context.device().clone())
.unwrap()
.entry_point("main")
.unwrap();
// Automatically generate a vertex input state from the vertex shader's input interface,
// that takes a single vertex buffer containing `Vertex` structs.
let vertex_input_state = Vertex::per_vertex().definition(&vs).unwrap();
// Make a list of the shader stages that the pipeline will have.
let stages = [
PipelineShaderStageCreateInfo::new(vs),
PipelineShaderStageCreateInfo::new(fs),
];
// We must now create a **pipeline layout** object, which describes the locations and types
// of descriptor sets and push constants used by the shaders in the pipeline.
//
// Multiple pipelines can share a common layout object, which is more efficient.
// The shaders in a pipeline must use a subset of the resources described in its pipeline
// layout, but the pipeline layout is allowed to contain resources that are not present in
// the shaders; they can be used by shaders in other pipelines that share the same
// layout. Thus, it is a good idea to design shaders so that many pipelines have
// common resource locations, which allows them to share pipeline layouts.
let layout = PipelineLayout::new(
context.device().clone(),
// Since we only have one pipeline in this example, and thus one pipeline layout,
// we automatically generate the creation info for it from the resources used in the
// shaders. In a real application, you would specify this information manually so that
// you can re-use one layout in multiple pipelines.
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(context.device().clone())
.unwrap(),
)
.unwrap();
// We have to indicate which subpass of which render pass this pipeline is going to be used
// in. The pipeline will only be usable from this particular subpass.
let subpass = Subpass::from(render_pass.clone(), 0).unwrap();
// Finally, create the pipeline.
GraphicsPipeline::new(
context.device().clone(),
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
// How vertex data is read from the vertex buffers into the vertex shader.
vertex_input_state: Some(vertex_input_state),
// How vertices are arranged into primitive shapes.
// The default primitive shape is a triangle.
input_assembly_state: Some(InputAssemblyState::default()),
// How primitives are transformed and clipped to fit the framebuffer.
// We use a resizable viewport, set to draw over the entire window.
viewport_state: Some(ViewportState::default()),
// How polygons are culled and converted into a raster of pixels.
// The default value does not perform any culling.
rasterization_state: Some(RasterizationState::default()),
// How multiple fragment shader samples are converted to a single pixel value.
// The default value does not perform any multisampling.
multisample_state: Some(MultisampleState::default()),
// How pixel values are combined with the values already present in the framebuffer.
// The default value overwrites the old value with the new one, without any
// blending.
color_blend_state: Some(ColorBlendState::with_attachment_states(
subpass.num_color_attachments(),
ColorBlendAttachmentState::default(),
)),
// Dynamic states allows us to specify parts of the pipeline settings when
// recording the command buffer, before we perform drawing.
// Here, we specify that the viewport should be dynamic.
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
};
// Dynamic viewports allow us to recreate just the viewport when the window is resized.
// Otherwise we would have to recreate the whole pipeline.
let mut viewport = Viewport {
offset: [0.0, 0.0],
extent: [0.0, 0.0],
depth_range: 0.0..=1.0,
};
// The render pass we created above only describes the layout of our framebuffers. Before we
// can draw we also need to create the actual framebuffers.
//
// Since we need to draw to multiple images, we are going to create a different framebuffer for
// each image.
let mut framebuffers = window_size_dependent_setup(
window_renderer.swapchain_image_views(),
render_pass.clone(),
&mut viewport,
);
// Before we can start creating and recording command buffers, we need a way of allocating
// them. Vulkano provides a command buffer allocator, which manages raw Vulkan command pools
// underneath and provides a safe interface for them.
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
context.device().clone(),
Default::default(),
));
// Initialization is finally finished!
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
// an object that implements the `GpuFuture` trait, which holds the resources for as long as
// they are in use by the GPU.
event_loop.run(move |event, elwt| {
elwt.set_control_flow(ControlFlow::Poll);
match event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
elwt.exit();
}
Event::WindowEvent {
event: WindowEvent::Resized(_),
..
} => {
window_renderer.resize();
}
Event::WindowEvent {
event: WindowEvent::RedrawRequested,
..
} => {
// Do not draw the frame when the screen size is zero. On Windows, this can
// occur when minimizing the application.
let image_extent: [u32; 2] = window_renderer.window().inner_size().into();
if image_extent.contains(&0) {
return;
}
// Begin rendering by acquiring the gpu future from the window renderer.
let previous_frame_end = window_renderer
.acquire(|swapchain_images| {
// Whenever the window resizes we need to recreate everything dependent on
// the window size. In this example that includes
// the swapchain, the framebuffers and the dynamic
// state viewport.
framebuffers = window_size_dependent_setup(
swapchain_images,
render_pass.clone(),
&mut viewport,
);
})
.unwrap();
// In order to draw, we have to record a *command buffer*. The command buffer object
// holds the list of commands that are going to be executed.
//
// Recording a command buffer is an expensive operation (usually a few hundred
// microseconds), but it is known to be a hot path in the driver and is expected to
// be optimized.
//
// Note that we have to pass a queue family when we create the command buffer. The
// command buffer will only be executable on that given queue family.
let mut builder = RecordingCommandBuffer::new(
command_buffer_allocator.clone(),
context.graphics_queue().queue_family_index(),
CommandBufferLevel::Primary,
CommandBufferBeginInfo {
usage: CommandBufferUsage::OneTimeSubmit,
..Default::default()
},
)
.unwrap();
builder
// Before we can draw, we have to *enter a render pass*.
.begin_render_pass(
RenderPassBeginInfo {
// A list of values to clear the attachments with. This list contains
// one item for each attachment in the render pass. In this case, there
// is only one attachment, and we clear it with a blue color.
//
// Only attachments that have `AttachmentLoadOp::Clear` are provided
// with clear values, any others should use `None` as the clear value.
clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into())],
..RenderPassBeginInfo::framebuffer(
framebuffers[window_renderer.image_index() as usize].clone(),
)
},
SubpassBeginInfo {
// The contents of the first (and only) subpass.
// This can be either `Inline` or `SecondaryCommandBuffers`.
// The latter is a bit more advanced and is not covered here.
contents: SubpassContents::Inline,
..Default::default()
},
)
.unwrap()
// We are now inside the first subpass of the render pass.
//
// TODO: Document state setting and how it affects subsequent draw commands.
.set_viewport(0, [viewport.clone()].into_iter().collect())
.unwrap()
.bind_pipeline_graphics(pipeline.clone())
.unwrap()
.bind_vertex_buffers(0, vertex_buffer.clone())
.unwrap();
unsafe {
builder
// We add a draw command.
.draw(vertex_buffer.len() as u32, 1, 0, 0)
.unwrap();
}
builder
// We leave the render pass. Note that if we had multiple subpasses we could
// have called `next_subpass` to jump to the next subpass.
.end_render_pass(Default::default())
.unwrap();
// Finish recording the command buffer by calling `end`.
let command_buffer = builder.end().unwrap();
let future = previous_frame_end
.then_execute(context.graphics_queue().clone(), command_buffer)
.unwrap()
.boxed();
// The color output is now expected to contain our triangle. But in order to
// show it on the screen, we have to *present* the image by calling
// `present` on the window renderer.
//
// This function does not actually present the image immediately. Instead it
// submits a present command at the end of the queue. This means that it will
// only be presented once the GPU has finished executing the command buffer
// that draws the triangle.
window_renderer.present(future, false);
}
Event::AboutToWait => window_renderer.window().request_redraw(),
_ => (),
}
})
}
/// This function is called once during initialization, then again whenever the window is resized.
fn window_size_dependent_setup(
swapchain_images: &[Arc<ImageView>],
render_pass: Arc<RenderPass>,
viewport: &mut Viewport,
) -> Vec<Arc<Framebuffer>> {
let extent = swapchain_images[0].image().extent();
viewport.extent = [extent[0] as f32, extent[1] as f32];
swapchain_images
.iter()
.map(|swapchain_image| {
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![swapchain_image.clone()],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}