vulkano/examples/occlusion-query/main.rs
2024-03-04 22:58:27 +01:00

618 lines
23 KiB
Rust

// This is a modification of the triangle example, that demonstrates the basics of occlusion
// queries. Occlusion queries allow you to query whether, and sometimes how many, pixels pass the
// depth test in a range of draw calls.
use std::{error::Error, sync::Arc};
use vulkano::{
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage},
command_buffer::{
allocator::StandardCommandBufferAllocator, CommandBufferBeginInfo, CommandBufferLevel,
CommandBufferUsage, RecordingCommandBuffer, RenderPassBeginInfo,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo,
QueueFlags,
},
format::Format,
image::{view::ImageView, Image, ImageCreateInfo, ImageType, ImageUsage},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
pipeline::{
graphics::{
color_blend::{ColorBlendAttachmentState, ColorBlendState},
depth_stencil::{DepthState, DepthStencilState},
input_assembly::InputAssemblyState,
multisample::MultisampleState,
rasterization::RasterizationState,
vertex_input::{Vertex, VertexDefinition},
viewport::{Viewport, ViewportState},
GraphicsPipelineCreateInfo,
},
layout::PipelineDescriptorSetLayoutCreateInfo,
DynamicState, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo,
},
query::{QueryControlFlags, QueryPool, QueryPoolCreateInfo, QueryResultFlags, QueryType},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
swapchain::{
acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo,
},
sync::{self, GpuFuture},
Validated, VulkanError, VulkanLibrary,
};
use winit::{
event::{Event, WindowEvent},
event_loop::{ControlFlow, EventLoop},
window::WindowBuilder,
};
fn main() -> Result<(), impl Error> {
let event_loop = EventLoop::new().unwrap();
let library = VulkanLibrary::new().unwrap();
let required_extensions = Surface::required_extensions(&event_loop).unwrap();
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
enabled_extensions: required_extensions,
..Default::default()
},
)
.unwrap();
let window = Arc::new(WindowBuilder::new().build(&event_loop).unwrap());
let surface = Surface::from_window(instance.clone(), window.clone()).unwrap();
let device_extensions = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.enumerate()
.position(|(i, q)| {
q.queue_flags.intersects(QueueFlags::GRAPHICS)
&& p.surface_support(i as u32, &surface).unwrap_or(false)
})
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
let (mut swapchain, images) = {
let surface_capabilities = device
.physical_device()
.surface_capabilities(&surface, Default::default())
.unwrap();
let image_format = device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0]
.0;
Swapchain::new(
device.clone(),
surface,
SwapchainCreateInfo {
min_image_count: surface_capabilities.min_image_count.max(2),
image_format,
image_extent: window.inner_size().into(),
image_usage: ImageUsage::COLOR_ATTACHMENT,
composite_alpha: surface_capabilities
.supported_composite_alpha
.into_iter()
.next()
.unwrap(),
..Default::default()
},
)
.unwrap()
};
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
#[derive(BufferContents, Vertex)]
#[repr(C)]
struct Vertex {
#[format(R32G32B32_SFLOAT)]
position: [f32; 3],
#[format(R32G32B32_SFLOAT)]
color: [f32; 3],
}
let vertices = [
// The first triangle (red) is the same one as in the triangle example.
Vertex {
position: [-0.5, -0.25, 0.5],
color: [1.0, 0.0, 0.0],
},
Vertex {
position: [0.0, 0.5, 0.5],
color: [1.0, 0.0, 0.0],
},
Vertex {
position: [0.25, -0.1, 0.5],
color: [1.0, 0.0, 0.0],
},
// The second triangle (cyan) is the same shape and position as the first, but smaller, and
// moved behind a bit. It should be completely occluded by the first triangle. (You can
// lower its z value to put it in front.)
Vertex {
position: [-0.25, -0.125, 0.6],
color: [0.0, 1.0, 1.0],
},
Vertex {
position: [0.0, 0.25, 0.6],
color: [0.0, 1.0, 1.0],
},
Vertex {
position: [0.125, -0.05, 0.6],
color: [0.0, 1.0, 1.0],
},
// The third triangle (green) is the same shape and size as the first, but moved to the
// left and behind the second. It is partially occluded by the first two.
Vertex {
position: [-0.25, -0.25, 0.7],
color: [0.0, 1.0, 0.0],
},
Vertex {
position: [0.25, 0.5, 0.7],
color: [0.0, 1.0, 0.0],
},
Vertex {
position: [0.5, -0.1, 0.7],
color: [0.0, 1.0, 0.0],
},
];
let vertex_buffer = Buffer::from_iter(
memory_allocator.clone(),
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
vertices,
)
.unwrap();
// Create three buffer slices, one for each triangle.
let triangle1 = vertex_buffer.clone().slice(0..3);
let triangle2 = vertex_buffer.clone().slice(3..6);
let triangle3 = vertex_buffer.slice(6..9);
// Create a query pool for occlusion queries, with 3 slots.
let query_pool = QueryPool::new(
device.clone(),
QueryPoolCreateInfo {
query_count: 3,
..QueryPoolCreateInfo::query_type(QueryType::Occlusion)
},
)
.unwrap();
// Create a buffer on the CPU to hold the results of the three queries. Query results are
// always represented as either `u32` or `u64`. For occlusion queries, you always need one
// element per query. You can ask for the number of elements needed at runtime by calling
// `QueryType::result_len`. If you retrieve query results with `with_availability` enabled,
// then this array needs to be 6 elements long instead of 3.
let mut query_results = [0u32; 3];
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: r"
#version 450
layout(location = 0) in vec3 position;
layout(location = 1) in vec3 color;
layout(location = 0) out vec3 v_color;
void main() {
v_color = color;
gl_Position = vec4(position, 1.0);
}
",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: r"
#version 450
layout(location = 0) in vec3 v_color;
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(v_color, 1.0);
}
",
}
}
let render_pass = vulkano::single_pass_renderpass!(
device.clone(),
attachments: {
color: {
format: swapchain.image_format(),
samples: 1,
load_op: Clear,
store_op: Store,
},
depth_stencil: {
format: Format::D16_UNORM,
samples: 1,
load_op: Clear,
store_op: DontCare,
},
},
pass: {
color: [color],
depth_stencil: {depth_stencil},
},
)
.unwrap();
let pipeline = {
let vs = vs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let fs = fs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let vertex_input_state = Vertex::per_vertex().definition(&vs).unwrap();
let stages = [
PipelineShaderStageCreateInfo::new(vs),
PipelineShaderStageCreateInfo::new(fs),
];
let layout = PipelineLayout::new(
device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap();
let subpass = Subpass::from(render_pass.clone(), 0).unwrap();
GraphicsPipeline::new(
device.clone(),
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
vertex_input_state: Some(vertex_input_state),
input_assembly_state: Some(InputAssemblyState::default()),
viewport_state: Some(ViewportState::default()),
rasterization_state: Some(RasterizationState::default()),
multisample_state: Some(MultisampleState::default()),
// Enable depth testing, which is needed for occlusion queries to make sense at
// all. If you disable depth testing, every pixel is considered to pass the depth
// test, so every query will return a nonzero result.
depth_stencil_state: Some(DepthStencilState {
depth: Some(DepthState::simple()),
..Default::default()
}),
color_blend_state: Some(ColorBlendState::with_attachment_states(
subpass.num_color_attachments(),
ColorBlendAttachmentState::default(),
)),
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
};
let mut viewport = Viewport {
offset: [0.0, 0.0],
extent: [0.0, 0.0],
depth_range: 0.0..=1.0,
};
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
device.clone(),
Default::default(),
));
let mut framebuffers = window_size_dependent_setup(
&images,
render_pass.clone(),
&mut viewport,
memory_allocator.clone(),
);
let mut recreate_swapchain = false;
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
event_loop.run(move |event, elwt| {
elwt.set_control_flow(ControlFlow::Poll);
match event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
elwt.exit();
}
Event::WindowEvent {
event: WindowEvent::Resized(_),
..
} => {
recreate_swapchain = true;
}
Event::WindowEvent {
event: WindowEvent::RedrawRequested,
..
} => {
let image_extent: [u32; 2] = window.inner_size().into();
if image_extent.contains(&0) {
return;
}
previous_frame_end.as_mut().unwrap().cleanup_finished();
if recreate_swapchain {
let (new_swapchain, new_images) = swapchain
.recreate(SwapchainCreateInfo {
image_extent,
..swapchain.create_info()
})
.expect("failed to recreate swapchain");
swapchain = new_swapchain;
framebuffers = window_size_dependent_setup(
&new_images,
render_pass.clone(),
&mut viewport,
memory_allocator.clone(),
);
recreate_swapchain = false;
}
let (image_index, suboptimal, acquire_future) =
match acquire_next_image(swapchain.clone(), None).map_err(Validated::unwrap) {
Ok(r) => r,
Err(VulkanError::OutOfDate) => {
recreate_swapchain = true;
return;
}
Err(e) => panic!("failed to acquire next image: {e}"),
};
if suboptimal {
recreate_swapchain = true;
}
let mut builder = RecordingCommandBuffer::new(
command_buffer_allocator.clone(),
queue.queue_family_index(),
CommandBufferLevel::Primary,
CommandBufferBeginInfo {
usage: CommandBufferUsage::OneTimeSubmit,
..Default::default()
},
)
.unwrap();
// Beginning or resetting a query is unsafe for now.
unsafe {
builder
// A query must be reset before each use, including the first use. This
// must be done outside a render pass.
.reset_query_pool(query_pool.clone(), 0..3)
.unwrap()
.set_viewport(0, [viewport.clone()].into_iter().collect())
.unwrap()
.bind_pipeline_graphics(pipeline.clone())
.unwrap()
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![
Some([0.0, 0.0, 1.0, 1.0].into()),
Some(1.0.into()),
],
..RenderPassBeginInfo::framebuffer(
framebuffers[image_index as usize].clone(),
)
},
Default::default(),
)
.unwrap()
// Begin query 0, then draw the red triangle. Enabling the
// `QueryControlFlags::PRECISE` flag would give exact numeric results. This
// needs the `occlusion_query_precise` feature to be enabled on the device.
.begin_query(
query_pool.clone(),
0,
QueryControlFlags::empty(),
// QueryControlFlags::PRECISE,
)
.unwrap()
.bind_vertex_buffers(0, triangle1.clone())
.unwrap()
.draw(triangle1.len() as u32, 1, 0, 0)
.unwrap()
// End query 0.
.end_query(query_pool.clone(), 0)
.unwrap()
// Begin query 1 for the cyan triangle.
.begin_query(query_pool.clone(), 1, QueryControlFlags::empty())
.unwrap()
.bind_vertex_buffers(0, triangle2.clone())
.unwrap()
.draw(triangle2.len() as u32, 1, 0, 0)
.unwrap()
.end_query(query_pool.clone(), 1)
.unwrap()
// Finally, query 2 for the green triangle.
.begin_query(query_pool.clone(), 2, QueryControlFlags::empty())
.unwrap()
.bind_vertex_buffers(0, triangle3.clone())
.unwrap()
.draw(triangle3.len() as u32, 1, 0, 0)
.unwrap()
.end_query(query_pool.clone(), 2)
.unwrap()
.end_render_pass(Default::default())
.unwrap();
}
let command_buffer = builder.end().unwrap();
let future = previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(queue.clone(), command_buffer)
.unwrap()
.then_swapchain_present(
queue.clone(),
SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index),
)
.then_signal_fence_and_flush();
match future.map_err(Validated::unwrap) {
Ok(future) => {
previous_frame_end = Some(future.boxed());
}
Err(VulkanError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
Err(e) => {
println!("failed to flush future: {e}");
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
}
// Retrieve the query results. This copies the results to a variable on the CPU.
// You can also use the `copy_query_pool_results` function on a command buffer to
// write results to a Vulkano buffer. This could then be used to influence draw
// operations further down the line, either in the same frame or a future frame.
#[rustfmt::skip]
query_pool.get_results(
0..3,
&mut query_results,
// Block the function call until the results are available.
// NOTE: If not all the queries have actually been executed, then this will
// wait forever for something that never happens!
QueryResultFlags::WAIT
// Enable this flag to give partial results if available, instead of waiting
// for the full results.
// | QueryResultFlags::PARTIAL
// Blocking and waiting will ensure the results are always available after the
// function returns.
//
// If you disable waiting, then this flag can be enabled to include the
// availability of each query's results. You need one extra element per query
// in your `query_results` buffer for this. This element will be filled with a
// zero/nonzero value indicating availability.
// | QueryResultFlags::WITH_AVAILABILITY
)
.unwrap();
// If the `precise` bit was not enabled, then you're only guaranteed to get a
// boolean result here: zero if all pixels were occluded, nonzero if only some were
// occluded. Enabling `precise` will give the exact number of pixels.
// Query 0 (red triangle) will always succeed, because the depth buffer starts
// empty and will never occlude anything.
assert_ne!(query_results[0], 0);
// Query 1 (cyan triangle) will fail, because it's drawn completely behind the
// first.
assert_eq!(query_results[1], 0);
// Query 2 (green triangle) will succeed, because it's only partially occluded.
assert_ne!(query_results[2], 0);
}
Event::AboutToWait => window.request_redraw(),
_ => (),
}
})
}
fn window_size_dependent_setup(
images: &[Arc<Image>],
render_pass: Arc<RenderPass>,
viewport: &mut Viewport,
memory_allocator: Arc<StandardMemoryAllocator>,
) -> Vec<Arc<Framebuffer>> {
let extent = images[0].extent();
viewport.extent = [extent[0] as f32, extent[1] as f32];
let depth_attachment = ImageView::new_default(
Image::new(
memory_allocator,
ImageCreateInfo {
image_type: ImageType::Dim2d,
format: Format::D16_UNORM,
extent: images[0].extent(),
usage: ImageUsage::DEPTH_STENCIL_ATTACHMENT | ImageUsage::TRANSIENT_ATTACHMENT,
..Default::default()
},
AllocationCreateInfo::default(),
)
.unwrap(),
)
.unwrap();
images
.iter()
.map(|image| {
let view = ImageView::new_default(image.clone()).unwrap();
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![view, depth_attachment.clone()],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}