vulkano/examples/triangle-v1_3/main.rs
Rua 289ec102e0
Document shader safety requirements, make draw/dispatch unsafe (#2429)
* Document shader safety requirements, make draw/dispatch unsafe

* Extra docs

* Doctests

* Max index value

* Small change

* Update vulkano/src/command_buffer/mod.rs

Co-authored-by: marc0246 <40955683+marc0246@users.noreply.github.com>

* Update vulkano/src/command_buffer/mod.rs

Co-authored-by: marc0246 <40955683+marc0246@users.noreply.github.com>

---------

Co-authored-by: marc0246 <40955683+marc0246@users.noreply.github.com>
2023-12-25 04:01:16 +01:00

718 lines
34 KiB
Rust

// Welcome to the triangle example!
//
// This is the only example that is entirely detailed. All the other examples avoid code
// duplication by using helper functions.
//
// This example assumes that you are already more or less familiar with graphics programming and
// that you want to learn Vulkan. This means that for example it won't go into details about what a
// vertex or a shader is.
//
// This version of the triangle example is written using dynamic rendering instead of render pass
// and framebuffer objects. If your device does not support Vulkan 1.3 or the
// `khr_dynamic_rendering` extension, or if you want to see how to support older versions, see the
// original triangle example.
use std::{error::Error, sync::Arc};
use vulkano::{
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage},
command_buffer::{
allocator::StandardCommandBufferAllocator, CommandBufferBeginInfo, CommandBufferLevel,
CommandBufferUsage, RecordingCommandBuffer, RenderingAttachmentInfo, RenderingInfo,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, Features,
QueueCreateInfo, QueueFlags,
},
image::{view::ImageView, Image, ImageUsage},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
pipeline::{
graphics::{
color_blend::{ColorBlendAttachmentState, ColorBlendState},
input_assembly::InputAssemblyState,
multisample::MultisampleState,
rasterization::RasterizationState,
subpass::PipelineRenderingCreateInfo,
vertex_input::{Vertex, VertexDefinition},
viewport::{Viewport, ViewportState},
GraphicsPipelineCreateInfo,
},
layout::PipelineDescriptorSetLayoutCreateInfo,
DynamicState, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo,
},
render_pass::{AttachmentLoadOp, AttachmentStoreOp},
swapchain::{
acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo,
},
sync::{self, GpuFuture},
Validated, Version, VulkanError, VulkanLibrary,
};
use winit::{
event::{Event, WindowEvent},
event_loop::{ControlFlow, EventLoop},
window::WindowBuilder,
};
fn main() -> Result<(), impl Error> {
let event_loop = EventLoop::new().unwrap();
let library = VulkanLibrary::new().unwrap();
// The first step of any Vulkan program is to create an instance.
//
// When we create an instance, we have to pass a list of extensions that we want to enable.
//
// All the window-drawing functionalities are part of non-core extensions that we need to
// enable manually. To do so, we ask `Surface` for the list of extensions required to draw to
// a window.
let required_extensions = Surface::required_extensions(&event_loop).unwrap();
// Now creating the instance.
let instance = Instance::new(
library,
InstanceCreateInfo {
// Enable enumerating devices that use non-conformant Vulkan implementations.
// (e.g. MoltenVK)
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
enabled_extensions: required_extensions,
..Default::default()
},
)
.unwrap();
// The objective of this example is to draw a triangle on a window. To do so, we first need to
// create the window. We use the `WindowBuilder` from the `winit` crate to do that here.
//
// Before we can render to a window, we must first create a `vulkano::swapchain::Surface`
// object from it, which represents the drawable surface of a window. For that we must wrap the
// `winit::window::Window` in an `Arc`.
let window = Arc::new(WindowBuilder::new().build(&event_loop).unwrap());
let surface = Surface::from_window(instance.clone(), window.clone()).unwrap();
// Choose device extensions that we're going to use. In order to present images to a surface,
// we need a `Swapchain`, which is provided by the `khr_swapchain` extension.
let mut device_extensions = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::empty()
};
// We then choose which physical device to use. First, we enumerate all the available physical
// devices, then apply filters to narrow them down to those that can support our needs.
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| {
// For this example, we require at least Vulkan 1.3, or a device that has the
// `khr_dynamic_rendering` extension available.
p.api_version() >= Version::V1_3 || p.supported_extensions().khr_dynamic_rendering
})
.filter(|p| {
// Some devices may not support the extensions or features that your application, or
// report properties and limits that are not sufficient for your application. These
// should be filtered out here.
p.supported_extensions().contains(&device_extensions)
})
.filter_map(|p| {
// For each physical device, we try to find a suitable queue family that will execute
// our draw commands.
//
// Devices can provide multiple queues to run commands in parallel (for example a draw
// queue and a compute queue), similar to CPU threads. This is something you have to
// have to manage manually in Vulkan. Queues of the same type belong to the same queue
// family.
//
// Here, we look for a single queue family that is suitable for our purposes. In a
// real-world application, you may want to use a separate dedicated transfer queue to
// handle data transfers in parallel with graphics operations. You may also need a
// separate queue for compute operations, if your application uses those.
p.queue_family_properties()
.iter()
.enumerate()
.position(|(i, q)| {
// We select a queue family that supports graphics operations. When drawing to
// a window surface, as we do in this example, we also need to check that
// queues in this queue family are capable of presenting images to the surface.
q.queue_flags.intersects(QueueFlags::GRAPHICS)
&& p.surface_support(i as u32, &surface).unwrap_or(false)
})
// The code here searches for the first queue family that is suitable. If none is
// found, `None` is returned to `filter_map`, which disqualifies this physical
// device.
.map(|i| (p, i as u32))
})
// All the physical devices that pass the filters above are suitable for the application.
// However, not every device is equal, some are preferred over others. Now, we assign each
// physical device a score, and pick the device with the lowest ("best") score.
//
// In this example, we simply select the best-scoring device to use in the application.
// In a real-world setting, you may want to use the best-scoring device only as a "default"
// or "recommended" device, and let the user choose the device themself.
.min_by_key(|(p, _)| {
// We assign a lower score to device types that are likely to be faster/better.
match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
}
})
.expect("no suitable physical device found");
// Some little debug infos.
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
// If the selected device doesn't have Vulkan 1.3 available, then we need to enable the
// `khr_dynamic_rendering` extension manually. This extension became a core part of Vulkan
// in version 1.3 and later, so it's always available then and it does not need to be enabled.
// We can be sure that this extension will be available on the selected physical device,
// because we filtered out unsuitable devices in the device selection code above.
if physical_device.api_version() < Version::V1_3 {
device_extensions.khr_dynamic_rendering = true;
}
// Now initializing the device. This is probably the most important object of Vulkan.
//
// An iterator of created queues is returned by the function alongside the device.
let (device, mut queues) = Device::new(
// Which physical device to connect to.
physical_device,
DeviceCreateInfo {
// The list of queues that we are going to use. Here we only use one queue, from the
// previously chosen queue family.
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
// A list of optional features and extensions that our program needs to work correctly.
// Some parts of the Vulkan specs are optional and must be enabled manually at device
// creation. In this example the only things we are going to need are the
// `khr_swapchain` extension that allows us to draw to a window, and
// `khr_dynamic_rendering` if we don't have Vulkan 1.3 available.
enabled_extensions: device_extensions,
// In order to render with Vulkan 1.3's dynamic rendering, we need to enable it here.
// Otherwise, we are only allowed to render with a render pass object, as in the
// standard triangle example. The feature is required to be supported by the device if
// it supports Vulkan 1.3 and higher, or if the `khr_dynamic_rendering` extension is
// available, so we don't need to check for support.
enabled_features: Features {
dynamic_rendering: true,
..Features::empty()
},
..Default::default()
},
)
.unwrap();
// Since we can request multiple queues, the `queues` variable is in fact an iterator. We only
// use one queue in this example, so we just retrieve the first and only element of the
// iterator.
let queue = queues.next().unwrap();
// Before we can draw on the surface, we have to create what is called a swapchain. Creating a
// swapchain allocates the color buffers that will contain the image that will ultimately be
// visible on the screen. These images are returned alongside the swapchain.
let (mut swapchain, images) = {
// Querying the capabilities of the surface. When we create the swapchain we can only pass
// values that are allowed by the capabilities.
let surface_capabilities = device
.physical_device()
.surface_capabilities(&surface, Default::default())
.unwrap();
// Choosing the internal format that the images will have.
let image_format = device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0]
.0;
// Please take a look at the docs for the meaning of the parameters we didn't mention.
Swapchain::new(
device.clone(),
surface,
SwapchainCreateInfo {
// Some drivers report an `min_image_count` of 1, but fullscreen mode requires at
// least 2. Therefore we must ensure the count is at least 2, otherwise the program
// would crash when entering fullscreen mode on those drivers.
min_image_count: surface_capabilities.min_image_count.max(2),
image_format,
// The size of the window, only used to initially setup the swapchain.
//
// NOTE:
// On some drivers the swapchain extent is specified by
// `surface_capabilities.current_extent` and the swapchain size must use this
// extent. This extent is always the same as the window size.
//
// However, other drivers don't specify a value, i.e.
// `surface_capabilities.current_extent` is `None`. These drivers will allow
// anything, but the only sensible value is the window size.
//
// Both of these cases need the swapchain to use the window size, so we just
// use that.
image_extent: window.inner_size().into(),
image_usage: ImageUsage::COLOR_ATTACHMENT,
// The alpha mode indicates how the alpha value of the final image will behave. For
// example, you can choose whether the window will be opaque or transparent.
composite_alpha: surface_capabilities
.supported_composite_alpha
.into_iter()
.next()
.unwrap(),
..Default::default()
},
)
.unwrap()
};
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
// We now create a buffer that will store the shape of our triangle. We use `#[repr(C)]` here
// to force rustc to use a defined layout for our data, as the default representation has *no
// guarantees*.
#[derive(BufferContents, Vertex)]
#[repr(C)]
struct Vertex {
#[format(R32G32_SFLOAT)]
position: [f32; 2],
}
let vertices = [
Vertex {
position: [-0.5, -0.25],
},
Vertex {
position: [0.0, 0.5],
},
Vertex {
position: [0.25, -0.1],
},
];
let vertex_buffer = Buffer::from_iter(
memory_allocator,
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
vertices,
)
.unwrap();
// The next step is to create the shaders.
//
// The raw shader creation API provided by the vulkano library is unsafe for various reasons,
// so The `shader!` macro provides a way to generate a Rust module from GLSL source - in the
// example below, the source is provided as a string input directly to the shader, but a path
// to a source file can be provided as well. Note that the user must specify the type of shader
// (e.g. "vertex", "fragment", etc.) using the `ty` option of the macro.
//
// The items generated by the `shader!` macro include a `load` function which loads the shader
// using an input logical device. The module also includes type definitions for layout
// structures defined in the shader source, for example uniforms and push constants.
//
// A more detailed overview of what the `shader!` macro generates can be found in the
// vulkano-shaders crate docs. You can view them at https://docs.rs/vulkano-shaders/
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: r"
#version 450
layout(location = 0) in vec2 position;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
}
",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: r"
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 0.0, 0.0, 1.0);
}
",
}
}
// At this point, OpenGL initialization would be finished. However in Vulkan it is not. OpenGL
// implicitly does a lot of computation whenever you draw. In Vulkan, you have to do all this
// manually.
// Before we draw, we have to create what is called a **pipeline**. A pipeline describes how
// a GPU operation is to be performed. It is similar to an OpenGL program, but it also contains
// many settings for customization, all baked into a single object. For drawing, we create
// a **graphics** pipeline, but there are also other types of pipeline.
let pipeline = {
// First, we load the shaders that the pipeline will use:
// the vertex shader and the fragment shader.
//
// A Vulkan shader can in theory contain multiple entry points, so we have to specify which
// one.
let vs = vs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let fs = fs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
// Automatically generate a vertex input state from the vertex shader's input interface,
// that takes a single vertex buffer containing `Vertex` structs.
let vertex_input_state = Vertex::per_vertex()
.definition(&vs.info().input_interface)
.unwrap();
// Make a list of the shader stages that the pipeline will have.
let stages = [
PipelineShaderStageCreateInfo::new(vs),
PipelineShaderStageCreateInfo::new(fs),
];
// We must now create a **pipeline layout** object, which describes the locations and types of
// descriptor sets and push constants used by the shaders in the pipeline.
//
// Multiple pipelines can share a common layout object, which is more efficient.
// The shaders in a pipeline must use a subset of the resources described in its pipeline
// layout, but the pipeline layout is allowed to contain resources that are not present in the
// shaders; they can be used by shaders in other pipelines that share the same layout.
// Thus, it is a good idea to design shaders so that many pipelines have common resource
// locations, which allows them to share pipeline layouts.
let layout = PipelineLayout::new(
device.clone(),
// Since we only have one pipeline in this example, and thus one pipeline layout,
// we automatically generate the creation info for it from the resources used in the
// shaders. In a real application, you would specify this information manually so that you
// can re-use one layout in multiple pipelines.
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap();
// We describe the formats of attachment images where the colors, depth and/or stencil
// information will be written. The pipeline will only be usable with this particular
// configuration of the attachment images.
let subpass = PipelineRenderingCreateInfo {
// We specify a single color attachment that will be rendered to. When we begin
// rendering, we will specify a swapchain image to be used as this attachment, so here
// we set its format to be the same format as the swapchain.
color_attachment_formats: vec![Some(swapchain.image_format())],
..Default::default()
};
// Finally, create the pipeline.
GraphicsPipeline::new(
device.clone(),
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
// How vertex data is read from the vertex buffers into the vertex shader.
vertex_input_state: Some(vertex_input_state),
// How vertices are arranged into primitive shapes.
// The default primitive shape is a triangle.
input_assembly_state: Some(InputAssemblyState::default()),
// How primitives are transformed and clipped to fit the framebuffer.
// We use a resizable viewport, set to draw over the entire window.
viewport_state: Some(ViewportState::default()),
// How polygons are culled and converted into a raster of pixels.
// The default value does not perform any culling.
rasterization_state: Some(RasterizationState::default()),
// How multiple fragment shader samples are converted to a single pixel value.
// The default value does not perform any multisampling.
multisample_state: Some(MultisampleState::default()),
// How pixel values are combined with the values already present in the framebuffer.
// The default value overwrites the old value with the new one, without any blending.
color_blend_state: Some(ColorBlendState::with_attachment_states(
subpass.color_attachment_formats.len() as u32,
ColorBlendAttachmentState::default(),
)),
// Dynamic states allows us to specify parts of the pipeline settings when
// recording the command buffer, before we perform drawing.
// Here, we specify that the viewport should be dynamic.
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
};
// Dynamic viewports allow us to recreate just the viewport when the window is resized.
// Otherwise we would have to recreate the whole pipeline.
let mut viewport = Viewport {
offset: [0.0, 0.0],
extent: [0.0, 0.0],
depth_range: 0.0..=1.0,
};
// When creating the swapchain, we only created plain images. To use them as an attachment for
// rendering, we must wrap then in an image view.
//
// Since we need to draw to multiple images, we are going to create a different image view for
// each image.
let mut attachment_image_views = window_size_dependent_setup(&images, &mut viewport);
// Before we can start creating and recording command buffers, we need a way of allocating
// them. Vulkano provides a command buffer allocator, which manages raw Vulkan command pools
// underneath and provides a safe interface for them.
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
device.clone(),
Default::default(),
));
// Initialization is finally finished!
// In some situations, the swapchain will become invalid by itself. This includes for example
// when the window is resized (as the images of the swapchain will no longer match the
// window's) or, on Android, when the application went to the background and goes back to the
// foreground.
//
// In this situation, acquiring a swapchain image or presenting it will return an error.
// Rendering to an image of that swapchain will not produce any error, but may or may not work.
// To continue rendering, we need to recreate the swapchain by creating a new swapchain. Here,
// we remember that we need to do this for the next loop iteration.
let mut recreate_swapchain = false;
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
// an object that implements the `GpuFuture` trait, which holds the resources for as long as
// they are in use by the GPU.
//
// Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid
// that, we store the submission of the previous frame here.
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
event_loop.run(move |event, elwt| {
elwt.set_control_flow(ControlFlow::Poll);
match event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
elwt.exit();
}
Event::WindowEvent {
event: WindowEvent::Resized(_),
..
} => {
recreate_swapchain = true;
}
Event::WindowEvent {
event: WindowEvent::RedrawRequested,
..
} => {
// Do not draw the frame when the screen size is zero. On Windows, this can
// occur when minimizing the application.
let image_extent: [u32; 2] = window.inner_size().into();
if image_extent.contains(&0) {
return;
}
// It is important to call this function from time to time, otherwise resources
// will keep accumulating and you will eventually reach an out of memory error.
// Calling this function polls various fences in order to determine what the GPU
// has already processed, and frees the resources that are no longer needed.
previous_frame_end.as_mut().unwrap().cleanup_finished();
// Whenever the window resizes we need to recreate everything dependent on the
// window size. In this example that includes the swapchain, the framebuffers and
// the dynamic state viewport.
if recreate_swapchain {
let (new_swapchain, new_images) = swapchain
.recreate(SwapchainCreateInfo {
image_extent,
..swapchain.create_info()
})
.expect("failed to recreate swapchain");
swapchain = new_swapchain;
// Now that we have new swapchain images, we must create new image views from
// them as well.
attachment_image_views =
window_size_dependent_setup(&new_images, &mut viewport);
recreate_swapchain = false;
}
// Before we can draw on the output, we have to *acquire* an image from the
// swapchain. If no image is available (which happens if you submit draw commands
// too quickly), then the function will block. This operation returns the index of
// the image that we are allowed to draw upon.
//
// This function can block if no image is available. The parameter is an optional
// timeout after which the function call will return an error.
let (image_index, suboptimal, acquire_future) =
match acquire_next_image(swapchain.clone(), None).map_err(Validated::unwrap) {
Ok(r) => r,
Err(VulkanError::OutOfDate) => {
recreate_swapchain = true;
return;
}
Err(e) => panic!("failed to acquire next image: {e}"),
};
// `acquire_next_image` can be successful, but suboptimal. This means that the
// swapchain image will still work, but it may not display correctly. With some
// drivers this can be when the window resizes, but it may not cause the swapchain
// to become out of date.
if suboptimal {
recreate_swapchain = true;
}
// In order to draw, we have to record a *command buffer*. The command buffer object
// holds the list of commands that are going to be executed.
//
// Recording a command buffer is an expensive operation (usually a few hundred
// microseconds), but it is known to be a hot path in the driver and is expected to
// be optimized.
//
// Note that we have to pass a queue family when we create the command buffer. The
// command buffer will only be executable on that given queue family.
let mut builder = RecordingCommandBuffer::new(
command_buffer_allocator.clone(),
queue.queue_family_index(),
CommandBufferLevel::Primary,
CommandBufferBeginInfo {
usage: CommandBufferUsage::OneTimeSubmit,
..Default::default()
},
)
.unwrap();
builder
// Before we can draw, we have to *enter a render pass*. We specify which
// attachments we are going to use for rendering here, which needs to match
// what was previously specified when creating the pipeline.
.begin_rendering(RenderingInfo {
// As before, we specify one color attachment, but now we specify the image
// view to use as well as how it should be used.
color_attachments: vec![Some(RenderingAttachmentInfo {
// `Clear` means that we ask the GPU to clear the content of this
// attachment at the start of rendering.
load_op: AttachmentLoadOp::Clear,
// `Store` means that we ask the GPU to store the rendered output in
// the attachment image. We could also ask it to discard the result.
store_op: AttachmentStoreOp::Store,
// The value to clear the attachment with. Here we clear it with a blue
// color.
//
// Only attachments that have `AttachmentLoadOp::Clear` are provided
// with clear values, any others should use `None` as the clear value.
clear_value: Some([0.0, 0.0, 1.0, 1.0].into()),
..RenderingAttachmentInfo::image_view(
// We specify image view corresponding to the currently acquired
// swapchain image, to use for this attachment.
attachment_image_views[image_index as usize].clone(),
)
})],
..Default::default()
})
.unwrap()
// We are now inside the first subpass of the render pass.
//
// TODO: Document state setting and how it affects subsequent draw commands.
.set_viewport(0, [viewport.clone()].into_iter().collect())
.unwrap()
.bind_pipeline_graphics(pipeline.clone())
.unwrap()
.bind_vertex_buffers(0, vertex_buffer.clone())
.unwrap();
unsafe {
builder
// We add a draw command.
.draw(vertex_buffer.len() as u32, 1, 0, 0)
.unwrap();
}
builder
// We leave the render pass.
.end_rendering()
.unwrap();
// Finish recording the command buffer by calling `end`.
let command_buffer = builder.end().unwrap();
let future = previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(queue.clone(), command_buffer)
.unwrap()
// The color output is now expected to contain our triangle. But in order to
// show it on the screen, we have to *present* the image by calling
// `then_swapchain_present`.
//
// This function does not actually present the image immediately. Instead it
// submits a present command at the end of the queue. This means that it will
// only be presented once the GPU has finished executing the command buffer
// that draws the triangle.
.then_swapchain_present(
queue.clone(),
SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index),
)
.then_signal_fence_and_flush();
match future.map_err(Validated::unwrap) {
Ok(future) => {
previous_frame_end = Some(future.boxed());
}
Err(VulkanError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
Err(e) => {
println!("failed to flush future: {e}");
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
}
}
Event::AboutToWait => window.request_redraw(),
_ => (),
}
})
}
/// This function is called once during initialization, then again whenever the window is resized.
fn window_size_dependent_setup(
images: &[Arc<Image>],
viewport: &mut Viewport,
) -> Vec<Arc<ImageView>> {
let extent = images[0].extent();
viewport.extent = [extent[0] as f32, extent[1] as f32];
images
.iter()
.map(|image| ImageView::new_default(image.clone()).unwrap())
.collect::<Vec<_>>()
}