vulkano/examples/mesh-shader/main.rs

506 lines
17 KiB
Rust

// Welcome to the mesh shader example!
//
// This is a simple, modified version of the `instancing.rs` example that demonstrates how to use
// mesh shaders to generate geometry, that looks identical to the instancing example. We expect you
// to be familiar with both instancing and compute shaders before approaching mesh shaders, due to
// their high complexity.
//
// This example is intentionally kept simple and does not follow the recommended pattern by which
// one should emit vertices and indices. This pattern should best match what the hardware likes,
// and thus is unique to each vendor.
//
// See these presentation slides for an overview of mesh shaders and best practices:
// https://vulkan.org/user/pages/09.events/vulkanised-2023/vulkanised_mesh_best_practices_2023.02.09-1.pdf
// Presentation: https://www.youtube.com/watch?v=g9FoZcEQlbA
use std::{error::Error, sync::Arc};
use vulkano::{
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage},
command_buffer::{
allocator::StandardCommandBufferAllocator, CommandBufferBeginInfo, CommandBufferLevel,
CommandBufferUsage, RecordingCommandBuffer, RenderPassBeginInfo,
},
descriptor_set::{
allocator::StandardDescriptorSetAllocator, DescriptorSet, WriteDescriptorSet,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, DeviceFeatures,
QueueCreateInfo, QueueFlags,
},
image::{view::ImageView, Image, ImageUsage},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
padded::Padded,
pipeline::{
graphics::{
color_blend::{ColorBlendAttachmentState, ColorBlendState},
multisample::MultisampleState,
rasterization::RasterizationState,
viewport::{Viewport, ViewportState},
GraphicsPipelineCreateInfo,
},
layout::PipelineDescriptorSetLayoutCreateInfo,
DynamicState, GraphicsPipeline, Pipeline, PipelineBindPoint, PipelineLayout,
PipelineShaderStageCreateInfo,
},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
single_pass_renderpass,
swapchain::{
acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo,
},
sync::{self, GpuFuture},
DeviceSize, Validated, VulkanError, VulkanLibrary,
};
use winit::{
event::{Event, WindowEvent},
event_loop::{ControlFlow, EventLoop},
window::WindowBuilder,
};
/// The vertex type that we will be used to describe the triangle's geometry.
#[derive(BufferContents)]
#[repr(C)]
struct TriangleVertex {
position: [f32; 2],
}
/// The vertex type that describes the unique data per instance.
type InstanceData = mesh::Instance;
mod mesh {
vulkano_shaders::shader! {
ty: "mesh",
path: "mesh.glsl",
vulkan_version: "1.2",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
path: "frag.glsl",
}
}
fn main() -> Result<(), impl Error> {
let event_loop = EventLoop::new().unwrap();
let library = VulkanLibrary::new().unwrap();
let required_extensions = Surface::required_extensions(&event_loop).unwrap();
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
enabled_extensions: required_extensions,
..Default::default()
},
)
.unwrap();
let device_extensions = DeviceExtensions {
khr_swapchain: true,
ext_mesh_shader: true,
..DeviceExtensions::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.enumerate()
.position(|(i, q)| {
q.queue_flags.intersects(QueueFlags::GRAPHICS)
&& p.presentation_support(i as u32, &event_loop).unwrap()
})
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
enabled_features: DeviceFeatures {
mesh_shader: true,
..DeviceFeatures::default()
},
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
let window = Arc::new(WindowBuilder::new().build(&event_loop).unwrap());
let surface = Surface::from_window(instance.clone(), window.clone()).unwrap();
let (mut swapchain, images) = {
let surface_capabilities = device
.physical_device()
.surface_capabilities(&surface, Default::default())
.unwrap();
let image_format = device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0]
.0;
Swapchain::new(
device.clone(),
surface,
SwapchainCreateInfo {
min_image_count: surface_capabilities.min_image_count.max(2),
image_format,
image_extent: window.inner_size().into(),
image_usage: ImageUsage::COLOR_ATTACHMENT,
composite_alpha: surface_capabilities
.supported_composite_alpha
.into_iter()
.next()
.unwrap(),
..Default::default()
},
)
.unwrap()
};
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
let descriptor_set_allocator = Arc::new(StandardDescriptorSetAllocator::new(
device.clone(),
Default::default(),
));
// We now create a buffer that will store the shape of our triangle. This triangle is identical
// to the one in the `triangle.rs` example.
let vertices = [
TriangleVertex {
position: [-0.5, -0.25],
},
TriangleVertex {
position: [0.0, 0.5],
},
TriangleVertex {
position: [0.25, -0.1],
},
];
let vertex_buffer = Buffer::from_iter(
memory_allocator.clone(),
BufferCreateInfo {
usage: BufferUsage::STORAGE_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
vertices,
)
.unwrap();
// Now we create another buffer that will store the unique data per instance. For this example,
// we'll have the instances form a 10x10 grid that slowly gets larger.
let rows = 10;
let cols = 10;
let instances = {
let n_instances = rows * cols;
let mut data = Vec::new();
for c in 0..cols {
for r in 0..rows {
let half_cell_w = 0.5 / cols as f32;
let half_cell_h = 0.5 / rows as f32;
let x = half_cell_w + (c as f32 / cols as f32) * 2.0 - 1.0;
let y = half_cell_h + (r as f32 / rows as f32) * 2.0 - 1.0;
let position_offset = [x, y];
let scale = (2.0 / rows as f32) * (c * rows + r) as f32 / n_instances as f32;
data.push(InstanceData {
position_offset,
scale,
});
}
}
data
};
let instance_buffer = Buffer::new_unsized::<mesh::InstanceBuffer>(
memory_allocator,
BufferCreateInfo {
usage: BufferUsage::STORAGE_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
instances.len() as DeviceSize,
)
.unwrap();
{
let mut guard = instance_buffer.write().unwrap();
for (i, instance) in instances.iter().enumerate() {
guard.instance[i] = Padded(*instance);
}
}
let render_pass = single_pass_renderpass!(
device.clone(),
attachments: {
color: {
format: swapchain.image_format(),
samples: 1,
load_op: Clear,
store_op: Store,
},
},
pass: {
color: [color],
depth_stencil: {},
},
)
.unwrap();
let pipeline = {
let mesh = mesh::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let fs = fs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let stages = [
PipelineShaderStageCreateInfo::new(mesh),
PipelineShaderStageCreateInfo::new(fs),
];
let layout = PipelineLayout::new(
device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap();
let subpass = Subpass::from(render_pass.clone(), 0).unwrap();
GraphicsPipeline::new(
device.clone(),
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
viewport_state: Some(ViewportState::default()),
rasterization_state: Some(RasterizationState::default()),
multisample_state: Some(MultisampleState::default()),
color_blend_state: Some(ColorBlendState::with_attachment_states(
subpass.num_color_attachments(),
ColorBlendAttachmentState::default(),
)),
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
};
let descriptor_set = DescriptorSet::new(
descriptor_set_allocator,
pipeline.layout().set_layouts()[0].clone(),
[
WriteDescriptorSet::buffer(0, vertex_buffer.clone()),
WriteDescriptorSet::buffer(1, instance_buffer.clone()),
],
[],
)
.unwrap();
let mut viewport = Viewport {
offset: [0.0, 0.0],
extent: [0.0, 0.0],
depth_range: 0.0..=1.0,
};
let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut viewport);
let mut recreate_swapchain = false;
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
device.clone(),
Default::default(),
));
event_loop.run(move |event, elwt| {
elwt.set_control_flow(ControlFlow::Poll);
match event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
elwt.exit();
}
Event::WindowEvent {
event: WindowEvent::Resized(_),
..
} => {
recreate_swapchain = true;
}
Event::WindowEvent {
event: WindowEvent::RedrawRequested,
..
} => {
let image_extent: [u32; 2] = window.inner_size().into();
if image_extent.contains(&0) {
return;
}
previous_frame_end.as_mut().unwrap().cleanup_finished();
if recreate_swapchain {
let (new_swapchain, new_images) = swapchain
.recreate(SwapchainCreateInfo {
image_extent,
..swapchain.create_info()
})
.expect("failed to recreate swapchain");
swapchain = new_swapchain;
framebuffers = window_size_dependent_setup(
&new_images,
render_pass.clone(),
&mut viewport,
);
recreate_swapchain = false;
}
let (image_index, suboptimal, acquire_future) =
match acquire_next_image(swapchain.clone(), None).map_err(Validated::unwrap) {
Ok(r) => r,
Err(VulkanError::OutOfDate) => {
recreate_swapchain = true;
return;
}
Err(e) => panic!("failed to acquire next image: {e}"),
};
if suboptimal {
recreate_swapchain = true;
}
let mut builder = RecordingCommandBuffer::new(
command_buffer_allocator.clone(),
queue.queue_family_index(),
CommandBufferLevel::Primary,
CommandBufferBeginInfo {
usage: CommandBufferUsage::OneTimeSubmit,
..Default::default()
},
)
.unwrap();
builder
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into())],
..RenderPassBeginInfo::framebuffer(
framebuffers[image_index as usize].clone(),
)
},
Default::default(),
)
.unwrap()
.set_viewport(0, [viewport.clone()].into_iter().collect())
.unwrap()
.bind_pipeline_graphics(pipeline.clone())
.unwrap()
// Instead of binding vertex attributes, bind buffers as descriptor sets
.bind_descriptor_sets(
PipelineBindPoint::Graphics,
pipeline.layout().clone(),
0,
descriptor_set.clone(),
)
.unwrap();
unsafe {
builder.draw_mesh_tasks([cols, rows, 1]).unwrap();
}
builder.end_render_pass(Default::default()).unwrap();
let command_buffer = builder.end().unwrap();
let future = previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(queue.clone(), command_buffer)
.unwrap()
.then_swapchain_present(
queue.clone(),
SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index),
)
.then_signal_fence_and_flush();
match future.map_err(Validated::unwrap) {
Ok(future) => {
previous_frame_end = Some(future.boxed());
}
Err(VulkanError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
Err(e) => {
println!("failed to flush future: {e}");
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
}
}
Event::AboutToWait => window.request_redraw(),
_ => (),
}
})
}
/// This function is called once during initialization, then again whenever the window is resized.
fn window_size_dependent_setup(
images: &[Arc<Image>],
render_pass: Arc<RenderPass>,
viewport: &mut Viewport,
) -> Vec<Arc<Framebuffer>> {
let extent = images[0].extent();
viewport.extent = [extent[0] as f32, extent[1] as f32];
images
.iter()
.map(|image| {
let view = ImageView::new_default(image.clone()).unwrap();
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![view],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}